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The inverse scattering transform for the vector defocusing nonlinear Schrodinger
(NLS) equation with nonvanishing boundary values at infinity is constructed. The
direct scattering problem is formulated on a two-sheeted covering of the complex
plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic
extension on either sheet of the Riemann surface. Therefore, a suitable modification
of both the direct and the inverse problem formulations is necessary. On the direct
side, this is accomplished by constructing two additional analytic eigenfunctions
which are expressed in terms of the adjoint eigenfunctions. The discrete spectrum,
bound states and symmetries of the direct problem are then discussed. In the most
general situation, a discrete eigenvalue corresponds to a quartet of zeros (poles) of
certain scattering data. The inverse scattering problem is formulated in terms of a
generalized Riemann-Hilbert (RH) problem in the upper/lower half planes of a
suitable uniformization variable. Special soliton solutions are constructed from the
poles in the RH problem, and include dark-dark soliton solutions, which have dark
solitonic behavior in both components, as well as dark-bright soliton solutions,
which have one dark and one bright component. The linear limit is obtained from
the RH problem and is shown to correspond to the Fourier transform solution
obtained from the linearized vector NLS system. © 2006 American Institute of
Physics. [DOL: 10.1063/1.2209169]

I. INTRODUCTION

The inverse scattering transform (IST) for the scalar nonlinear Schrodinger (NLS) equation

iq,= q,.— 20lq’q (1.1)

(subscripts x and ¢ denote partial differentiation throughout) has been extensively studied in the
literature, both in the focusing (0=-1) and in the defocusing (o=1) cases.”™ In particular, the
defocusing case with nonvanishing boundary conditions was first studied in 1973;* the problem
was subsequently clarified and generalized in various works,” " and a detailed study can be found
in the monograph.11 Equation (1.1) with o=1 admits soliton solutions with nontrivial boundary
conditions, the so-called dark/gray solitons, which have the form

q(x,1) = qOeZiqtz)’[cos a+ i sin « tanh[sin agq(x — 2g, cos at — xy)]] (1.2)

with g, « and x arbitrary real parameters. Such solutions satisfy the boundary conditions
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L2
2iqyixic as x — + oo

q(x,1) — q.(t) = qoe

and appear as localized dips of intensity qS sin? & on the background field gj.

While the IST for the scalar NLS equation was developed many years ago, both with vanish-
ing and nonvanishing boundary conditions, the basic formulation of IST has not been fully devel-
oped for the vector nonlinear Schrodinger (VNLS) equation

iq,=q,.—20|qllq, (1.3)

where q=q(x,?) is, in general, an M-component vector and ||| is the standard Euclidean norm. The
focusing case (o=-1) with vanishing boundary conditions in two components was developed by
Manakov in 1974."2 However, the IST for the VNLS with nonzero boundary conditions has been
open for over 30 years (partial results can be found in Ref. 13). It is worth noting that Ref. 14
provides an elegant direct and inverse scattering theory for decaying potentials on the real line.
The extension to nondecaying potentials, however, is not straightforward and therefore here we
employ a different approach. We should also remark that direct methods have been applied to
VNLS as a way to derive explicit bright and dark soliton solutions, see for instance Refs. 17-20
and the review article Ref. 21.

In this work we present the IST for the two-component defocusing VNLS equation [namely,
Eq. (1.3) with o=1 and M =2] with nonvanishing boundary conditions as x— %, In Sec. II we
discuss the direct scattering problem. Section II A is devoted to the study of the analyticity of the
scattering eigenfunctions. Similar to the scalar equation, the spectral parameter of the associated
block-matrix scattering problem for the VNLS is an element of a two-sheeted Riemann surface.
The vector problem however presents additional difficulties due, in part, to the fact that two out of
the six scattering eigenfunctions, defined via their asymptotics at infinity, do not admit an analytic
extension on either sheet of the surface. Therefore a suitable modification both of the direct and of
the inverse problem is necessary. On the direct side, this is achieved by defining in Sec. II B an
“adjoint” scattering problem, which provides two additional analytic solutions of the original
scattering problem. In Sec. II C we study the symmetries, and in Sec. II D we introduce a uni-
formization variable. In Sec. II E we study the asymptotic behavior of the eigenfunctions for large
values of the scattering parameter, and in Sec. II F we discuss the discrete spectrum. The inverse
problem is formulated in Sec. IIT as a Riemann-Hilbert (RH) problem associated with analytic
eigenfunctions. The RH problem is then transformed into a closed linear system of algebraic-
integral equations. The time evolution of the scattering data and the conserved quantities are
discussed in Sec. I'V. Explicit solutions are obtained in Sec. V; they include vector generalization
of the dark and gray soliton solutions of the scalar case as well as more exotic dark-bright soliton
solutions. Finally, in Sec. VI the linearized solution of the VNLS equation is obtained and found
to be consistent with that of the RH formulation, and in the Appendix we discuss the WKB
expansion of the eigenfunctions at large values of the scattering parameter.

Il. DIRECT PROBLEM

It is well-known'? that the two-component defocusing VNLS equation (1.3) with =1 and
M =2 is associated to the Lax pair

v, = (k] +Q)v, (2.1a)
2ik*+iq'r  —2kq"—iq”
v, = ( 4 T, (2.1b)
—2kr +ir, —2ik°l,—irq

where v(x,t,k)=(V(x,1,k),v P (x,t,k), 0 (x,1,k))7 is the scattering eigenfunction, k is the scat-
tering parameter, q(x,?)=(¢"(x,1),¢P(x,1))" and r(x,0)="V(x,0),rP(x,1)"=q"(x,7) are the
scattering potentials, Iy is the N X N identity matrix, the superscript 7 denotes matrix transpose,
and where
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. (0 q )
J=diag(-1,1,1), Q(x,r)= . (2.2)

r 0%,

Explicitly, the compatibility of the system of equations (2.1) (i.e., the equality of the mixed
derivatives of the 3-component vector v with respect to x and ), together with the constraint r
=q’, is equivalent to the requirement that q(x, ) satisfy Eq. (1.3) with o=1. Throughout this work,
we consider potentials with the same time-independent amplitudes at both space infinities, which
we can write without loss of generality as

q(x,1) ~ q.() =e®Vq),  r(x,1) ~ 1) =gy, x— o, (2.3)

where @i(t):diag(é’il)ﬁf)) and qO:(qél),qéz))Te R* X R*, and where ||q0||=\/(q(()l))2+(q(()2))2 is
assumed to be non-zero. For brevity, in the following we will use go=|qq||.

A. Eigenfunctions, integral equations and analyticity

The eigenfunctions for the scattering problem (2.1a) with boundary conditions (2.3) are in-
troduced by fixing the large-x asymptotics for k € R with |k|= g,

¢l(x’k) -~ WI(k)e_i}\x’ ¢2(x’k) -~ w;(k)eikx’ ¢3(-x9k) -~ Wg(k)ei}\x’ X — =0, (243)

Pi(ek) ~wik)e ™, gh(xk) ~ wi(k)e™,  ¢s(k) ~wilk)e™, x— +oo,  (2.4b)

where \(k)=Vk>—gZ, the eigenvectors wi(k),w3(k),wi(k) are given by

_ AN+k B 0 B N—k
W](k):( . )’ Wz(k):< . L)» W3(k):< . )9 (25a)

r_ —1q_ —Ir_

N N+k . 0 . N—k
W] (k) = . ’ WZ(k) = N A W3 (k) = . s (25b)

ir, —1q, —1r,

and where we introduced a notation which we will use throughout this work: for any two-
component vector p=(pV, p@)T we write p* =(p?,—p")7. Note that for brevity we will omit the
time dependence of the potentials and eigenfunctions throughout the discussion of the direct
problem.

The Wronskian of a set {v;,v,,v3} of solutions of the scattering problem (2.1a) is defined in
the usual way as

Wr(vy,05,v3) = det(vy,0,,03),

and satisfies the equation d[Wr(v,,v,,v3)]/dx=ik Wr(v,,v,,v3). Taking into account the
asymptotic behavior of the solutions in Eq. (2.4) we then have

Wr(eh1, o, 3) = Wiy, s, h3) = — 2Ngge™. (2.6)

Hence, for any nondecaying potential q(x,z), the two Wronskians in Eq. (2.6) are nonzero for all
xeR and all k such that A(k) #0 (i.e., everywhere except at the branch points of \). We also
introduce the solutions with fixed (with respect to x) boundary conditions

Ml(x’k) = eixx¢1(x»k), Mz(x,k) = e_ikx(ﬁz(x,k), Ms(X,k) = e_i)\x%(x’k), (2.7a)

Nl (x’k) = en\xl//l (x’k)s NZ(xsk) = e_ikwa(x’k)a N3(x’k) = e_n\xl//?)(x’k) B (27b)

which can be represented in terms of the integral equations
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oo

M;(x,k) =w; (k) + f G;(x—x",6)(Q(x") = Q)M (x', k)dx', (2.8a)

o

Ny, k) = (k) + J GHx—x" K)(Q() - QIN,(x' k) dx' (2.8b)

for j=1,2,3, where

(0 qi)
Qi—<ri 00)” (2.9)

and where the matrix Green’s functions G;T'(x,k) are defined below. The choice of Green’s func-
tions, together with the choice of the inhomogeneous terms in Egs. (2.8), determine the analytic
properties of the corresponding eigenfunctions. The superscripts = in the Green’s functions, like
in the inhomogeneous terms, refer to the corresponding eigenfunctions being defined in terms of
their asymptotics as x — £%.

Using the Fourier transform technique, one can show that

- 1 . _ e2i)\x
G (x,k)== 0(ix){m[()\ +k)(N;—k)) +iN+Kk)Q+ + Q=]+ —2)\()\ - k)[()\ —k)(\I;
_ P NHX _
+k)-iN-k)Q=-+ Q=]+ q2 Q-, (2.10a)
0
- 1 . _ e—ZiAx
G; (x,k) = = 0(xx) m[()\ - k)N +k))—iA—k)Q+ + Q-]+ m[()\ +k)(NI;
_ iR _
—kI)+iN+k)Q=+ Q]+ 2 Q: (., (2.10b)
0
. e—i()\+k)x . _ ei()\—k)x
G, (x,k) = = 0(xx) m[()\ +k) N —k)) +iN+k)Q+ + Q-]+ m[()\ —k)(\I;
+kJ) —i(N—k)Q+ + Q<] + %6:}, (2.10¢)
0
where
0 0 0 0 0
Q.= (0 L(l:f)r) =10 g7 Vg2 | (2.11)
v 0 —rPql gl

Note that Eqs. (2.10) are significantly more complicated than the case of the vector system with
zero boundary conditions (e.g., see Ref. 22).

So far, the integral equations and Green’s functions are only defined for real k and \. In order
to extend the eigenfunctions to complex values of k, we note that, for instance, the Green’s
function G7(x,k) does not grow exponentially as |k| — if and only if

ImA=0 and Im(\+k)=0. (2.12a)

Similarly, G7(x,k) does not grow exponentially as |k| — o if and only if
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FIG. 1. The choice of branch cut for A\=(k*~¢2)""* in the complex k-plane. Here =(6,+6,)/2.

ImA<0 and Im(\ +k) <O0. (2.12b)

It is therefore natural to introduce the Riemann surface of equation )\zzkz—qg obtained by gluing
together two copies of the extended complex k-plane, which we will call C; and C,, cut along the
semilines (—%,—q,) and (gg,).

On (; one can introduce the local polar coordinates

k—qgo=rie®, 0<6,<2m,

k+qo=re'2, —-m<6,<m

with the magnitudes r; and r, uniquely fixed by the location of the point k:r,=|k—g,| and r,
=|k+qq| (cf. Fig. 1). Then one can define

)\(k) — (r1r2)1/2ei(01+02)/2‘ (2'13)

If 6=(6,+6,)/2, then 0 varies continuously between 0 and 7 both in the upper and in the lower
k-planes, with a cut in the region (—,—g,) U (gg,%), and one has Im A =0 and Im(\+k)=0 for
all k € C;. Conversely, on G, one defines

(k) = = () 2 1022 (2.14)

which will give ImA<0 and also Im(A+k)<O0, again with a cut in the region (-,
—q,) U (gg,®). The upper branches of the cuts on sheet C; are then glued with the lower branches
on sheet C, and vice versa as shown in Fig. 2(a).

With the above definitions, both conditions (2.12a) are satisfied if and only if k is on the upper
sheet of the Riemann surface, and both conditions (2.12b) if and only if k is on the lower sheet.
For potentials that rapidly approach Q. as x— =+, the Green’s function G(x,k) then defines via
Eq. (2.8a) an eigenfunction M (x,k) which admits analytic extension on the entire upper sheet of
the Riemann surface. Similarly, for suitable potentials the eigenfunction N;(x,k) defined by
G (x,k) via Eq. (2.8b) admits analytic extension on the entire lower sheet. In a similar way one
can investigate the properties of the remaining Green’s functions. Overall we conclude that the
eigenfunctions M, (x,k)= ¢, (x,k)e™ and N3(x,k)=s(x,k)e”™ are analytic on the upper sheet,
and M;(x,k)=ps(x,k)e™™ and N,(x,k) =i, (x,k)e™ are analytic on the lower sheet. Unlike the
case of vanishing boundaries, however, the remaining two eigenfunctions, namely M,(x,k) and
N,(x,k), in general are analytic neither on the upper nor on the lower sheet.

Equation (2.6) shows that for all real k+# +q, the two matrices ®(x,k)=(¢;, h,,d3) and
W(x,k)=(i, 4, ;) each contain a set of three linearly independent solutions of the third-order
scattering problem (2.4a). Thus it must be possible to express one set of solutions as a linear
combination of the other, where the coefficients depend on k but are independent of x:
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FIG. 2. (a) The two-sheeted covering of the complex plane defined by the scattering parameters (k,\). (b) The topologi-
cally equivalent genus-0 Riemann sphere. (c) The corresponding complex plane for the uniformization variable z=k+X\
(which will be introduced in Sec. 11 D).

D(x,k) = V(x,k)AT(k), (2.15a)

where A(k)=(a;;) is the 3 X3 matrix of scattering coefficients. That is, ¢(x,k)=a;,(k)¢;(x,k)
+a,(k) i (x, k) +a (k) s(x, k), with similar expressions for ¢,(x,k) and ¢s(x,k). Note that Egs.
(2.6) imply det(A)=1. We can also express the “right” eigenfunctions in terms of the “left” ones,

W(x,k) = D(x,k)BT(k), (2.15b)

where B(k)=(b;)) =A"!(k). Note that the scattering coefficients a;;(k) and b;;(k) are in general only
defined where all of the eigenfunctions are, i.e., for k € R and |k| > g, or, more precisely, on the
oriented half-lines defined in Fig. 2, namely on a;=dy;, by=cy;, ;= by;, and dy=ay. Note also that
upper and lower banks of the cut are not equivalent, because both A(k) and the scattering eigen-
functions are discontinuous along the cut. These semilines define the contour £
=a;UbUciUdi=dyUcpUbpUay namely L£=(gy+i0,%+i0) U (-2 +i0,—g¢+i0) U —(-g—i0,
—0—i0) U—(0-i0,qy—i0) on the upper sheet.

Some of the scattering coefficients can be analytically extended off the real axis. From Egs.
(2.15) one can derive Wronskian representations for the scattering coefficients. Unlike the scalar
case, however, such representations are not definitive in order to establish analyticity, since they
all involve either ¢,(x,k) and/or ¢,(x,k), which do not admit analytic continuation. However, one
can derive alternative representations for the scattering coefficients that provide the analytic ex-
tension sought for. For instance, using the first column of Eq. (2.15a) and the asymptotics (2.4b),
one can check that

1 ‘

an(l) =50 g Jim T+ k) +igl g7 k) + g9 (0. (2.16)
and since this expression for a;;(k) only depends on the components of the vector e™ ¢, (x,k), it
indicates that for suitable potentials a;;(k) can be analytically extended on the upper sheet of the
Riemann surface. Similarly one finds that as;(k) and b;(k) can be analytically extended on the
lower sheet of the Riemann surface, and b33(k) can be extended on the upper sheet of the Riemann
surface. In general, however, the remaining scattering coefficients do not have any special analy-
ticity properties.

The problem of determining the class of potentials for which a limit like (2.16) (with respect
to a parameter, here x) of an analytic function of k is still an analytic function of &, is beyond the
scope of this paper. We point out that this result is true for all the special solutions considered in
this work.
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B. Adjoint problem and auxiliary eigenfunctions

In order to formulate and solve the inverse scattering problem, one needs two independent sets
of analytic eigenfunctions. The main issue at this stage is eliminating the nonanalytic eigenfunc-
tions ¢, and ¢,. The approach introduced by Kaup in Ref. 15 for investigating the three-wave
interaction is generalized here in order to obtain a representation of the nonanalytic eigenfunctions
in terms of analytic eigenfunctions and scattering data. The key idea is to consider the “adjoint”
eigenvalue problem

0¥ = (= ikJ + QT (2.17)
where Q and J are defined in Eq. (2.2). One then recalls the well-known fact (see, for instance
Ref. 16) that if #*(x, k) and w*(x,k) are two arbitrary solutions of the adjoint problem (2.17), then

v(x,k) = = J(?(x,k) A w(x,k))e**, (2.18)

where A denotes the vector product, is a solution of the original scattering problem (2.1a). As
before, one defines two sets of solutions of Eq. (2.17), i.e., as x ——o0

N+k) . 0 : N—k\
¢?d(x,k)~<_iq )e’“, ¢%d(x,k)~<iri)e"’“, %d(x,k)~< iq )e-’” (2.19)

and as x— +©

AN+k) . 0 .
iAx ad —ikx ad
s 9k 5 ,k ~
_iq )e Ph(x )~<iri>e Y5 (x,k) (

+ + 1q,

P k) ~ ( g )w‘“. (2.19b)
With techniques identical to those used to derive the integral equations and the Green’s functions
associated to the eigenfunctions of the scattering problem (2.1a), one can then show that
ei)‘"¢§d(x,k) and e"™}%(x, k) are analytic in the upper sheet of the Riemann surface, e ™M G(x, k)
and e”‘xz,[/gd(x,k) are analytic on the lower sheet and e"‘"qﬁgd(x,k) and e”"‘wgd(x,k) on neither sheet.
Analogues of Egs. (2.15) also exist,

O (x, k) = U¥(x k)BT (k), W(x,k) = P(x,k)AT(k), (2.20)

where ®%(x,k)=(¢™, $3, $3%) and W (x, k)= (%, Y&, ¥4Y), and where K(k):(ii,-j) and B(k)
=(l7i_]-)=11‘1(k) are the adjoint scattering matrices.

From these adjoint states, we can now use Egs. (2.19) to define via (2.18) two new solutions
of the original scattering problem (2.1a), namely,

X(x,k) == ™ (G140, k) A YA (x,K)), (2.21a)

x(x,k) = = e J (B3, k) A P, k). (2.21b)

By construction, ¥(x,k)e~™* is analytic in the lower sheet [where (#}d(x,k)e‘m and zﬂgd(x,k)ei}‘x
are], and x(x,k)e”™ is analytic in the upper sheet [where ¢3'(x,k)e™ and ¥i%(x,k)e™ are].
Moreover, by comparing the asymptotic behavior as x — +% of eigenfunctions and adjoint eigen-
functions, one can check that, for all cyclic indices j,/,m,

b,(x,k) = — ™ T (i (x. k) A ¢ (x, k)T (K), (2.22a)

i, k) = — e T (W0 k) A P (x, k)T (k) (2.22b)
and reciprocally

(k) = — e T (i, k) A b, (x. k)T (k) (2.22¢)
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P k) = — e T (k) A (xR (K), (2.22d)
where

T(k)=h—k, T,k)=2\, T5k)=\+k. (2.23)
From Egs. (2.22) and (2.15), (2.20) it then follows that

AT(k) =T(AKT k), BT(k)=Tk)BKEIT (%), (2.24)

where I'(k)=diag(I",(k),I'5(k),I'5(k)). Substituting the first of Eq. (2.20) into Eq. (2.21) and using
(2.22b) yields

X(x, k) = 2N[b33(k) s (x, k) = bos(k) i3 (x, k) ], (2.25a)
X, k) = 2N[by (k) iy (x,k) = by (k) iy (x, k) ]. (2.25b)
Each of these two relations provides a decomposition of the nonanalytic eigenfunction ¢, (x,k),

b, (k)
by, (k)

1 Xk) _ bys(k)
2N byy(k)  bss(k)

1 x(xk)
2N bs(k)

‘/IZ(X’k) = l;bl(-x’k) - ¢3(x7k) + (226)

Similar relations hold for the eigenfunction ¢, (x,k), where now the scattering coefficients a;;(k)
are involved. Precisely, one finds

X(x,k) = 2N a3(k) s (x, k) — az;(k) o (x,k) ], (2.27a)

x(x.k) = 2N[a (k) py(x,k) — ayy (k) (x,k) ] (2.27b)

and consequently one obtains similar representations for ¢,(x,k):

a;(k)
as;(k)

These expressions will be key to define the inverse scattering problem in Sec. III.

1 Xk _ ay (k)
2N az(k)  ayy(k)

1 x(x.k)
+ .
2\ all(k)

¢2(x’k) = ¢3(xsk) ¢l(x’k) (228)

C. Symmetries

Importantly, the scattering problem admits two symmetries, which relate the value of the
eigenfunctions on different sheets of the Riemann surface. These symmetries translate into com-
patibility conditions (constraints) on the scattering data, and will play a fundamental role in the
formulation of the inverse problem.

First symmetry (k,\)— (k",\"): When the potential satisfies the symmetry condition r=q",
one has Q=Q, and therefore from Eq. (2.17) it follows that

a[vad(k )] = (ikJ + Q) (v™(k"))" = (ikJ + Q)™ (k"))
Hence, taking into account the boundary conditions (2.4) and (2.19), we have

kN = (KN, kN = (k" \)", j=1,2.3 (2.29)
and, as a consequence of Egs. (2.24), (2.15), and (2.20)

I'(k,N)BENT (kM) = AR (K", \Y), (2.30)
where I'(k,N\)=diag(I";,I",,I';) as before. In particular, Egs. (2.30) give
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by (k,N) =ay, (K" N"),  bys(k,\) = ays(k™,\) (2.31)

showing that a,;(k,\) [respectively, bs3(k,\)] has a zero on the upper sheet of the Riemann
surface at a point (k,,\(k,)) if and only if b,;(k,\) [respectively, ass(k,\)] has a zero at the
conjugate point (k,,\"(k,)) on the lower sheet.

Second symmetry (k,\)— (k,—\): This involution relates the values of the eigenfunctions on
the two sheets, and in particular across the cuts, for arbitrary fixed k on either sheet and A — —A\.
Indeed, the scattering problem is clearly invariant with respect to the exchange (k,\)— (k,—\),
and by looking at the boundary conditions (2.4) and (2.5) one can check that

llll(x7k7_ )\) == ¢3(~x’k7 )\)5 ¢1(~x’k?_ )\) == ¢3(~x’ka )\) (2323)

while ¢, and ¢, are invariant with the respect to the symmetry A < —A\, i.e.,

l//z(x,k,— )\) = 1//2(x,k, )\), ¢2(x,k,— )\) = (ﬁz(x,k,)\). (232b)

Therefore, from the equations (2.15a) defining the scattering coefficients one has

ay(k,— N) =asz3(k,N),  ap(k,—N) =ax(k,\), (2.33a)

ap(k,—N) =—as(k,N), a;(k,—N) =as(k,N), ay(k,—N)=—an;(k,\). (2.33b)

The same symmetry relations hold for the coefficients b;;(k), i.e.,

byy(k,= N) =bs33(k,N),  bia(k,—N) ==bay(k,N),  bys(k,—N) =b3y(k,\) (2.34a)

byy(k,=N) =byy(k,N),  byy(k,—N) == ba3(k,N). (2.34b)

Note that Eq. (2.33a) implies that (k,,\(k,)) is a zero of a,;(k,\) in the upper sheet if and only if
(k,,—\(k,)) is a zero for as3(k,\) in the lower sheet, and the same for b,;(k,\) and bs;(k,\).
Finally, note that, taking into account Egs. (2.32) and (2.34), comparing Egs. (2.25a) and (2.25b)
yields

x(x,k,\) = x(x,k,— N). (2.35)

D. Uniformization coordinate

In a similar way as for the scalar problem (e.g., see Ref. 11), we can introduce a uniformiza-
tion variable z (global uniformizing parameter) defined by the conformal mapping

z=k+N(k). (2.36a)

The inverse mapping is given by

=1z+8), N=z-k=1i(z-%", (2.36b)

where we have introduced the shorthand notation

=qy7, (2.36¢)

which we will use throughout the rest of this work. (Note A—k=-Z", which will also be useful
later on.) With regard to the mapping (k,\) —z, it should be observed that (cf. Fig. 2(a),(c)):

(1) The branch cuts on the two sheets of the Riemann surface are mapped onto the real z-axis.

(ii))  The two sheets C; and C, of the Riemann surface are, respectively, mapped onto the upper
and lower half-planes of the complex z-plane.

(ili) A neighborhood of k=% on either sheet is mapped onto a neighborhood of z=0 or z=0
depending on the sign of k;,, (cf. Sec. ITE).
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(iv)  The symmetry k—i0— k+i0 on the contours (giving the discontinuity of eigenfunctions and
scattering data on the banks of the cut) transforms into z—>2*=q(2)/ z on the real z-axis.

According to the discussion in Secs. 1A and IB, the eigenfunctions qSl(x,z)e")‘(Z)",
Ps(x,2)e"™* and y(x,z)e"*@* are analytic in the upper half-plane of z, while ¢;(x,z)e ™,
1 (x,2)e™d% and y(x,z)e * @ are analytic in the lower half-plane. Similarly, the scattering coef-
ficients ay;(z) and bs;(z) are analytic in the upper half-plane of z, while as;(z) and by;(z) are
analytic in the lower half-plane.

It should be noted that although the uniformization coordinate will be important in the inverse
problem, it is not essential in our formulation of the direct problem. We introduce it here because
it turns out to be convenient when discussing the location of the discrete eigenvalues, which is
done in Sec. I F.

In terms of the global parameter z, the first symmetry becomes z— z". Under this transforma-
tion, the symmetry relations (2.29) and (2.30) are then, respectively, written as

(02 = ((x,2)), P2 =(Yx2)), j=1,2.3, (2.37)
bi(2) =T (@)a;(DT7'(), €.j=12.3, (2.38)

where
I(@)=-%, Ty(2)=2\z), &)=z (2.39)

Equation (2.38) can also be written compactly as

LB (z) =A%), (2.40)

where I'(z)=diag(I’;,T",,T’;) as before. Taking into account Eq. (2.22), the symmetries (2.37) can
be written in terms of eigenfunctions as follows:

b;(x.2") == e T (By(x,2) A by, (x,2))T () (2.41a)

and

‘ﬂ_?(x,z*) = — e MO (y(x,2) A, (x,2))T(2) (2.41b)

where j,/,m are cyclic indices.

The second symmetry relates values of eigenfunctions and scattering coefficients at points
(k,N\) and (k,—\) on the two sheets or at the cuts. In terms of the uniformization variable z, the
transformation then becomes z—>2*=q§/ z. Hence the symmetry relations (2.33) can be written as

a2 =apz), ap@)=-ayn2), (2.42a)

als(ZA*) =a3(2), azl(f*) =—ay(2), (2.42b)

and the same relations hold for the coefficients b;,(z). Also note that the symmetry relations (2.32)
between the auxiliary eigenfunctions can be written as

$i(x,2)=— 3(x.2"),  P(x,2)=—gs(x.2), (2.43a)
x(x,2) = x(x,2"). (2.43b)

Taking into account Eq. (2.30) and recalling that B(z)=A"'(z) and that both matrices have unit
determinant, on either side of the real z-axis we find
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I'(z) I'(2)
2, 2- 1 + 2 =1,
|ay (2)]* + |ay(2)| ) lai3(2)| Is(2)
where z € R. Combining this with Eq. (2.39) we then obtain
% %
a1 (2))*=1+ Z_3|a13(2)|2 + 2 0q2|a12(1)|2 VzeR. (2.44)
— 40

The second term on the right-hand side is non-negative; the last term, however, can be either
positive or negative and therefore one cannot a priori exclude real zeros of a;(z) if z
€ (=qy,qp). Similar results follow for zeros of as;(z), b;,(z), and bs;(z), taking into account the
symmetry relations (2.38) and (2.42).

Note that both symmetry transformations relate values in the upper half z-plane to values in
the lower half z-plane, since both z* and Z" are in the opposite half-plane as z. In the following we
will assume that the scattering coefficients a;,(z), etc., have no zeros on the real z-axis.

E. Asymptotic behavior of eigenfunctions and scattering data

In order to determine the asymptotic behavior of the eigenfunctions for large values of the
scattering parameter k, we first note the following: in the upper sheet of the Riemann surface (i.e.,
when \;,,=0), one has, above the cut (i.e., when k;;;>0)

2
N+k~2k+0(1), x—k~—;’—2+o(1/k) as |k| — oo, (2.452)

and below the cut (i.e., when k;,,<0)

2
Nk~ Tlao(1K), N=k~=2k+0(1) as k| . (2.45b)

Similar relations hold in the lower sheet of the Riemann surface (i.e., when \;,, <0). Using these
relations we can obtain the large-k expansion of the eigenfunctions on each sheet. It is more
convenient however to express this behavior in terms of the uniformization variable z, which will
be used in the inverse problem. To this aim, we note that (cf. Fig. 2)

(1) |k| — 0 in the upper-half-plane of sheet I corresponds to z— o in the upper-half z-plane,
(i)  |k|— in the lower-half-plane of sheet II corresponds to z— o in the lower-half z-plane,
(iii)  |k|—cc in the lower-half-plane of sheet I corresponds to z— 0 in the upper-half z-plane,

(iv)  |k|— in the upper-half-plane of sheet II corresponds to z— 0 in the lower-half z-plane.

It should be noted here that there is no conceptual distinction between the points z=0 and z=% in
the z-plane, and one can change one into the other by simply defining z=k—A\ instead of z=k
+A\.

Taking Egs. (2.45) into account and using both the integral equations (2.8) and the WKB
expansions of the eigenfunctions (see the Appendix) we obtain that as z— in the upper-half
z-plane one has

T
. z . (x)r,/z
i(x.2)e™ ~ ( ) Yy, 2)e™™ ~ — (q o ) (2.462)
ir(x) ir,
while as z— 0 in the upper-half z-plane one has
A q’Gor_/z . 3"
pi(x.2)e™ ~| 7 C lg)e™ | (2.46b)
ir_ ir(x)

Similarly, as z— 0 in the lower-half z-plane one has
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AF T A%

) Z . (X)r,/z
B3(x,2)e ™ ~ - ( ) P (x,2)e™ ~ (q o ) (2.46¢)

ir(x) ir,
while as z— <0 in the lower-half z-plane one has
—iN qT(x)r—/Z o Z

¢3(X,Z)€ M~ . > lr/Il(x’Z)el ~1. . (246d)

ir_ ir(x)

Asymptotic expansions for the adjoint eigenfunctions can also be obtained. Then, using the as-
ymptotics of d)j‘d(x,z) and :,V}‘d(x,z) as well as Egs. (2.21), one can obtain the asymptotic expan-
sions for the auxiliary eigenfunctions y(x,z) and x(x,z). Explicitly, in the upper-half z-plane one

has
. T(x)qt
x(x,2)e * ~ — (q l;ij as z — oo, (2.47a)
) T(x)qr
x(x,2)e”™ ~ (qi;ngf asz— 0, (2.47b)
+
whereas in the lower-half z-plane
. T(x)q_
x(x,z)e” ~ (qi(;l); as 7 — 0, (2.47¢c)
T( el
. X
X(x,2)e™ ~ (qifli(zh ) as z — . (2.47d)
+

Equations (2.16) and (2.46) also allow us to obtain the asymptotic behavior of the scattering
coefficients. For example, in the upper-half z-plane, as z— % one has

an(z) ~ 1, by(z) ~ q'r./q, (2.48a)

while as z— 0 one has

an(z) ~ qirlqy,  by(z) ~ 1. (2.48b)

Similar expressions hold for b,,(z) and as;(z) in the lower-half z-plane: namely, as z— 0 one has

a2 ~ 1, by(2) ~q'r/q; (2.48¢)
while as z— <0 one has

ax(2) ~ qir_/qg,  byy(z) ~ 1. (2.48d)
Note that qfr_:(qfr+)*:eiA0(l)|qgl)|2+eiA9(2)|q(()2) 2, where we have introduced the asymptotic

phase differences for the potentials, A ¢V = 0(:)— 0(_1) and Ag?= 49<+2)— 49<_2) (cf. Eq. (2.3)). Hereafter,
we will assume that these asymptotic phase differences are the same in both components, namely

AV = A0 = Ag. (2.49)
If Egs. (2.49) are satisfied, then

qir_=(q'q,)" = "’;, (2.50)

and the asymptotic behaviors of the scattering coefficients in Egs. (2.48) simplify correspondingly.
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F. Discrete eigenvalues and bound states

Recall that in the 2 X 2 scattering problem for the nondecaying scalar NLS equation there is a
one-to-one correspondence between poles of the transmission coefficients [here, zeros of a;(z)
etc] and eigenvalues, which, in turn, are related to bound states. Hence, the unitarity relation [i.e.,
the analog of Eq. (2.44)], together with the self-adjointness of the scattering problem, ensure that
the transmission coefficients can only have poles at k=k, € (—¢.qy), i.e., for z=z, on the circle C,
of radius g, centered at the origin (e.g., see Ref. 11). As we will see in the following, in the case
of vector NLS equation with nondecaying boundary conditions, the decay properties of the eigen-
functions at a pole of the transmission coefficients are not sufficient to give a bound state.

Importantly, when r=q" any solution v(x,k) of the scattering problem (2.1a) satisfies the
relation

— ik = k)l (e, )| = a%[lv“)(x,k)P - [P0k = oD xR (2.51)

Equation (2.51) shows that in order for k=k, to be an eigenvalue corresponding to a square
integrable eigenfunction, k, must be real (i.e., k,=k,). For k, € R with |k,|<g, (i.., for z € Cy)
one has A(k,)= =i\ qé—ki (with the upper/lower sign on sheet I/II of the Riemann surface, respec-
tively). Correspondingly, ¢,(x,k,,\(k,)) and ¢5(x,k,,\(k,)) are exponentially decaying as x—
—oo while ¢(x,k,,N(k,)) and ¢5(x,k,,N(k,)) are exponentially decaying as x— +%. As we will
see in Sec. II F 1, poles of the transmission coefficient at these points then give rise to bound
states. It should be noted that, unlike the scalar case, the unitarity conditions [e.g., see Eq. (2.44)]
are not enough to exclude poles of the transmission coefficients for k € R with [k| > ¢, (i.e., for
real values of z). In these cases, however, all eigenfunctions are oscillating as x— +o0. Hence, the
only eigenvalues k=k, corresponding to square integrable eigenfunctions lie in the segment
(=g0,4q0)- In terms of the uniformization variable z, this means that any eigenfunctions belonging
to L,(R) correspond to discrete eigenvalues on the circle C, of radius g,. Therefore, if the scat-
tering coefficients a;,(z), etc., have a zero off the circle Cy, then the corresponding eigenfunctions
cannot form a bound state, that is, either they are not decaying rapidly enough at both space
infinities, or they are singular, which prevents the eigenfunction from being L,(R). We will see
that both situations can in principle occur, the first case corresponding to zeros z,, of a;,(z) inside
the circle, while the second case to zeros outside the circle.

In order to locate discrete eigenvalues as it will apply to the inverse problem, it is convenient
to introduce the 3 X 3 matrices

E+()C,Z)=(¢1,X,(/f3), E_(X,Z):(lffl,)?,(]s_g).

With this notation, E,(x,z) collects three eigenfunctions which are analytic in the upper-half
z-plane, and E_(x,z) three eigenfunctions analytic in the lower-half-plane. Then we note that Egs.
(2.6), (2.25), and (2.27) together imply

det(E,(x,2)) = Wr( ¢y (x,2), x(x,2), 5(x,2)) = — dqoh*(2)ay (2)bs(2)e™ @, (2.52a)

det(E_(x,2)) = Wr(¢ (x,2), X(x,2), 3(x,2)) = 4ggN*(2)azs(2)by ()™~ (2.52b)

Equation (2.52a) shows that the Wronskian vanishes (i.e., the three solutions which comprise E,
become linearly dependent) at the zeros of a;;(z) and bs;(z). Due to the symmetries (2.38) and
(2.42) among the scattering coefficients, however, we have

a11(z,) =0 & byy(z,) =0 & by3(2,) =0 = ax(2,) =0 (2.53)

[where as before we used the notation (2.36¢), i.e., 2=q(2)/ 7). If the zero z,, of a;(z) is on the circle
C, of radius g, then Z,=z,, and therefore a;,(z) and b33(z) vanish at the same point. Hence, the
Wronskian (2.52a) will have a double zero at z=z,, in this case. However, if a;,(z) admits a simple
zero at a point z=z, off the circle C, (i.e., |z,| # gy and Im z,>0), then such zeros appear in
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quartets (cf. Fig. 3), and the Wronskian (2.52a) will have a simple zero both at z, and at Z,
=¢%/z, in the upper-half-plane. S1m1larly, with regard to Eq. (2.52b), as3(z) and b;,(z) can either
both vanish at the conjugate points z,=Z,, on the lower-half circle, or vanish individually at two
different points in the lower-half- plane (zn and Zn—%/ Z,,» respectively). Hereafter we will use ¢, to
denote zeros of a;,(z) on the circle Cy, and we will reserve the notation z,, for the zeros of a;,(z)
off the circle C,.

1. Zeros on the circle

Let us first consider the case of zeros on the circle of radius g, and assume that a;,(z) and
b33(z) both have a simple zero at the point z={, =k, +iv,, with |k,| <g, and v,=\ga—k>>0. As we
noted earlier, in this case the Wronskians (2.52a) and (2.52b) each have a double zero, respec-
tively, at z=¢, and at z=¢,. In principle there are two possibilities: either x(x,£,)=0 or x(x,,)
#0. If x(x,Z,)=0, then also y(x, {Z) 0, due to the symmetry (2.43b) (since in this case §*
=qo/L,). If x(x,£,) #0 instead, one also has x(x,{) # 0. In the following we show that in fact it
is always the case that x(x,,)=x(x, §n) 0.

Indeed, let ¢, be a zero of a,;(z) and bs;(z) on the circle of radius g,. Then, according to Eq.
(2.21b), x(x,£,) =0 if and only if ¢§d(x,§n)/\¢?d(x,§n)=0. Since qﬁgd(x,z) and lﬂ‘fd(x,z) are eigen-
functions whose asymptotic behavior is fixed, they cannot vanish identically for all x. Hence for
x(x,4,) to be zero ¢3%(x,¢,) and (x, {n) must be proportional to each other. Then, due to the
symmetry (2.29), it follows that ¢s(x, L) i(x, ). Moreover, Eq. (2.43b) implies that x(x,{,)
=x(x, g’n) and therefore [recalling the definition (2.21a)] we conclude that

X(X, gn) = A_/(X, g:,) =0 lff ¢3()C, g;) o 110] ()C, g:) and (ﬁ](X, gn) o '7[/3()6’ ZH)' (254)

Suppose now that x(x,Z,) #0 [and hence also )z(x,g:) #0]. If Egs. (2.25a) and (2.27b) can be
continued off the real z-axis, then it follows that

X(x7§n) * 1,03()(,5,), X(x’gn) o ¢1(~x9§n)

[with nonzero proportionality coefficients because by assumption x(x,{,) #0]. If this is the case,
then ¢,(x,Z,) = ¢r(x,,), and [due to the symmetry (2.29)] one also has d)j’d(x,{;) o wgd(x, §:). But

then it follows that y(x, (Z):O, which contradicts the hypothesis. In conclusion, if ¢, and é’: are a
pair of zeros on the circle, then x(x,{,)= )?(x,{i):O, Eq. (2.54) holds and one can write

¢1(~x9§n) =b£11)¢3(x7£n)’ (2553)

b3(x.) = b (x.8,), (2.55b)

corresponding to a bound state. Note that due to the symmetry (2.32a) between the eigenfunctions,
from Egs. (2.55) it follows that

bV =p'". (2.56)

Since x(x,¢,)=x(x,{,)=0 for all zeros ¢, of a;(z) and £, of as3(z) on the circle of radius g,
it is then natural in this case to rescale the Wronskians in Eq. (2.52a) as

Wf(d’l(X,Z) #b;)() (X, z)) - 2g0\(z)ay(z)e*", (2.57a)
Wr( .z, #bi)(z) ¢3(x,z>) = 209\ (RDazs(2)e™ ", (2.57b)

The rescaled Wronskians will then have simple zeros at {, and 5:.
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2. Zeros off the circle

Suppose that a,;(z), which is analytic in the upper-half z-plane, has a simple zero at a point
z=7,=k,+iv,, with v,>0 and |z,| # g,. First of all, note that, according to (2.36b),

k(z,) = 5Tk, (1+ |2,/ q5) + iv,(1 = 2,/1g9)],

Nz,) = 5[k, (1= |2,/7d) + iv, (1 + |2,)gd)].

Thus, the behavior of e*@* at large x depends on whether |z,| = g, (recall that £=¢2/z"; hence,
one has |2,|S g, for |z,/|=¢y), and it will be exponentially decaying at one space infinity and
exponentially growing at the other one. On the other hand, ¢;(x,z,) ~ e & will be decaying as
x—— and 5(x,z,) ~ M will be decaying as x— +o irrespective of whether z, is inside or
outside the circle.

If the zero z, of a;,(z) is off the circle C,, then by;(z) will have a zero at point ,=¢3/z,
# z,,, but bs3(z,) # 0 in general. Then from Eq. (2.52a) it follows that z, is a simple zero of the
Wronskian. In this case we assume that y(x,z,) does not vanish. Then from Eq. (2.25a) we deduce
that

0
x(x,2,) ~ - 2i>\(zn)b33(zn)<q N )em{%[ikn(l + |zl ad) + va(1 = 2@}, x— +oo,
+

(2.58)

where we note that the other contribution formally obtained from b,3(z)#5(x,z) in Eq. (2.25a) is
exponentially small (and in any case, smaller than the contribution of the remaining term). On the
other hand, from Eq. (2.27b) it follows that, at a zero z, of a;;(z), the eigenfunction x(x,z,) is
proportional to ¢;(x,z,):

b1(x,2,) = bV x(x,7,). (2.59)

If |z,|>qo (i.e., if the zero is outside the circle C,), we would obtain a bound state, since the
eigenfunctions x(x,z,) and ¢,(x,z,) would be decaying at both space infinities. Therefore zeros of
ay,(z) outside the circle Cy cannot occur for a smooth eigenfunction, since this would violate the
eigenvalue relation (2.51). On the other hand, if |z,| < g, (i.e., if the zero is inside C,), the relation
(2.59) still holds, but the eigenfunctions x(x,z,) and ¢(x,z,) will be exponentially growing as
x— +, according to Eq. (2.58), and this does not contradict Eq. (2.51). Hence zeros z,, inside the
circle Cy are not forbidden.

Similarly, the Wronskian (2.52a) vanishes at the zero of bs;(z) corresponding to z,, that is
[according to Eq. (2.53)], at the point 2n=q%/ z:. If z, is inside the circle C of radius ¢, then Z,
will be outside the same circle, and vice versa. Also, in general a,;(Z,) # 0, and consequently from
Eq. (2.27b) it follows

0
X(x’fn) -~ = 21.)\(211)al](2n)<qj_ )eXP{%[lkn(l + |Zn|2/q3) - Vn(l - |Zn|2/CIS)]x}’ X — =0,

(2.60)

From Eq. (2.25a), however, one deduces that y(x,Z,) is proportional to i5(x,Z,),

x(x.2,) = b (x,2,). (2.61)

Therefore, if |z,|> g, (i.e., if Z, is inside C,), this would be a bound state, since ¢5(x,Z,) decays as
x— + and x(x,Z,) as x——o0, according to Eq. (2.60). Hence, as before, this situation cannot
occur for a smooth eigenfunction, in accordance with Eq. (2.51). On the other hand, if |z,|<g,
(i.e., if Z, is outside Cy), the eigenfunctions x(x,z,) and i5(x,z,) are exponentially growing as
x— +0. Hence such situations do not contradict Eq. (2.51).
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Finally, one has analogous results for the eigenfunctions in the lower-half-plane in correspon-
dence to the points z,=k,—iv, [zeros of b,(z) off the circle C,] and 2 =q1z, [zeros of as(z) off
the circle Cy]. Specifically, at points z,, where by;(z,)=0, one has

X(x.z) = b2 (x,2)). (2.62)

Again, if |z,|> gy, this would correspond to a bound state. On the other hand, if |z,|<q the
elgenfunctlons in (2.62) will be growmg as x——%. Also, at points g3/z,=Z,, where as;(Z,)=0,
one has x(x,%,) proportional to ¢s(x,Z)),

n’

b3(x,20) = b P x(x,2). (2.63)

Summarizing, in the case of a pair of zeros z, and 7, in the upper-half-plane such that
ay(z,)=0 and bs3(2,)=0 (with z, inside the circle C, of radius g, and ,=¢3/z, outside C,), the
eigenfunctions are related to each other as

x(0.2,) = bV yr(x,2,), (2.64a)
¢1(x,z,) = b x(x,2,) = bPx(x.2)) (2.64b)

[cf. Egs. (2.61) and (2.59)], but neither x(x,Z,) nor ¢,(x,z,) are bound states. In Eq. (2.64b) we
used the symmetry (2.43b) to express x(x,z) in terms of y(x,z). At the corresponding pair of zeros
in the conjugate points in the lower half plane it is as3(Z,)=0 and by,(z,)=0, and one has the
following relations:

bi(x.2) = bPx(x,2) = - bPx(x.2)), (2.64c)
X(x,z,) = b7 (x,2,) = = By (x.z,,) (2.64d)

[cf. Egs. (2.63) and (2.62)], where we have used the symmetries (2.43) for the eigenfunctions in
order to express the proportionality constants in terms those appearing in Egs. (2.64).

Finally, it should be noted that there is no conceptual difference between the interior and the
exterior of the circle Cy. The reason why the z, are only allowed to be inside C, is because they
are defined as the zeros of a;;(z). One could equivalently define z, as the zeros of bs;(z) (which
amounts to switching z,<Z2,), in which case one would obtain that z, are only allowed to be
outside C.

G. Symmetries in the norming constants

Eigenvalues on the circle: We first consider a pair of zeros {{,,, §:} on the circle C, of radius

qo- At these points, Egs. (2.55) hold, with l;;l)=b£l]), according to Eq. (2.56). Moreover, from
symmetries Egs. (2.41a) and (2.55) if follows

Ya(e, ) = (UB) y(x,2,) = = (1)) e M T (s, &) A s, £ITH (L)
and, on the other hand, Eq. (2.41b) implies

Y8 == eI (6, 8) A a6, E)ITS(E).-
Then observe that from Egs. (2.26) and (2.28) it follows

. “ X(x.g,)
b (x,8,) A (x,8,) =— 2)\(5)%( x,0) A (L) (2.65a)

Downloaded 03 Jul 2006 to 128.205.113.125. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063508-17  IST for vector NLS with nonvanishing boundaries J. Math. Phys. 47, 063508 (2006)

* o1 Xg)
o (x,.8,) A p3(x,,) == ING) anld) A B3(x.8,), (2.65b)

and from the discussion in Sec. I F 1 we have )?(x,gn)/a33(§n) # 0. Back-substituting, we finally
obtain

I5(4,) bu(g,) B
F]@Z) a33(§Z) !
In order to simplify the above relation, first note that from Eq. (2.39) it follows I’ 1({;)/ F3(§;)

=Z,/ §:. For the special case of reflectionless potential, with only one pair of eigenvalues (zeros)
{£,,£.} on the circle C, of radius g, one has

by =-

ay(z)= i:_gs, ax(z) = 011(5*) = i_’%l ’ j: Z’ byy(z) = aTl(Z*) = j: Z
so that by(z)/as3(z) =, /L, In conclusion, one has
#\ 2 £\ 2
bV *=(g ) b)) = (g ) bV 2.66
( ! ) gn gn " ( )

which, in particular, implies that

*

ébe e R.

n
Eigenvalues off the circle: We now consider the case of zeros off the circle Cy, and establish a
relation between the norming constants bf) and l;f) in Eq. (2.64). Recall that

X(-xsfn) = 5512)(!/3(x52n)’ ¢1(X,Zn) = b£12))((xszn)
and, instead of the second relation, we could as well make use of the symmetry relations (2.43)
and consider
b3(x,5) == bPX(x,5,). (2.67)

Then we can write

1 b2y ‘1)
NG (E) b2 X o

[where Egs. (2.41b), the first of Egs. (2.26) and Egs. (2.67), (2.37), and (2.21b) were used in turn].
As a result we obtain

X (0,2,) = (B7) Ya(x.2,) = -

(B2 == 2NET3(Z)b1(Z)b2). (2.68)

The previous relation can be simplified by taking into account that —2\(Z))=(z>~¢2)/z, and
I'5(2))=q3/z,, and that in the reflectionless case, with only one quartet of eigenvalues {z,,z,,%,,%,}
(cf. Fig. 3), one has

ES

b11(1)=z_zn, by (2 )—
72—z

n qO Zn

Iznl2

(again recall =g3/z"), so that
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2
~ * q
(B)" = 2zf? - b2 (2.69)

n

lll. INVERSE PROBLEM

In order to formulate the inverse scattering in terms of a Riemann-Hilbert (RH) problem, one
needs a representation of eigenfunctions that are meromorphic in the upper-half z-plane in terms of
a combination of eigenfunctions that are meromorphic in the lower-half-plane via suitably defined
jump conditions. In this case one employs the two sets of analytic eigenfunctions E,(x,z)
=(¢y,x,¥3) and E_(x,z)=(i;, X, ¢3), which have already been used in Sec. II F. One then uses
Egs. (2.15a), which define the scattering coefficients, together with Eq. (2.25a) [which gives
x(x,z) in terms of i,(x,z) and ¢3(x,z)] and Egs. (2.26) [which give i,(x,z) in terms of ¢(x,z)
and y(x,z)], to obtain for all z € R,

¢3(x 2) oD — —iN@x _ [bn(z) a%z(Z) X(x,2) ] —iN()x
as(z) = halne 11() i(wa)+ az3(z) 2N (2)by,(2) . Gla)

¢1(x,2) S ap(z)  xx,2) bi5(z)

= (x, )ez)\(z)x |: ¢3(x,z):|ei}‘(2)x, (3.1b)

an(2) a11(2) 2M(2)b33(z)  b33(2)
x(x,2) —ik(x _ X(x,2) —ik(z)x |:b21(Z) ba3(2) :| —ik(z)x
DNE T NN AT b 1D T B

(3.1¢)

Note that in the equations above we have used the relation A(z)=B(z)”! among the scattering
coefficients. Recalling the symmetries (2.42) and (2.43b), the system of Egs. (3.1) can be written
as

X(x,2) —iNz)

¢3(x Z) —z)\ (2)x _ 2)x
NETNE ] M

1133(2)

¢3(X,Z)€_D\(Z)x - |:p1(Z) P (x.2) = py(2)

d)l(x 2) PN X(x,2°) PN

(3.2b)

= (x,2)e™* - {pl(z”*) s(x,2) — pa(2)

all(Z) 2\ (2)b, 1(2*) i
M —ik(z)x — _ L’Z) —ik(z)x z)x
2)\(z)b33(z)e R NETE ) +[P2(2) ¢ (x,2) + a2 3 (x,2)Je” (3.2¢)

where again 2:q(2)/ z', and where we have introduced the analogs of reflection coefficients

b3(2) ap(z) by(2)
pi(2) = . pl2)= . polz)= . (3.3)

b T an@” T )
Note that only two of the above three coefficients are independent, since according to Eq. (2.40)

one has
e
py(c") = 2P2(Z) (3.4)
610
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A. Riemann-Hilbert problem

The system of Egs. (3.2) can be considered as a generalized matrix Riemann-Hilbert problem
on the real z-axis in the variables z, E*Eqé/z, with poles in correspondence with the zeros of
a,,(z) and b33(z) in the upper-half-plane, as well as the zeros of b;,(z) and as3(z) in the lower-
half-plane. The next task is to solve the above RH problem by expressing the solutions in terms of
a linear system of algebraic-integral equations.

Let us consider the first equation, namely Eq. (3.2a). From the asymptotic expansions (2.46)

it follows
¢s(x,2) e N~ (1, 7)o MY ~ ( 0 ) 7— % (3.5a)
as;(2) ’ —ir, )’ ,
$3(x,2) z) MO e (x, )N ( _2 ) Y (3.5b)
033(2) = ir(x)

Therefore, in Eq. (3.2a) we subtract from both sides the behavior at infinity and the pole at zero
(which are the same for the left-hand side and the first term on the right-hand side). Also, note that
the left-hand side is meromorphic in the lower-half-plane, with (simple) poles at the zeros of as;(z)
(which we have denoted by {:,2:), while the first term on the right-hand side is analytic in the
upper-half-plane. Hence, we also subtract from both sides of the equation the residues at the poles.
We then introduce the Cauchy projectors,

S0
PDQ=5 -] T (3.6)

which are well defined for any function f(¢) that is integrable on the real line (e.g., see Ref. 23).
Applying P, to Eq. (3.2a) after the above-mentioned subtractions, we then get

Ak N s\ (/ N. NN
e (E), 3 BELEE S g
¢3(x’z)e =—1\. + ; - — + — ~
e iman()@=4)  an an@)z-2,)
|§n‘=q0 |1n|<(10
! d ¥0 | s

{m@%@@—m@) . (3.7

+o PP
2mi) . {—(z+i0) 2MDbn (D)
where N, and N, are, respectively, the number of zeros £, of a;,(z) on the circle Cy of radius g,
and of zeros z,, inside the circle C, (cf. section II F 2). Regarding the contribution of the discrete
spectrum we now take into account that for any zero £, on the circle Cy, according to Eq. (2.55b)

we can wrlte b5(x, §n) b( )1,01(x ), while for any zero z, off the circle C,, Eq. (2.64c) gives
P5(x,2 )——b )X(x Z). Therefore from Eq. (3.7) we obtain

o N NN N, NG
z _ x,{ e "Men X,Z,)e
Pr(x,2)e ™M = ( ) + > Cfil)—l/ll( &) - + 2 C(Z)—X( )
i, n=1 2=, n=1 Z (Z Z )
|§n\:flo |gn‘<q0
1 dZ X(x.,0) oINOx

+ % B —g“— (z+i0) |:pl(§)¢l(xv§) - p2(§')2)\(§)b”(§)
(3.8a)

In a similar way one can treat Egs. (3.2b) and (3.2¢). Applying a projector P_ and using (2.55a),
(2.64b), and (2.64d) yields in these cases
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Ny Ny
a(x2)e™ = ( )* > Ol Y COx(x,2,) N
ir, n=1 <7 gn n=l <7 Zn
‘gnlqu |§n‘<q0
XeQ) M
D) f —O[P1(§ )(x,0) - Pz(g) ~ ) (3.8b)
i) o £~ (2= 10) M) ] ¢
Ny
X(x,z)e ( 0 ) S o 5 -ik(z, 2
= Gz, )e Mo — =
2N2)b(z)  \igy ari (z=2)(z-2,)
‘Zn‘<‘10
1 : d¢ ik(Q)x
—[pz(§)¢1(x O+ pa() s, 0le (3.8¢)
T 2mi) .~ (z-i0)
Note that in Egs. (3.8) we have introduced the norming constants
() (1) (2) 7 (2) H(2)
et o b ol b e b b
! a33(€ ) ! gna{l(gn) Znafl(zn) " anil(zn) Z};bil(zn)
(3.9)
From the symmetry (2.42), whenever |,| =g, it follows
’ qO ’ g: ’ *
ay(¢,) = ha 33(§ )=="ay(L,). (3.10)
g L
Hence, recalling Eq. (3.9) and (2.56), one has
_ E(l) pD 3
Clz 2 o_—2 A =_7cl. (3.11a)
a33(§n) gnall(gn)
Also, symmetry (2.38) implies (b](z,))"=a},(z,) and therefore
(oF0 (I L -ad)c?. (3.11b)

Equations (3.8) are the fundamental equations for the inverse scattering problem. They contain the
N, +N, independent (complex) norming constants C;l) and Cf). In the absence of discrete eigen-
values (that is, when N;=N,=0), Egs. (3.8) are a linear system of three vector integral equations
for the three eigenfunctions #,(x,z), ¥5(x,z), and y(x,z). In general (that is, when N, #0 or N,
#0), the system is consistently closed by evaluating the first equation at z=¢,, for n=1, N Is
the second at z=§: for n=1,...,N, and z:z: for n=1,...,N, and the last one at z= z n
=1,...,N,.

It should be noted that, using the WKB expansions for the eigenfunctions (see the Appendix)
and the Wronskian relations for the scattering coefficients, one can show that the reflection coef-
ficients (3.3) decay as appropriate powers of z both as z—0 and as z— so as to make the
integrals in Egs. (3.8) convergent.
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B. Trace formula

From the definition of the reflection coefficients (3.3) and the symmetries (2.38), we can write
Eq. (2.44) as

2

- Z q

|ay(2)] 2=1_?|P1(Z)|2_Zz 0q2|P2(Z)|2- (3.12)
0 — 40

Recall that a;,(z) is analytic in the upper-half z-plane, with a,;(z)~1 as |z|—>oo and that it has
(simple) zeros at the points {£,}!, on the circle C, of radius g, and {z,}"2, off the circle C,,.
Therefore, assuming that it does not vanish for any z € R, one can explicitly write

NN +0 _ 2 2 2172
a11(Z)=HZ %HZ foexp{—%mj log[ 1 = &%pi(D)1q5 - qdlpa(D) /(8 = q0)] }

w1 2= Lne1 2- 2, o {-z

(3.13)

The scattering coefficients as3(z), b;;(z), and b33(z) can obviously be obtained from a,;(z) by
symmetry [cf. Eqs. (2.38) and (2.42)]. In fact, it is worth noting that all other entries in the
scattering matrix A(z)=(a;;(z)) and its inverse B(z)=(b;(z)) can be reconstructed in terms of the
reflection coefficients (3. 3) and of the elements of the discrete spectrum, once the symmetries
(2.38) and (2.42) are taken into account. In this sense, the reflection coefficients (3.3), together
with the discrete eigenvalues and relative norming constants, constitute a minimal set of scattering
data.

We also mention that from the asymptotic behavior (2.48b) of a;,(z) as z—0, the following
relation between the scattering data and the asymptotic phase differences Af= 0 6@ in the
potentials can be obtained:

H an Zn _L f *log[1 - Ppi(Oa5 - aglpa(DPHE - g3)] act.
n=1 Spn= 1Z 27” —00 g
(3.14)

Equation (3.14) is the analog of the ®-condition that was obtained in Ref. 11 for the scalar NLS
equation.

IV. TIME EVOLUTION

Equation (2.1b) fixes the time evolution of eigenfunctions and scattering data, as well as the
asymptotic phases of the potential. Thus, asymptotically, the time dependence of the eigenfunc-
tions is given by

v <2ik2 +ig? - 2kql

a \ —2kr. - 2i%L—ir,q"

)v as x — oo, (4.1)
The eigenfunctions ¢j(x,t,k) and zr/{i(x,t,k) however are defined at all times ¢ by the asymptotic
behavior in Egs. (2.4) as x— +. Those boundary conditions are not compatible with the time
evolution prescribed by Eq. (2.1b). To determine the time evolution of ¢;(x,t,k) and #;(x,t,k),
one can introduce modified eigenfunctions which are simultaneously solutions of the x and ¢ part

. . - NG
of the Lax pair. For instance, let ¢;(x,z,k)=¢'"= '¢,(x,1,k), so that
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I

s (), dd
L lwg)(ﬁl +elwe =1

4.2
ot ot (42)

Requiring that ¢,(x,7,k) be a solution of the time-differential Eq. (2.1b) [and hence, asymptoti-
cally as x— —o0, of Eq. (4.1) with the lower sign], and recalling that rY)(t) depends on ¢ via the
phase 05’)(1‘) [cf. (2.3)], one then obtains from (2.4) and (2.5),

— Atk —iNx %~ 0 —iNX %~ ; ()\+k> —iNX
# (ir_(r))e g (@_(gn_(;))e T M)

where @t(t)zdiag(é(il)(t) , éf)(t)) and the dot denotes differentiation with respect to time. Substi-

tuting these into Eq. (4.1) and looking at each of the three components of ¢,(x,7,k) we then
obtain, respectively, from each component,

oV =2kN +qp = 0V — 2+ 2kn = 6P — g3 + 2k\.
In order for these three expressions to be compatible, it is necessary that 9(_1)(1‘): [9(_2)(t)=2q(2), that
is,
=60V + 245, j=1.2, (4.3)
which completely fixes the time evolution of the asymptotic phases 09) for the potential. In a
similar way one can obtain the evolution of the asymptotic phases as x— +% to show that
¢(r) = 6900) +2q3r,  j=1,2. (4.4)

[Note that Eq. (4.4) can also be obtained directly from the asymptotics of the VNLS Eq. (1.3) as
x— +0.] Moreover, one finds that all of the eigenfunctions ¢j(x,t,k) and ¢(x,,k) satisfy a
modified version of Eq. (2.1b),

22 T T_ T
d; (21k +iq'r  -2kq -iq; )v-—iwo)
ot !

Jus, 4.5
—2kr+ir, —2ik’I,—irq” 0 (43)

where wx=diag(w£ol) , wg) , wS)), and

(). 02 ) = (kN + 5.~ 2k ~ 245,45~ 2kN)..

Differentiating the scattering equations (2.15a) with respect to ¢ and taking into account Eq. (4.5),
one then obtains the time evolution of the elements of the scattering matrix A,

da; ;
—(%L‘ =i - 0Day, j,0=1,2,3. (4.6)

From Eq. (4.6) it follows immediately that all the diagonal elements a,.(k) of the scattering matrix
are time independent. Since a,;(k) and as3(k) [as well as b;,(k) and bs;(k), which are related to the
previous ones by symmetries (2.31)] are constants of the motion, the eigenvalues k,, being the
zeros of a,;(k), are also time independent. The same holds for the zeros of as;(k). It is convenient
to write explicitly the time dependence of the off-diagonal scattering coefficients

a13(k’ t) = e_4ik)\tal3(k90)9 a3l(k9 t) = e4ik}\la31(k’0) 5 (473)

. 2.2 . 20 .2
a23(k,t) — e21(k2_k}\+q0)t+zqota23(k7O)’ a32(k,t) — e—21(kZ_k)\+q0)t—lq0ta32(k’0)’ (4.7b)

Downloaded 03 Jul 2006 to 128.205.113.125. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063508-23  IST for vector NLS with nonvanishing boundaries J. Math. Phys. 47, 063508 (2006)

@yl 1) = e ANl (1,0),  ay (k1) = 2D, (k,0). (47¢)

The evolution of the coefficient b;¢(k,?) is the same as that of the a;¢(k,1).

In a similar way one can determine the time dependence of the norming constants. Indeed,
differentiating (2.55a) and (2.55b) and taking into account Eq. (4.5) we get for an eigenvalue ¢,
=kn+ivn with |§n|=q0?

b(1) = bV ()M, bP(r) = bV (0)e . (4.8)

Therefore, according to the definitions (3.9)

V() = V)Mt V() = POy, n=1,...,N,. (4.9)
Similarly, for eigenvalues z, and Z, off the circle (cf. Fig. 3), Egs. (2.61) and (2.59) yield

b2 (1) = b (0)exp[— i(2 +4¢d)r],  BP(1) = bP(0)expli((z))? +4qd)], n=1,...,N,.
(4.10)

A. Conserved quantities

According to Eq. (4.6), the scattering coefficient a,;(z) is time independent. Since a;;(z) is
analytic in the upper-half z-plane and a;,(z) — 1 as z— 0, it admits an asymptotic Laurent series
expansion whose coefficients are constants of motion. Similarly, the coefficients of the Taylor
series expansion of a;;(z) about z=0 are constant of the motion as well. Moreover, one can write
the following expansions of the modified eigenfunction M(x,z):

1. 1
MP(x,2) = zMYZ0 () + MED () + =MD ) + 5MU200 + -+, j=1,2,3  (4.11)
Z ’ Z ’
as z— 0, and

MV (x,2) = MYD () +2M P (0) + 2MYP () + -+, j=1,2,3 (4.12)

as z— 0. Substituting Egs. (4.11) and (4.12) in Eq. (2.16), we can then obtain two infinite sets of
conserved quantities:

I, =M+ %) +ig"ME D (+ %) +igPM D (+ %), m=0,1,2,..., (4.13a)

K= M2+ 0) +ig MG (+ ) +igPMT (+ %), m=1.2, ..., (4.13b)

where

MPP(+o0) = lim MY (x), MY+ %) = lim MY (x), j=1,2,3

X—+00 X—+0

and where M (2 b

Z€ro.
The first few coefficients of the asymptotic expansions (4.11) and (4.12) are computed in the

Appendix, by means of a WKB expansion. Taking into account (1.2) and (1.3) and (1.10), (1.11),

we can write explicitly the first few conserved quantities in (4.13). From Eq. (4.13a) we have

(+00) M(3 1)(+C>O) and M(lfé_l)(+00), M(l{g)_z)(+oo) are all assumed to be identically

I = fx q’(x,0r,(x,1)dx, (4.14a)

—00

o= f (laCenl?

Downloaded 03 Jul 2006 to 128.205.113.125. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063508-24  Prinari, Ablowitz, and Biondini J. Math. Phys. 47, 063508 (2006)

[’

L= | [q"(x0r.(x0) - q@)|P(lqx.1)

—00

* - g3)]dx, (4.14b)

or equivalently

L=- f [a(eolP + (laGenll* - go)ldx,

etc. Note that 1, is the Hamiltonian of the VNLS equation (1.3). Similarly, from Eq. (4.13b) one
obtains

o0

K =qlr, K,= f q’(r(x,0q" (x,)r_ - ggr_)dx, (4.15a)
and so on and so forth. Note that assuming the asymptotic phase differences are the same in both
components [cf. Eq. (2.49)], Eq. (4.15a) becomes

Ky =5, Ky=e™ql,
etc., which show that the asymptotic phase difference is constant, in agreement with Eq. (4.4).
Finally, note that motion constants are also given in terms of the scattering data by the trace
formula (3.13). In fact, recalling that a;,(z), as well as its zeros z,,{, (discrete eigenvalues) are

time independent, the coefficients of the expansions of a;;(z) both as z—0 and as z— o in the
upper-half-plane of z, i.e.,

+00

o= logll = Elpi(O s - aglpa( QPN E - g9)lds, n e (4.16)

—00

provide an infinite set of conserved quantities, assuming all of these integrals are convergent.

V. EXPLICIT SOLUTIONS

Let us discuss the special solutions obtained in the case where there is no continuum spec-
trum, that is, for reflectionless potentials, p;(z)=p;(z)=0 for j=1,2 and all z € R.

A. Dark-dark soliton solutions

We first consider the case of a reflectionless potential with one single eigenvalue on the circle
C, of radius g (i.e., Ny=1 and N,=0), and let {;=k,+iv; with —gy <k, <g, and v;=\g3—k}. In
this case the first two equations of the inverse problem [namely Egs. (3.8a) and (3.8b)] reduce to
the closed system

Yr(x,z)e ™M= — ( Z ) + éﬁl)wji’g—l);_m, (5.1a)
+ sl
P(x,2)eMr = (; ) + _Z{l CMs(x.g e, (5.1b)

Evaluating Eq. (5.1a) at z=¢; and Eq. (5.1b) at z={|, we get a linear system whose solution is
given by
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§* 1+ 5 e
14
! )e-m ! (5.2a)

¢3(~x’§1) == ( .
ir

+

(x4 = ( b )e"’l" 20 , (5.2b)

i,

where we used the fact that | 1|2=q(2). We write the common denominator of Egs. (5.2) as

chcid .
_ (;V )1 §]€_4V1x =(1+ ,ye—2v1x)(1 _ ,ye—2v1x)
1

with (27,7)?=C\"C\V¢,. Then from (3.11a) it follows

a=-gc (5.3)
and therefore
o epers

* = 5.4
21/1 - 2V1 Y ( )

so that the eigenfunctions (5.2a) and (5.2b) can be written as

. ) 1
lﬂl(x7gl) == ¢3(x’gl) = ( il )e_”}lx—_lex' (55)

ir, 1+ ye

Recalling the definitions (3.9) and the symmetry relation (3.10), we get

V0 g == B b Nas(6))
Furthermore, in the pure one-soliton case, one has §Ta§3(§ﬁf)=§ V! ((;—{ 1) and hence the previous

relation becomes C§1)6§1)§T=(21/1)21;(11)17(11)@?/{1)2 so that 72=l;(11)b(11)(§7/§1)2. Finally, using the
symmetry (2.66) we have

7 =[p{"P,

that is y=|b\"| assuming without loss of generality that y>0. Then, from Eq. (5.4) it follows that

Eﬁl)zii(Zvl v) that is, 6(11) is purely imaginary. In the following, in order to exclude singular

solutions from the IST procedure, we assume the imaginary part of 6(11) is positive, i.e., corre-
sponding to the upper sign. Then from (5.1a) we obtain

, 7 2iviy[ & e 2x
¢3(X,Z)€_1MZ)X=— ( ) + _17( ! >—_2V1x (5.6)

* .
ir, z=g\ir, ) 1+ ve

According to (2.46b), from the last two components of (5.6) in the limit z—0 it follows
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2i —2vx
’Wg—}. (5.7)

g’{ 1+ ye 2n1*

r(x):r{l +

Taking into account the time dependence of the norming constant as given in Eq. (4.9) and then
taking the complex conjugate to get q(x,7) one obtains a solution of the VNLS equation

i 5 240 (sin a)(x-2¢( (cos a)t—x)
q(X,l) = q+(0)e W1+ (é‘ - l) 1 + 240 (sin @)(x=2¢y (cos a)t-xq) |° (583)
L=k +ivy =g, 20=y(0) = [b{D(0)] (5.8b)

which is of the same type as Eq. (1.2) in both components, multiplied by the constant polarization
(i.e., unit magnitude) vector p,=q,(0)/q,. Let us also mention that from Eq. (5.7) it follows that
r(x) —r, as x— +. Also, as x— —% one has

r(x) ~ (1 + 2h:l>r+= g—lr+
gl gl

therefore the asymptotic behavior satisfies the analog of the ®-condition for the scalar NLS
equation (cf. Ref. 11), that is,

()
s .
—=21 =12 (5.9)
r Er] : g
in agreement with Eq. (3.14) with p;=0, N;=1 and N,=0. Note that the right-hand side of Eq.
(5.9) is independent of j, which is consistent with the assumption that the asymptotic phase
difference is the same in both components.

B. Dark-bright soliton solutions

We now consider one quarter of eigenvalues off the circle C,, of radius ¢, (cf. Fig. 3) and no
continuous spectrum (i.e., Ny=0 and N,=1). The system of equation (3.8) for the inverse problem
then reduces to

o Q) <(+ 25 ,~ING)x
) Z C X,2)e 1
lﬂ3(x,z)€_l)\(Z)x=— ( ) + A_]*X(#A*’ (5.10a)
ir, 21 -2
. Z o
P (x,2)e™Mx = ( ) + = CDF(x, 2N, (5.10b)
ir, -
= —ik(z)x 0 _ . o
);(;\CEZ)—Z - ( L ) - O (e, (5.10c)
2)by(z)  \iqy (z=2)(z~-z2))

where 6‘(12) and C(lz) are given by Egs. (3.9). To obtain a closed system, we evaluate the second
equation at point z=z]k and the third equation at z=zA,T, which gives a system of two equations for
two unknowns, i;(x,z;) and ¥(x,Z;). Then, back-substituting, we obtain the expression of all the
(z-dependent) eigenfunctions. Indeed, from Egs. (5.10b) and (5.10c) one obtains

o (0} (3 o
_x’f =« _ e—t(k(z1)+)\(z1))x i
x(x,2)) 1+ By 2| “Nigt B ir,

where
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. . _ 2* Z*
a =2\ZDby (), Bi=aCP———"—, 5 =CP (5.11)
(Z,-20E, -z9) 71— 21

and, substituting into Eq. (5.10b),

, z z erx 0 7\
x,z)eM¥ = ( ) + cl? a ( ) - ( et
hilxd) ir,)  z-z ' 1+ Bme? | \igf pi ir,

(1)

. =0 (and consequently qi1)=0) with rf)
:(qf))* #0, and we look at the second and third components of #;(x,7)e™, which, according to
(2.46d), in the limit z— 0 reconstruct the potential r(x). Explicitly, we get

To find a dark-bright soliton solution, we take r

—V|X
(D) — Q)2 ik =
r"x) =« Ci7e™ s 5.12a
(x) 19+ L1 1+,31716_2V‘x ( )
() = 2 2) e
) =r| 1-CyB; (5.12b)

1+ Byye* |

In the pure one-soliton case, using the analyticity properties we can write explicitly the scattering
coefficients b;,(z) and a,;(z) and their derivatives. Recalling that a,,(z) is analytic in the upper-
half-plane, that it goes to 1 as z— o, and assuming that it has a single, simple zero at z=z, [cf. Eq.
(2.53)], we get

-z , 1
anx)=—=, aj(z)=——=.
-7 21-7
Thus, recalling that bll(z):a;(z*) and substituting into Eq. (5.11), we obtain

2 2 * *

90— |zl ~2)__ %1 2)_ %1

—_— ﬂlzc(l )*—, ’ylzc(l )*—. (5.13)
21 21— i1—<1

=

Note that «, vanishes if |z;|=¢, so that for zeros on the circle C, the bright component becomes
trivial. Note also that from Eq. (3.11b) it follows that

2
_ Y0, 2 21\ ~(2)]2
=—(qy— Iz C
Bin 41}%(90 |21 1 |
which is real and positive for any eigenvalue z; inside the circle C, of radius g,. Note that having
|z1/>qo (i.e., an eigenvalue outside C,)) would produce a singular potential.
Inserting the time dependence (4.10) into the expressions for the potential (5.12), we finally
obtain the dark-bright soliton solution of the VNLS equation (1.3),

rV(x,0) = v (q/|z1|* - 1)1/zei‘Pl_2i"3’+ik1x_i(k%_”%)’ sech[ v (x — 2k,1) + x,], (5.14a)

2iv;  exp[—2vx + 4k vt + 2xp]
uids

FO(x, 1) = goe®2 29| 1 (5.14b)

ZT 1 +exp[—2vx + 4k vt + 2x0] |
where

2

q
X0 = =L (gh ~ |24 CP(0)
4V1

2, g=arg CP(0) + 6200), ¢=-62(0).  (5.15)

As usual, the solution q(x,7) of Eq. (1.3) is obtained taking the complex conjugate of Eq. (5.14).
The dark-bright solution (5.14) can be written in the more compact form
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—_— . rr 2 2 .2 .
g (x,1) =— v, sin avqg — |z,[? sech[ v, (x — 2k, 1) + xoJe”F1e+l2ap+ki=rDl=ier (5 16a)
L2 .
gP(x,1) = go{cos a+i sin a tanh[ v, (x — 2k, 1) + xo|}e> 40"~ 1¢2, (5.16b)
where
ky=|z)|cos @, v, =—|z|sin a. (5.17)

Again, note that the condition k%+ V% =|z|>’< q(z) (i.e., the requirement that the discrete eigenvalue
7) is inside the circle C, of radius ¢,) is necessary and sufficient to ensure the regularity of the
solution at all times.

Equation (5.16) describes a two-component solution in which the second component
q'?(x,1) represents a dark soliton similar to that in Eq. (1.2) (but with a different relation between
amplitude and velocity), while the first component ¢! (x,7) describes a bright soliton similar to
that of the scalar focusing NLS (but with a different relation between amplitude and phase). The
two components travel together at the same speed 2k;. Note that the amplitude of the bright soliton
component and that of the intensity dip in the dark soliton component are related by the condition
k%+ v% < q%, and the amplitude of the bright component goes to zero as the eigenvalue approaches
the circle (i.e., in the limit |z,| — g,). With proper identification of the parameters, Eqs. (5.16) also
coincide with the dark-bright soliton solution given in Ref. 19 in the case of x-independent
asymptotic boundaries and with xy=0.

VI. SMALL AMPLITUDE LIMIT

It is useful to consider the limit in which the solution q(x,7) of Eq. (1.3) is a small perturba-
tion of the background field.

A. Linearization
Recall that q(x,?) —q.()=e9q, as x— x%, with @i(t)zdiag(ﬁs), Hf)), and Hg)(t)
= ﬁg)(0)+2iq(2)t, and with gy=||qq| as usual. We then consider the “normalized” vector NLS equa-
tion
T, = Qo +2(g5 - AP, (6.1)

for the rescaled field ﬁ(x,t)=q(x,t)e‘2i‘1(2)’, and we define

q(x,1) =g +u(x,1)), (6.2)
with [lu(x,7)||< g, so that u(x,?) represents a small perturbation of the background field q.(z).
Inserting Eq. (6.2) into the rescaled VNLS equation (6.1) and neglecting higher powers of u we
then obtain a linearization of the VNLS equation around the background solution,

i, =u,, - 2qoqi(u+u*). (6.3)

We now look for solutions of Eq. (6.3) employing standard Fourier transforms, where for conve-
nience we write the transform pair as follows:

1 [~ . ® .
u(x,f) = by f a(k,n)e*™ ™ dk, (k,))=2 f u(x,r)e 2 dx. (6.4)
7T —0C —0C

Inserting the first of Eqs. (6.4) into Eq. (6.3) with (6.2), one finds a system of four first-
order differential equations in time for the functions @(k,?)=(i,(k,t),d,(k,t)) and (k)7
= (ﬁT(—k,t),ﬁZ(—k,t))T, which can then be solved to obtain
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(k1) = A, () * gy + (k— K2 +6]o)Az(k)€_4lk\k+q°tq +(k+\'k2+6]o)A3(k)e4lk\k+q°t(I0
(6.5)

where qj:(qéz), qo )Te R2. The functions A,(k),A,(k),A;(k) satisfy the symmetry conditions

A= 0 == Ay(k),  A5(= ) == As(k), (6.6)
and can be written in terms of the Cauchy data as follows:
i (k)qq

2 9

90

A (k) = (6.7a)

Ay(k) = 4k%\h[( k2 + 0)afio() + (k+ I+ )agig- ). (6.70)

1
As(k) = /2—[( k+ VK + qO)q ()( k) + (k+ \’k2 + 4]())(1 ay(k)], (6.7¢)
4kqo VK + g
where (k) =u(k,0). Together, Egs. (6.5) and (6.7) yield the solution of the linearized VNLS Eq.
(6.3) in terms of given Cauchy data, which in turn provides an approximation of the solution
q(x,1) of the VNLS equation (1.3) in the small amplitude limit.

B. Small amplitude limit from the inverse problem

If we consider the equations of the inverse problem (3.8a), (3.8b), and (3.8¢) with no solitons,
in the small amplitude limit we can approximate each term on the left-hand side with a series in
powers of p(z,7). Keeping only linear terms in p;(z,), according to Eq. (2.46b), the expansion as
z—0 of the last two components of i3(x,z)e" ¥ yields

q(x,r>=q+<z>{1+f J d—gpi@,r)em@”]—ri(»i. f Y@ et ()
m)_ . ( 2mi) o, &

(with f = q(z)/ " as usual). In order to compare with the Fourier transform solutions obtained in the
preceding sections, we recall that q.(f)=¢"®+"q, and r.(1)=exp[-iO.(r)] qo, and we consider

again the normalization q(x,7)=q(x,#)e29, Then, taking into account the time dependence of the
scattering coefficients [cf. Egs. (4.7)], from Egs. (6.8) we get

dg* iN(Q)x—4i 1 dg* —i(g?1)x+i(gP D)
q(_x t) q+l 1+ _f ({ O) 2iN({)x—4 k(g)}\(g)ti| _ I'+ % _pz(g 0 (qg/ Dx+ilgy/ O t,

(6.9)

where now q,=q,(0) and r,=r,(0). In order to compare with the results in the preceding
section, we then perform appropriate changes of variables. Consider the term in square brackets in
Eq. (6.9). First, we revert from { to the original coordinates k,\(k), so that k runs over the contour
L given by the branch cuts in Fig. 1 and defined in Sec. II A. Then we introduce the variable

§ =\ k2 - q(2),
so that ¢ dé=k dk, obtaining
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d_;“ p* (£,0) 2Nk ONDI f ‘1’;) Pl(k (k) 0) 2N Bx—4ikn®)

T dé ) _
= f # P p (VE + g5, £,0)e ity

= NE+¢q
— Pl NE+ g £ 0)eHE Ewi, (6.10)

On the other hand, the second term in Eq. (6.9) can be written as an ordinary Fourier transform by
simply performing the change of variable 2§=—q§/ {. By comparison, one can then show that Eq.
(6.9), obtained solving the inverse problem in the limit of small amplitude, indeed coincides with
the solution obtained via linearization, i.e., Eq. (6.2) with u(x,?) given by Eq. (6.4) and a(k,7) by
Eq. (6.5). More precisely, one has

M(@== e L 02402 2 C 26 0= 20,0), (6.11a)
Ay§) = pi(VE + q5,£0), (6.11b)

VE+@ZNE+q2- 9

i s A3
A& = (—NE+ @ E0). 6.11¢)
NI EPSI ¢

Then, as a consequence of the symmetry conditions (6.6), it follows that

7,
pi(VE +q5,— £0) = :? pi(VE +45.£.0),

that is, in terms of the uniformization variable z,

2
o s
pl(Z)=?m(z), zeR. (6.12)
0

Note that Eq. (6.12) arises from the scattering data relations as well. Indeed, from the definitions
(3.3) and symmetry (2.38) it follows

o b3 a3(2) ., d a13(2)
(2)=———=I12) IT@=-= (6.13a)
P T e 2 an()
and the analog of symmetries (2.42) for the coefficients b;;(z) yields
by(z)  bix(E)
pi(d)=""—"=—""". (6.13b)
P b (@)
Recalling that B(z)=(b;;(z)) is the inverse matrix of A(z)=(a;;(z)), one can write
b15(2) = a1x(2)ax(2) — ai3(2)an(z),  bss3(z) = ay1(2)ax(z) — an(z)ay (2). (6.14)

Then, since in the small amplitude limit terms a;;(z) with i # j are o(1) while a;;(z)=0(1), one has

bi5(2) . a;3(2")an(z")
by3(2) a(2)an(z)’

pi(2) =

and consequently Eq. (6.12) follows from Eq. (6.13).
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VIl. CONCLUSION

We have presented the inverse scattering transform (IST) for the defocusing VNLS equation
(1.3) with nonvanishing boundary conditions as |x|— . The direct problem is constructed in
terms of scattering eigenfunctions and adjoint eigenfunctions. The six scattering eigenfunctions
provide four analytic functions, and the adjoint problem is used to construct two additional ana-
lytic functions. A global uniformizing parameter, z, is introduced in order to simplify and elucidate
the analysis. The discrete eigenvalues are studied and it is found that one can have pairs of
eigenvalues on a circle and/or quartets of eigenvalues symmetrically located inside and outside the
circle. The inverse problem is formulated as a generalized Riemann-Hilbert (RH) problem for
meromorphic functions in the complex plane of the uniformizing parameter z. The RH problem is
transformed into a closed linear system of algebraic-integral equations. The trace formula, con-
servation laws, and explicit solutions (dark-dark and dark-bright solitons) are obtained. The solu-
tion in the small amplitude limit is studied by direct Fourier transform methods and it is shown to
agree with the linearized reduction of the inverse problem.
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APPENDIX: WKB EXPANSION OF THE EIGENFUNCTIONS

Consider the following ansatz for the expansion of the eigenfunction M (x,z) as z—cc:

MP(x,2) =zM V0 + MO () + 27 M 0) + 272 M2 ) + - (Ala)
MP(x.2) = M) + 7 MED @) + 2MED ) + -+ (A1b)
MP(x,2) =MD () + 7 MEP )+ 272MED ) + - (Alc)

Substituting these expressions into the scattering problem (2.1) with k=(z+q(2)/ z)/2 and matching
the terms with the same order in 77" for n=-1,0,1,2,... yields M (1100_ l)()c) =const, and the integral
equation (2.8a) allows one to fix this constant value to

MV =1, (A2a)
Proceeding further gives
M) =irV(x), MPD0)=ir?%), oM x)=i(la@|? - gd), (A2b)
that is,
X
mwm=J(MWW—@mt (A2c)
Similarly, at higher orders one has
MY () = ik DM (x) - ig MY (), m=0,1,2,... (A3a)
for j=2,3, as well as
M () = - iggM V(0 + g VOM P () + P M T (x), m=1,2,... (A3b)

which allow one to calculate iteratively all coefficients of the asymptotic expansion, with the
recurrence relations in Egs. (A3) anchored by Egs. (A2). For instance, from Eq. (A3a) with m
=0 we obtain
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MED(x) = 1 (x) = S (1e(0)?, (Ada)
MED ) = V@) = V@), MEP ) = rP () - P01, (A4b)

where
Iy(x) = f (laG:HIP - gdx’,  1(x) = f q" () (x)dx’ . (Adc)

Furthermore, from Eq. (A3a) with m=1 it follows that

MEP(x) = ir [ 1) = $Uo(x))?] = it (x) + i D) 1)), (A5)
MED 00 = ir®@)[ 1 (x) = 21e00)2] = ir2 () + i (P @) (), (A6)

which can be substituted into Eq. (A3b) for m=2 to get
(12— ; i 3_;
Ml,ac (x) = ily(x)1;(x) = 6(10(X)) —il(x), (A7)
where

L(x) = f [q"(x" )7, r(x") - lqG)IP(laCe)] - g7)ldx’ (A8)

and so on and so forth.
Similarly, one can write a Taylor series expansion of the eigenfunction M (x,z) as z—0 in the

form
MP(x,2) = zM @) + 2MUP ) + 2MIP ) + - (A9a)
MP(x,2) = MED(x) + MG (x) + 2MEP ) + -+ (A9b)
MP(x,2) = M (x) + 2M D00 + 2MEP ) + - (A9c¢)

Substituting thlS 1nto Eq. (2.1) and matching terms with the same powers of 7" yields M, 2. 0)(x)
=const and M 10 (x) const. As before, the value of such constants is fixed by the mtegral equa—
tion (2.8a) to give

M(2 0)(x) =irh, M(ﬁ(’)o)(x) =ir¥, (A10a)
In turn, these allow one to get
gM{ (0 =q"(Wr_. (A10b)
Proceeding to higher orders, one obtains the recurrence relations
MY () =iV + DM ), m=1.2,. (Alla)
for j=2,3, as well as
M) = i M () - ig VM (x) - igP M T (x), m=0,1, ... .
(A11b)

For instance, the first terms are
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qSMg%bl)(x):f [r(l)(xl)qT(x')r_—q(z)r(_l)]dx',

M3 (x) = f [P (x")r_ - gar?]dx’,

which in turn give

X

M (x) = ir’q,(0) —iq"(x) | [r(x")q"(x")r_ - gdr_]dx’

—00

and so on and so forth.
In a similar way one can obtain the asymptotic expansions for the remaining analytic eigen-

functions and adjoint eigenfunctions.
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