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Abstract. We suggest a new delooping machine, which is based on recog-

nizing an n-fold loop space by a collection of operations acting on it, like

the traditional delooping machines of James, Stasheff, May, Boardman-Vogt,
Segal, and Bousfield. Unlike the traditional delooping machines, which care-

fully select a nice space of such operations, we consider all natural operations

on n-fold loop spaces, resulting in the algebraic theory Map∗(
W
• Sn,

W
• Sn).

The advantage of this new approach is that the delooping machine is universal

in a certain sense, the proof of the recognition principle is more conceptual,

works the same way for all values of n, and does not need the test space to be
connected.

1. Introduction

The goal of this paper is to give a proof of the following characterization of
n–fold loop spaces. In the category Spaces∗ of pointed spaces, consider the full
subcategory generated by the wedges

∨
k Sn of n-dimensional spheres for k ≥ 0

(where
∨

0 Sn = ∗). Let T Sn

denote the opposite category, see Figure 1. Since∨
k Sn is a k-fold coproduct of Sn’s in Spaces∗, in T Sn

it is a k-fold categorical
product of Sn’s.

Theorem 1.1. A space Y ∈ Spaces∗ is weakly equivalent to an n–fold loop space,
iff there exists a product preserving functor Ỹ : T Sn → Spaces∗ such that Ỹ (Sn) is
weakly equivalent to Y .

The category T Sn

is in fact an algebraic theory (see 2.1). From this point of
view, one can regard the above theorem as a recognition principle: a loop space
structure is detected by the structure of an algebra over the algebraic theory T Sn

.
We will actually prove a stronger version (see Theorem 4.8) of Theorem 1.1:

given a product preserving functor Ỹ : T Sn → Spaces∗, one can construct a space
BnỸc such that ΩnBnỸc ' Ỹ (Sn), thereby delooping the space Ỹ (Sn).

This description of iterated loop spaces is in some sense an extreme delooping
machine. By Yoneda’s lemma the theory T Sn

encodes all natural maps (ΩnX)k →
(ΩnX)l, and we use all this structure in order to detect loop spaces. This stands
in contrast to the approach of James [13], Stasheff [21], May [16], Boardman-Vogt
[4], Segal [20], Bousfield [5], or Kriz [14], where only carefully chosen sets of maps
between loop spaces are used for the same purpose. Our indiscriminate method
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Figure 1. A morphism
∨

3 Sn →
∨

4 Sn in category T Sn

.
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however brings some advantages. First of all, as in [5], Theorem 1.1 is true for all,
not necessarily connected, loop spaces. Kriz’s machine [14] does not require con-
nectivity, either, but deloops only infinite loop spaces. Beck’s machine [3] works for
all loop spaces, but detects loop spaces by an action of a monad ΩnΣn rather than
a space of operations, so that the recognition principle becomes almost tautologi-
cal and arguably less practical. Also, since we avoid making particular choices of
operations on loop spaces, our delooping machine provides a convenient ground for
proving uniqueness theorems of the kind of May and Thomason [17], [22]. Namely,
given an operad, a PROP, or a semi-theory (i.e., a machine of the type of Se-
gal’s Γ-spaces, see [2]), one can replace it by an algebraic theory describing the
same structure on spaces. On the other hand, it is relatively easy to compare ho-
motopy theories of objects described by various algebraic theories. This implies
Theorem 4.10 – a uniqueness result for ”delooping theories”.

Most of the arguments and constructions we use are formal and do not depend
on any special properties of loop spaces. Indeed, at least one implication of the
statement of Theorem 1.1 holds when we replace Sn with an arbitrary pointed
space A. If T A is an algebraic theory constructed analogously to T Sn

above,
then for any mapping space Y = Map∗(A,X), we can define a product preserving
functor Ỹ : T A → Spaces∗ such that Ỹ (A) = Y . It is not true that for an arbitrary
A also the opposite statement will hold, i.e. that any such functor will come from
some mapping space. A counterexample (following an idea of A. Przeździecki) can
be obtained as follows. Assume that for some space A every T A-algebra can be
identified with a mapping space Map∗(A,X) for some X. As a consequence of [1,
Corollary 1.4] we get that if F is a functor from the category of pointed spaces to
itself, such that F preserves weak equivalences and preserves products up to a weak
equivalence, then for any mapping space Map∗(A,X) the space F (Map∗(A,X))
must be weakly equivalent to some mapping space Map∗(A,X ′). Take A = S2∨S3,
X = K(Z, 3), the Eilenberg-Mac Lane space, and let F be the functor picking the
connected component of the basepoint. We have Map∗(A,X) = Z ×K(Z, 1), and
so F (Map∗(A,X)) = K(Z, 1). Since K(Z, 1) does not decompose non-trivially into
a product of spaces, it follows that it is not of the form Map∗(A,X ′) for any space
X ′. In other words, we can put a T A-algebra structure on K(Z, 1) which does not
come from any mapping space.

It should be true that if for a given space A, the mapping spaces from A can
be described as algebras over some operad, PROP, semi-theory, algebraic theory,
or using some other formalism employing only finitary operations on a space, then
they must be characterized by means of the theory T A. Therefore the example
described above shows that that for A = S2 ∨ S3 none of these formalisms will
work.

Another advantage of the proposed recognition principle is that the argument
seems to be more conceptual than in the previously known cases. For example, we
get an analogue (Corollary 4.9) of May’s approximation theorem [16] as a simple
consequence of, rather than a hard step towards, the recognition principle.

This simplicity comes, no wonder, with a price tag attached: the theory T Sn

is more cumbersome than the other devices used in delooping, such as the little
n-disks operad. For example, while the homology of the little n-disks operad has
a neat description as the operad describing n-algebras, see F. Cohen [8, 9], even
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the rational homology of the corresponding PROP Map∗(
∨

l S
n,

∨
k Sn) is harder

to come by, see the thesis [7] of the second author.
The theory T Sn

bears resemblance to the cacti operad, see [10], which consists
of (unpointed) continuous maps from a sphere Sn to a tree-like joint of spheres
Sn at finitely many points. This operad was invented as a bookkeeping device for
operations on free sphere spaces arising in string topology, see [6].

Also, the operadic part On := Map∗(Sn,
∨

Sn) of T Sn

has been described as a
”universal operad of n-fold loop spaces” by P. Salvatore in [18]. As was also noted by
Salvatore, while the space underlying a connected algebra over this operad is weakly
equivalent to an n-fold loop space, in general a loop space will admit several actions
of On. Therefore, connected On-algebras can be seen as loop spaces equipped with
some extra structure.

Notation 1.2.
• Let Spaces∗ denote the category of pointed compactly generated (but not

necessarily Hausdorff) topological spaces. From the perspective of homo-
topy theory, there is no difference between this category and the category
of all pointed topological spaces. The category Spaces∗ has a model cate-
gory structure with the usual notions of weak equivalences, fibrations and
cofibrations, and it is Quillen equivalent to the category of pointed topo-
logical spaces, see [12]. The assumption that all spaces are compactly gen-
erated has the advantage that for any space X, the smash product functor
Z 7→ Z ∧X is left adjoint to the mapping space functor Z 7→ Map∗(X, Z).
This has some further useful consequences which we will invoke.

• If X is an unpointed space by X+ we will denote the space X with an
adjoined basepoint.

• All functors are assumed to be covariant.
• If C is a category, then Cop will denote the opposite category of C.

2. Algebraic theories and their algebras

Definition 2.1. An algebraic theory T is a small category with objects T0, T1, . . .
together with, for each n, a choice of morphims pn

1 , . . . , pn
n ∈ MorT (Tn, T1) such

that for any k, n the map
n∏

i=1

(pn
i )∗ : MorT (Tk, Tn) →

n∏
i=1

MorT (Tk, T1)

is an isomorphism. In other words, the object Tn is an n-fold categorical product of
T1’s, and pn

i ’s are the projection maps. In particular T0 is the terminal object in T .
We will also assume that it is an initial object. A morphism of algebraic theories is a
functor T → T ′ preserving the projection maps. We will consider algebraic theories
enriched over Spaces∗; in particular, the sets of morphisms will be provided with
a pointed topological space structure. We will also regard Spaces∗ as a category
enriched over itself. Accordingly, all functors between categories enriched over
Spaces∗ will be assumed continuous and basepoint preserving.

Given an algebraic theory T , a T -algebra Ỹ is a product preserving functor
Ỹ : T → Spaces∗. A morphism of T -algebras is a natural transformation of functors.
A left T -module is any functor T → Spaces∗. A right T -module is a functor
T op → Spaces∗.
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We will say that a space Y admits a T -algebra structure, if there is a T -algebra
Ỹ and a homeomorphism Ỹ (T1) ∼= Y .

For an algebraic theory T , by AlgT we will denote the category of all T -algebras
and their morphisms.

Example 2.2. For any pointed space A ∈ Spaces∗ we can define an algebraic
theory TA enriched over Spaces∗ by setting

MorTA
(Tm, Tn) := Map∗(A

m, An).

Thus, TA is isomorphic to the full subcategory of Spaces∗ generated by the spaces
An for n ≥ 0.

For any X ∈ Spaces∗, we can consider a product preserving functor

TA → Spaces∗, Tn 7→ Map∗(X, An).

This shows that any mapping space Map∗(X, A) has a canonical structure of a
TA-algebra.

Example 2.3. Let A be again a pointed space, and let T A be a category with
objects T0, T1, . . . and morphisms

MorT A(Tm, Tn) = Map∗(
∨
n

A,
∨
m

A).

In other words, T A is isomorphic to the opposite of the full subcategory of Spaces∗
generated by the finite wedges of A. Since

∨
n A is an n-fold coproduct of A in

Spaces∗, Tn is an n-fold categorical product of T1’s in T A. It follows that T A is an
algebraic theory. For X ∈ Spaces∗, we can define a functor

T A → Spaces∗, Tn 7→ Map∗(
∨
n

A,X).

Therefore the mapping space Map∗(A,X) has a canonical structure of a T A-algebra.
In particular, if A = Sn we get that any n-fold loop space canonically defines an
algebra over T Sn

.

2.4. A special instance of an algebraic theory T A is obtained when we take A = S0.
The category T S0

is equivalent to the opposite of the category of finite pointed sets.
One can check that the forgetful functor

UT S0 : AlgT
S0

→ Spaces∗, UT S0 (Ỹ ) = Ỹ (T1),

gives an isomorphism of categories. Also, for any algebraic theory T there is
a unique map of algebraic theories IT : T S0 → T . If UT : AlgT → Spaces∗ is
the forgetful functor, UT (Ỹ ) = Ỹ (T1), then we have UT = UT S0 ◦ IT

∗ where

IT
∗ : AlgT → AlgT

S0

is the functor induced by IT .

3. Tensor product of functors

The following general construction will be used in the case when C is an algebraic
theory, F a right C-module, and G a C-algebra.
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Definition 3.1. Let C be a small topological category, i.e., a small category en-
riched over Spaces∗, and F ∈ SpacesC

op

∗ , G ∈ SpacesC∗ . The tensor product F ⊗C G
is the coequalizer

F ⊗C G := colim
∨

(c,d)∈C×C F (c) ∧Mor(d, c) ∧G(d)
j1 //
j2

//
∨

c∈C F (c) ∧G(c) .

The map j1 is the wedge of the maps ev∧ id : (F (c) ∧Mor(d, c)) ∧G(d) → F (d) ∧
G(d), where ev is the evaluation map, and j2 is similarly induced by the evaluation
maps ev : Mor(d, c) ∧G(d) → G(c).

The most important – from our perspective – property of the tensor product is
given by the following

Proposition 3.2. Let C be a small topological category and F ∈ SpacesC
op

∗ . Con-
sider the functor

Map∗(F,−) : Spaces∗ → SpacesC∗ , X 7→ Map∗(F,X).

The left adjoint of Map∗(F,−) exists and is given by

F ⊗C − : SpacesC∗ → Spaces∗, G 7→ F ⊗C G.

For a proof see, e.g., [15].

3.3. Assume now that we have two small categories C and D enriched over Spaces∗
and two functors F : Cop → Spaces∗ and G : C × Dop → Spaces∗. For every d ∈ D,
the functor G defines G(d) : C → Spaces∗ by G(d)(c) = G(c, d). Applying the tensor
product construction, we obtain a new functor F ⊗C G : Dop → Spaces∗ such that
(F ⊗CG)(d) = F ⊗CG(d). Since smash product in Spaces∗ commutes with colimits,
for any H : D → Spaces∗, we have a natural isomorphism

(F ⊗C G)⊗D H ∼= F ⊗C (G⊗D H) ∈ Spaces∗ .

3.4. Our main interest lies in the following instances of these constructions:
1) For A ∈ Spaces∗, let T A be the algebraic theory defined in Example 2.3.

Consider the functor
ΩA : Spaces∗ → SpacesT

A

∗
given by ΩA(X)(Tk) := Map∗(

∨
k A,X). By Proposition 3.2, ΩA has a left adjoint

BA : SpacesT
A

∗ → Spaces∗,

given by BA(Y ) =
∨
• A ⊗T A Y . Here

∨
• A denotes the right T A-module defined

as the functor from (T A)op to Spaces∗ such that
∨
• A(Tk) =

∨
k A. Note that

ΩA(X) preserves products, and so ΩA takes values in the full subcategory AlgT
A ⊂

SpacesT
A

∗ . Thus, we get an adjoint pair (BA,ΩA) of functors between AlgT
A

and
Spaces∗.

2) For A ∈ Spaces∗, consider

EndA(Tk, Tl) := MorT A(Tk, Tl) = Map∗(
∨
l

A,
∨
k

A)

as a functor (T A)op × T A → Spaces∗. Using the canonical map IT A : T S0 → T A

(see 2.4), we can view EndA as a functor on the category (T S0
)op × T A. For

X ∈ Spaces∗, define

FT A(X) := EndA⊗T S0 ΩS0
(X) ∈ SpacesT

A

∗ .
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One can check that FT A(X) preserves products, i.e., defines a T A-algebra. Thus
we get a functor

FT A : Spaces∗ → AlgT
A

, X 7→ FT A(X),

which is left adjoint to the forgetful functor

UT A : AlgT
A

→ Spaces∗, UT A(Ỹ ) = Ỹ (T1).

We will call FT A the free T A-algebra functor and FT A(X) the free T A-algebra
generated by X.

3) Consider again an algebraic theory T A and let ∆op be the simplicial category.
Let Ỹ• : ∆op×T A → Spaces∗ be a simplicial T A–algebra. Let ∆[•]+ : ∆ → Spaces∗
denote the pointed cosimplicial space [n] 7→ ∆[n]+. In this case the tensor prod-
uct ∆[•]+ ⊗∆op Ỹ• =: |Ỹ•| gives the geometric realization of Ỹ•. Since realization
preserves products in Spaces∗, we see that |Ỹ•| is a T A–algebra.

3.5. Notice that the isomorphism of Section 3.3 shows that for a pointed simplicial
space X• we have |FT AX•| ∼= FT A |X•|, and that similarly for a simplicial T A–
algebra Ỹ• we get |BAỸ•| ∼= BA|Ỹ•|.

3.6. Finally, consider the functors ΩA and UT A of Section 3.4. The composition
UT A ◦ ΩA : Spaces∗ → Spaces∗ is given by UT A ◦ ΩA(X) = Map∗(A,X). As a
result its left adjoint BA ◦ FT A is the smash product BA ◦ FT A(X) = X ∧A. This
observation indicates that the algebraic theory T A may be suitable for describing
mapping spaces from A, at least in some cases.

Lemma 3.7. For any pointed finite set Z, we have a canonical isomorphism

FT AZ ∼= Map∗(A,Z ∧A)

of T A-algebras.

Proof. For a finite pointed set Z, the T A-algebra Map∗(A,Z ∧ A), as a functor
T A → Spaces∗, is representable by Tk−1, where k is the cardinality of Z. Thus,
by Yoneda’s lemma, MorAlgTA (Map∗(A,Z ∧ A), Ỹ ) ∼= Map∗(Z,UT A(Ỹ )). The ad-
jointness of FT A and UT A yields the result. �

Combining this isomorphism with the equality BA(FT A(Z)) = Z ∧ A, we see that
BA acts as a classifying space for Map∗(A,Z ∧ A). Our goal will be to show that
when we take A = Sn, this construction works for any T Sn

- algebra.

4. Model categories and Quillen equivalences

Our strategy of approaching Theorem 1.1 will be to reformulate it in the language
of model categories and prove it in this form. Below we describe model category
structures we will encounter in this process. As it was the case so far, most of our
setup will apply to mapping spaces Map∗(A,X) from an arbitrary space A, and
only in the proof of Theorem 4.8, we will specialize to A = Sn.

For any algebraic theory T , the category of T -algebras AlgT has a model cate-
gory structure with weak equivalences and fibrations defined objectwise, i.e., via the
forgetful functor UT , [19]. For a CW-complex A ∈ Spaces∗, let RA Spaces∗ denote
the category of pointed compactly generated spaces together with the following
choices of classes of morphisms:
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- a map f : X → Z is a weak equivalence in RA Spaces∗, if f∗ : Map∗(A,X) →
Map∗(A,Z) is a weak equivalence of mapping spaces;

- a map f is a fibration if it is a Serre fibration;
- a map f is a cofibration if it has the left lifting property with respect to all

fibrations which are weak equivalences in RA Spaces∗.

Proposition 4.1. The category RA Spaces∗ is a model category.

Proof. The statement follows from a general result on the existence of right local-
izations of model categories, see [11, 5.1, p. 65]. �

Note that for A = S0, this defines the standard model category structure on
Spaces∗.

In order to avoid confusing RA Spaces∗ with Spaces∗, we will call weak equiva-
lences (respectively, fibrations and cofibrations) in RA Spaces∗ A-local equivalences
(respectively, fibrations and cofibrations). Notice that a map f : X → Z is an
Sn-local equivalence iff it induces isomorphisms f∗ : πq(X) → πq(Z) for q ≥ n.

4.2. A cofibrant resolution of a T A-algebra. Directly from the definition of
the model structure on AlgT

A

, it follows that every T A-algebra is a fibrant object.
The structure of cofibrant algebras is more complicated (see [19]). For an arbitrary
algebra Ỹ ∈ AlgT

A

, one can however describe its cofibrant replacement as follows.
Recall the adjoint pair

FT A : Spaces∗
// AlgT

A

: UT Aoo

of Section 3.4.2.

Proposition 4.3. For any CW-complex A ∈ Spaces∗, the functors

FT A : Spaces∗
// AlgT

A

: UT Aoo

form a Quillen pair, see, e.g., [11, Definition 8.5.2]. In particular, the two functors
induce an adjoint pair of functors between the homotopy categories.

Proof. The functor UT A sends weak equivalences and fibrations in AlgT
A

to weak
equivalences and fibrations in Spaces∗, respectively, thus the conclusion follows. �

Next, consider the adjoint functors

| · | : SSets∗
// Spaces∗ : Sing•oo

between the categories of pointed spaces and pointed simplicial sets, where Sing•
is the singularization functor and | · | is geometric realization. We will denote by
F ′
T A : SSets∗ → AlgT

A

the composition of | · | and FT A and by U ′
T A : AlgT

A →
SSets∗ the functor obtained by composing UT A with Sing•. The functors F ′

T A , U ′
T A

form again a Quillen pair. Therefore for any T A-algebra Ỹ , they define a simplicial
object F ′

T AU ′
T A•Ỹ in the category AlgT

A

which has the algebra (F ′
T AU ′

TA
)(k+1)Ỹ

in its k-th simplicial dimension. Its face and degeneracy maps are defined using
the counit and the unit of adjunction, respectively (compare [16, Chapter 9]). Let
|F ′
T AU ′

T A•Ỹ | denote the objectwise geometric realization of F ′
T AU ′

T A•Ỹ .

Lemma 4.4. |F ′
T AU ′

T A•Ỹ | is a T A-algebra.
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Proof. Clearly, |F ′
T AU ′

T A•Ỹ | is a functor from T A to Spaces∗. Also, since we are
working in the category of compactly generated spaces, realization preserves prod-
ucts, and so |F ′

T AU ′
T A•Ỹ | is a T A-algebra. �

Similarly to [1, 3.5, p. 903], we get

Lemma 4.5. For any Ỹ ∈ AlgT
A

there is a canonical weak equivalence

|F ′
T AU ′

T A•Ỹ | → Ỹ .

The above lemma remains to be true, if we replace the functors F ′
T A and U ′

T A

with FT A and UT A , respectively. What we will use in the sequel (see Step 3 of the
proof of Theorem 4.8) though is that the free algebras (F ′

T AU ′
T A)nỸ are generated

by spaces obtained as realizations of simplicial sets. The algebra |F ′
T AU ′

T A•Ỹ | can
be taken as a cofibrant replacement of Ỹ , since we have

Lemma 4.6. For any Ỹ ∈ AlgT
A

the algebra |F ′
T AU ′

T A•Ỹ | is a cofibrant object in
AlgT

A

.

Proof. This is a consequence of [19], which describes the structure of cofibrant
objects in the model category AlgT . �

Next, let A ∈ Spaces∗. Recall (Section 3.4.1) that we have an adjoint pair of
functors (BA,ΩA). Moreover the following holds:

Proposition 4.7. For any CW-complex A ∈ Spaces∗, the functors

BA : AlgT
A //

RA Spaces∗ : ΩAoo

form a Quillen pair.

Proof. The functor ΩA sends A-local equivalences and A-local fibrations to weak
equivalences and fibrations in AlgT

A

, respectively, which yields the statement. �

Our main result, Theorem 1.1, can now be restated more precisely as follows:

Theorem 4.8. For n ≥ 0 the Quillen pair

Bn : AlgT
Sn // RSn Spaces∗ : Ωnoo ,

where Bn := BSn and Ωn := ΩSn

, is a Quillen equivalence, see, e.g., [11, Definition
8.5.20]. In particular, the two functors induce an equivalence of the homotopy
categories.

Corollary 4.9 (Approximation theorem). For any CW-complex X ∈ Spaces∗, the
following T Sn

-algebras are weakly equivalent:

FnX
∼−→ ΩnΣnX,

where FnX denotes the free T Sn

-algebra FT Sn X on X and ΣnX = Sn ∧ X is
the reduced suspension. Moreover, these equivalences establish an equivalence of
monads Fn ∼ ΩnΣn on the category of CW-complexes.

Let us first deduce Theorem 1.1 and Corollary 4.9 from Theorem 4.8.
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Proof of Theorem 1.1. Let Ỹ be any T Sn

-algebra, and let Ỹc
∼→ Ỹ be its cofi-

brant replacement. Like any other object in RSn Spaces∗, BnỸc is fibrant and
therefore Theorem 4.8 implies that the adjoint Ỹc → ΩnBnỸc of the identity
isomorphism BnỸc

'−→ BnỸc is a weak equivalence of T Sn

-algebras. Therefore
Ỹ (T1) ' ΩnBnỸc(T1), and we indeed recover the statement of Theorem 1.1. �

Proof of Corollary 4.9. By [19] the free Fn-algebra generated by a CW-complex X

is cofibrant in AlgT
Sn

. The space BnFnX is fibrant, as any object of RSn Spaces∗.
Then the isomorphism BnFnX

id−→ BnFnX implies by Theorem 4.8 that the adjoint
FnX → ΩnBnFnX is a weak equivalence. On the other hand, BnFnX = ΣnX by
3.6. Thus, we get a weak equivalence FnX

∼−→ ΩnΣnX. It defines an equivalence
of monads, because of the naturality of the construction. �

Proof of Theorem 4.8. It is enough to show that for every cofibrant T Sn

-algebra
Ỹ , the unit ηeY : Ỹ → ΩnBnỸ of the adjunction (Bn,Ωn) is a weak equivalence in
AlgT

Sn

. Indeed, for Ỹ ∈ AlgT
Sn

, X ∈ Spaces∗, and f : Ỹ → ΩnX, we have a
commutative diagram

Ỹ

f
""FFFFFFFFF

η eY // ΩnBnỸ

Ωnf[

��
ΩnX,

where f [ is the adjoint to f . Assume that Ỹ is cofibrant and ηeY is a weak equiva-
lence in AlgT

Sn

. If f is also a weak equivalence, then so is Ωnf [. In particular the
map

Ωnf [(T1) : Ωn(BnỸ ) = (ΩnBnỸ )(T1) → (ΩnX)(T1) = ΩnX

is a weak equivalence of spaces, or, in other words, f [ is an Sn-local weak equiva-
lence.

Conversely, if f [ is an Sn-local equivalence, then Ωnf [ is an objectwise weak
equivalence, and so is f .

The proof of the fact that, for a cofibrant Ỹ ∈ AlgT
Sn

, the map ηeY is a weak
equivalence follows from a bootstrap argument below.

1) Let Ỹ = Fn(Z), where Z is an arbitrary pointed discrete space. Since Fn is a
left adjoint functor, it commutes with colimits. Therefore, since Z is the colimit of
the poset of finite subsets X of Z containing the basepoint, we get:

Fn(Z) = colimX⊆Z Fn(X) = colimX⊆Z Map∗(S
n, X ∧ Sn).

The second equality follows from 3.7. Furthermore, since Sn is a compact space,
we have colimX⊆Z Map∗(Sn, X ∧Sn) = Map∗(Sn, Z ∧Sn). Therefore, the map ηeY
is an isomorphism of T Sn

-algebras by 3.6.

2) Let Z• be a pointed simplicial set, and let Ỹ = F ′
n(Z•), where F ′

n = F ′
T Sn . We

have by 3.5
F ′

n(Z•) = Fn(|Z•|) ∼= |FnZ•|,
where FnZ• denotes the simplicial T Sn

-algebra obtained by applying Fn in each
simplicial dimension of Z•. By Step 1 for every k ≥ 0, we have an isomorphism
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ηk : Fn(Zk) → ΩnBnFn(Zk), assembling into a simplicial map by naturality. Thus,
the map

|η•| : Ỹ → |ΩnBnFn(Z•)|
is also an isomorphism. Next, notice that by 3.6, we have BnFn(Zk) = Zk ∧ Sn,
so it is an (n− 1)-connected space. Therefore (see [16, Theorem 12.3]), we have a
natural weak equivalence |ΩnBnFn(Z•)| ' Ωn|BnFn(Z•)|. (A technical condition
of properness of BnFn(Z•), needed for applying May’s theorem, is satisfied here, as
Z• is discrete and Bn and Fn are admissible functors, see [16, Definitions 11.2 and
A.7].) Combining this with the isomorphism |BnFn(Z•)| ∼= Bn|Fn(Z•)| we get a
weak equivalence

|ΩnBnFn(Z•)| ' ΩnBn|Fn(Z•)| ∼= ΩnBnỸ

It follows that ηeY is a weak equivalence.

3) Let Ỹ be any T Sn

-algebra and F ′
nU ′

n•Ỹ its simplicial resolution as in Sec-
tion 4.2, where U ′

n = U ′
T Sn . Note that, in every simplicial dimension k, the algebra

(F ′
nU ′

n)kỸ is of the form considered in Step 2. It follows that for k ≥ 0, we have a
weak equivalence

(1) ηk : (F ′
nU ′

n)kỸ
∼−→ ΩnBn(F ′

nU ′
n)kỸ .

To see that the map

|η•| : |F ′
nU ′

n•Ỹ | → |ΩnBnF ′
nU ′

n•Ỹ |
is also a weak equivalence, we can use a result of May [16, Theorem 11.13]. The
assumption of strict properness [16, Definition 11.2] of the simplicial spaces F ′

nU ′
n•Ỹ

and ΩnBnF ′
nU ′

n•Ỹ , needed for May’s theorem, is not hard to verify, since all the
functors Fn, Un, |Sing•(·)|, Bn, and Ωn are admissible in the sense of [16, Definition
A.7]. May also assumes that the realizations of the simplicial spaces are connected
H-spaces, which will not be satisfied in our case, in general. His result however
readily generalizes to the case of simplicial spaces whose realizations are H-spaces
with π0’s having a group structure, as it is the case for the simplicial spaces at
hand for n ≥ 1. The H-space structure is not there for n = 0, but in this case, the
statement of the theorem is trivial, anyway.

Using arguments similar to those employed in Step 2, we get from here that

η : |F ′
nU ′

n•Ỹ | → ΩnBn|F ′
nU ′

n•Ỹ |
is a weak equivalence.
4) Let Ỹ be any cofibrant algebra. We have a commutative diagram:

|F ′
nU ′

n•Ỹ |

∼h

��

η

∼
// ΩnBn|F ′

nU ′
n•Ỹ |

ΩnBnh

��

Ỹ
η eY // ΩnBnỸ ,

where h is the weak equivalence of Lemma 4.5. The functor Bn is a left Quillen
functor and as such it preserves weak equivalences between cofibrant T Sn

-algebras,
while Ωn preserves all weak equivalences. Therefore ΩnBnh is a weak equivalence,
and, as a consequence, so is ηeY . �

Theorem 4.10. Suppose T is an algebraic theory such that it
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(1) acts on n-fold loops spaces ΩnX by natural operations (ΩnX)k → (ΩnX)l,
i.e., admits a morphism φ : T → T Sn

, and
(2) via this action deloops n-fold loop spaces in the sense of Theorem 4.8, i.e.,

the loop functor RSn Spaces∗
Ωn

−−→ AlgT
Sn φ∗−→ AlgT establishes a Quillen

equivalence.

Then φ : T → T Sn

is a weak equivalence of topological theories.

This theorem is, in fact, an obvious corollary of a uniqueness theorem [2, Theo-
rem 1.6] (theories considered in [2] are enriched over simplicial sets, but the proof
of this result holds for topological theories with little changes).
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