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The inverse scattering transform for the vector defocusing nonlinear Schrödinger
�NLS� equation with nonvanishing boundary values at infinity is constructed. The
direct scattering problem is formulated on a two-sheeted covering of the complex
plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic
extension on either sheet of the Riemann surface. Therefore, a suitable modification
of both the direct and the inverse problem formulations is necessary. On the direct
side, this is accomplished by constructing two additional analytic eigenfunctions
which are expressed in terms of the adjoint eigenfunctions. The discrete spectrum,
bound states and symmetries of the direct problem are then discussed. In the most
general situation, a discrete eigenvalue corresponds to a quartet of zeros �poles� of
certain scattering data. The inverse scattering problem is formulated in terms of a
generalized Riemann-Hilbert �RH� problem in the upper/lower half planes of a
suitable uniformization variable. Special soliton solutions are constructed from the
poles in the RH problem, and include dark-dark soliton solutions, which have dark
solitonic behavior in both components, as well as dark-bright soliton solutions,
which have one dark and one bright component. The linear limit is obtained from
the RH problem and is shown to correspond to the Fourier transform solution
obtained from the linearized vector NLS system. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2209169�

. INTRODUCTION

The inverse scattering transform �IST� for the scalar nonlinear Schrödinger �NLS� equation

iqt = qxx − 2��q�2q �1.1�

subscripts x and t denote partial differentiation throughout� has been extensively studied in the
iterature, both in the focusing ��=−1� and in the defocusing ��=1� cases.1–3 In particular, the
efocusing case with nonvanishing boundary conditions was first studied in 1973;4 the problem
as subsequently clarified and generalized in various works,5–10 and a detailed study can be found

n the monograph.11 Equation �1.1� with �=1 admits soliton solutions with nontrivial boundary
onditions, the so-called dark/gray solitons, which have the form

q�x,t� = q0e2iq0
2t�cos � + i sin � tanh�sin �q0�x − 2q0 cos �t − x0��� �1.2�
ith q0, � and x0 arbitrary real parameters. Such solutions satisfy the boundary conditions
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q�x,t� → q±�t� = q0e2iq0
2t±i� as x → ± �

nd appear as localized dips of intensity q0
2 sin2 � on the background field q0.

While the IST for the scalar NLS equation was developed many years ago, both with vanish-
ng and nonvanishing boundary conditions, the basic formulation of IST has not been fully devel-
ped for the vector nonlinear Schrödinger �VNLS� equation

iqt = qxx − 2��q�2q , �1.3�

here q=q�x , t� is, in general, an M-component vector and �·� is the standard Euclidean norm. The
ocusing case ��=−1� with vanishing boundary conditions in two components was developed by

anakov in 1974.12 However, the IST for the VNLS with nonzero boundary conditions has been
pen for over 30 years �partial results can be found in Ref. 13�. It is worth noting that Ref. 14
rovides an elegant direct and inverse scattering theory for decaying potentials on the real line.
he extension to nondecaying potentials, however, is not straightforward and therefore here we
mploy a different approach. We should also remark that direct methods have been applied to
NLS as a way to derive explicit bright and dark soliton solutions, see for instance Refs. 17–20

nd the review article Ref. 21.
In this work we present the IST for the two-component defocusing VNLS equation �namely,

q. �1.3� with �=1 and M =2� with nonvanishing boundary conditions as x→ ±�. In Sec. II we
iscuss the direct scattering problem. Section II A is devoted to the study of the analyticity of the
cattering eigenfunctions. Similar to the scalar equation, the spectral parameter of the associated
lock-matrix scattering problem for the VNLS is an element of a two-sheeted Riemann surface.
he vector problem however presents additional difficulties due, in part, to the fact that two out of

he six scattering eigenfunctions, defined via their asymptotics at infinity, do not admit an analytic
xtension on either sheet of the surface. Therefore a suitable modification both of the direct and of
he inverse problem is necessary. On the direct side, this is achieved by defining in Sec. II B an
adjoint” scattering problem, which provides two additional analytic solutions of the original
cattering problem. In Sec. II C we study the symmetries, and in Sec. II D we introduce a uni-
ormization variable. In Sec. II E we study the asymptotic behavior of the eigenfunctions for large
alues of the scattering parameter, and in Sec. II F we discuss the discrete spectrum. The inverse
roblem is formulated in Sec. III as a Riemann-Hilbert �RH� problem associated with analytic
igenfunctions. The RH problem is then transformed into a closed linear system of algebraic-
ntegral equations. The time evolution of the scattering data and the conserved quantities are
iscussed in Sec. IV. Explicit solutions are obtained in Sec. V; they include vector generalization
f the dark and gray soliton solutions of the scalar case as well as more exotic dark-bright soliton
olutions. Finally, in Sec. VI the linearized solution of the VNLS equation is obtained and found
o be consistent with that of the RH formulation, and in the Appendix we discuss the WKB
xpansion of the eigenfunctions at large values of the scattering parameter.

I. DIRECT PROBLEM

It is well-known12 that the two-component defocusing VNLS equation �1.3� with �=1 and
M =2 is associated to the Lax pair

vx = �ikJ + Q�v , �2.1a�

vt = �2ik2 + iqTr − 2kqT − iqx
T

− 2kr + irx − 2ik2I2 − irqT �v , �2.1b�

here v�x , t ,k�= �v�1��x , t ,k� ,v�2��x , t ,k� ,v�3��x , t ,k��T is the scattering eigenfunction, k is the scat-
ering parameter, q�x , t�= �q�1��x , t� ,q�2��x , t��T and r�x , t�= �r�1��x , t� ,r�2��x , t��T=q*�x , t� are the
cattering potentials, IN is the N�N identity matrix, the superscript T denotes matrix transpose,

nd where
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J = diag�− 1,1,1�, Q�x,t� = �0 qT

r 02�2
� . �2.2�

xplicitly, the compatibility of the system of equations �2.1� �i.e., the equality of the mixed
erivatives of the 3-component vector v with respect to x and t�, together with the constraint r
q*, is equivalent to the requirement that q�x , t� satisfy Eq. �1.3� with �=1. Throughout this work,
e consider potentials with the same time-independent amplitudes at both space infinities, which
e can write without loss of generality as

q�x,t� 	 q±�t� = ei�±�t�q0, r�x,t� 	 r±�t� = e−i�±�t�q0, x → ± � , �2.3�

here �±�t�=diag��±
�1� ,�±

�2�� and q0= �q0
�1� ,q0

�2��T�R+�R+, and where �q0�=
�q0
�1��2+ �q0

�2��2 is
ssumed to be non-zero. For brevity, in the following we will use q0= �q0�.

. Eigenfunctions, integral equations and analyticity

The eigenfunctions for the scattering problem �2.1a� with boundary conditions �2.3� are in-
roduced by fixing the large-x asymptotics for k�R with �k��q0,

�1�x,k� 	 w1
−�k�e−i	x, �2�x,k� 	 w2

−�k�eikx, �3�x,k� 	 w3
−�k�ei	x, x → − � , �2.4a�


1�x,k� 	 w1
+�k�e−i	x, 
2�x,k� 	 w2

+�k�eikx, 
3�x,k� 	 w3
+�k�ei	x, x → + � , �2.4b�

here 	�k�=
k2−q0
2, the eigenvectors w1

±�k� ,w2
±�k� ,w3

±�k� are given by

w1
−�k� = �	 + k

ir−
�, w2

−�k� = � 0

− iq−
� �, w3

−�k� = �	 − k

− ir−
� , �2.5a�

w1
+�k� = �	 + k

ir+
�, w2

+�k� = � 0

− iq+
� �, w3

+�k� = �	 − k

− ir+
� , �2.5b�

nd where we introduced a notation which we will use throughout this work: for any two-
omponent vector p= �p�1� , p�2��T we write p�= �p�2� ,−p�1��T. Note that for brevity we will omit the
ime dependence of the potentials and eigenfunctions throughout the discussion of the direct
roblem.

The Wronskian of a set �v1 ,v2 ,v3� of solutions of the scattering problem �2.1a� is defined in
he usual way as

Wr�v1,v2,v3� = det�v1,v2,v3� ,

nd satisfies the equation d�Wr�v1 ,v2 ,v3�� /dx= ik Wr�v1 ,v2 ,v3�. Taking into account the
symptotic behavior of the solutions in Eq. �2.4� we then have

Wr��1,�2,�3� = Wr�
1,
2,
3� = − 2	q0
2eikx. �2.6�

ence, for any nondecaying potential q�x , t�, the two Wronskians in Eq. �2.6� are nonzero for all
�R and all k such that 	�k��0 �i.e., everywhere except at the branch points of 	�. We also

ntroduce the solutions with fixed �with respect to x� boundary conditions

M1�x,k� = ei	x�1�x,k�, M2�x,k� = e−ikx�2�x,k�, M3�x,k� = e−i	x�3�x,k� , �2.7a�

N1�x,k� = ei	x
1�x,k�, N2�x,k� = e−ikx
2�x,k�, N3�x,k� = e−i	x
3�x,k� , �2.7b�
hich can be represented in terms of the integral equations
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Mj�x,k� = wj
−�k� + 

−�

�

G j
−�x − x�,k��Q�x�� − Q−�Mj�x�,k�dx�, �2.8a�

Nj�x,k� = wj
+�k� + 

−�

�

G j
+�x − x�,k��Q�x�� − Q+�Nj�x�,k�dx� �2.8b�

or j=1,2 ,3, where

Q± = � 0 q±
T

r± 02�2
� , �2.9�

nd where the matrix Green’s functions G j
±�x ,k� are defined below. The choice of Green’s func-

ions, together with the choice of the inhomogeneous terms in Eqs. �2.8�, determine the analytic
roperties of the corresponding eigenfunctions. The superscripts � in the Green’s functions, like
n the inhomogeneous terms, refer to the corresponding eigenfunctions being defined in terms of
heir asymptotics as x→ ±�.

Using the Fourier transform technique, one can show that

G1
��x,k� = ± ��±x�� 1

2	�	 + k�
��	 + k��	I3 − kJ� + i�	 + k�Q� + Q̃�� +

e2i	x

2	�	 − k�
��	 − k��	I3

+ kJ� − i�	 − k�Q� + Q̃�� +
ei�	+k�x

q0
2 Q̃�� , �2.10a�

G3
��x,k� = ± ��±x�� 1

2	�	 − k�
��	 − k��	I3 + kJ� − i�	 − k�Q� + Q̃�� +

e−2i	x

2	�	 + k�
��	 + k��	I3

− kJ� + i�	 + k�Q� + Q̃�� +
e−i�	−k�x

q0
2 Q̃�� , �2.10b�

G2
��x,k� = ± ��±x�� e−i�	+k�x

2	�	 + k�
��	 + k��	I3 − kJ� + i�	 + k�Q� + Q̃�� +

ei�	−k�x

2	�	 − k�
��	 − k��	I3

+ kJ� − i�	 − k�Q� + Q̃�� +
1

q0
2Q̃�� , �2.10c�

here

Q̃± = � 0 01�2

02�1 q±
��r±

��T � � �0 0 0

0 q±
�2�r±

�2� − r±
�1�q±

�2�

0 − r±
�2�q±

�1� r±
�1�q±

�1� � . �2.11�

ote that Eqs. �2.10� are significantly more complicated than the case of the vector system with
ero boundary conditions �e.g., see Ref. 22�.

So far, the integral equations and Green’s functions are only defined for real k and 	. In order
o extend the eigenfunctions to complex values of k, we note that, for instance, the Green’s
unction G1

−�x ,k� does not grow exponentially as �k�→� if and only if

Im 	 � 0 and Im�	 + k�� 0. �2.12a�
+
imilarly, G1�x ,k� does not grow exponentially as �k�→� if and only if
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Im 	  0 and Im�	 + k� 0. �2.12b�

t is therefore natural to introduce the Riemann surface of equation 	2=k2−q0
2 obtained by gluing

ogether two copies of the extended complex k-plane, which we will call C1 and C2, cut along the
emilines �−� ,−q0� and �q0 ,��.

On C1 one can introduce the local polar coordinates

k − q0 = r1ei�1, 0 �1� 2� ,

k + q0 = r2ei�2, − � �2��

ith the magnitudes r1 and r2 uniquely fixed by the location of the point k :r1= �k−q0� and r2

�k+q0� �cf. Fig. 1�. Then one can define

	�k� = �r1r2�1/2ei��1+�2�/2. �2.13�

f �= ��1+�2� /2, then � varies continuously between 0 and � both in the upper and in the lower
-planes, with a cut in the region �−� ,−q0�� �q0 ,��, and one has Im 	�0 and Im�	±k��0 for
ll k�C1. Conversely, on C2 one defines

	�k� = − �r1r2�1/2ei��1+�2�/2, �2.14�

hich will give Im 	0 and also Im�	±k�0, again with a cut in the region �−� ,
q0�� �q0 ,��. The upper branches of the cuts on sheet C1 are then glued with the lower branches
n sheet C2 and vice versa as shown in Fig. 2�a�.

With the above definitions, both conditions �2.12a� are satisfied if and only if k is on the upper
heet of the Riemann surface, and both conditions �2.12b� if and only if k is on the lower sheet.
or potentials that rapidly approach Q± as x→ ±�, the Green’s function G1

−�x ,k� then defines via
q. �2.8a� an eigenfunction M1�x ,k� which admits analytic extension on the entire upper sheet of

he Riemann surface. Similarly, for suitable potentials the eigenfunction N1�x ,k� defined by

1
+�x ,k� via Eq. �2.8b� admits analytic extension on the entire lower sheet. In a similar way one

an investigate the properties of the remaining Green’s functions. Overall we conclude that the
igenfunctions M1�x ,k�=�1�x ,k�ei	x and N3�x ,k�=
3�x ,k�e−i	x are analytic on the upper sheet,
nd M3�x ,k�=�3�x ,k�e−i	x and N1�x ,k�=
1�x ,k�ei	x are analytic on the lower sheet. Unlike the
ase of vanishing boundaries, however, the remaining two eigenfunctions, namely M2�x ,k� and

2�x ,k�, in general are analytic neither on the upper nor on the lower sheet.
Equation �2.6� shows that for all real k� ±q0, the two matrices ��x ,k�= ��1 ,�2 ,�3� and

�x ,k�= �
1 ,
2 ,
3� each contain a set of three linearly independent solutions of the third-order
cattering problem �2.4a�. Thus it must be possible to express one set of solutions as a linear

FIG. 1. The choice of branch cut for 	= �k2−q0
2�1/2 in the complex k-plane. Here �= ��1+�2� /2.
ombination of the other, where the coefficients depend on k but are independent of x:
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��x,k� =��x,k�AT�k� , �2.15a�

here A�k�= �aij� is the 3�3 matrix of scattering coefficients. That is, �1�x ,k�=a11�k�
1�x ,k�
a12�k�
2�x ,k�+a13�k�
3�x ,k�, with similar expressions for �2�x ,k� and �3�x ,k�. Note that Eqs.

2.6� imply det�A�=1. We can also express the “right” eigenfunctions in terms of the “left” ones,

��x,k� =��x,k�BT�k� , �2.15b�

here B�k�= �bij�=A−1�k�. Note that the scattering coefficients aij�k� and bij�k� are in general only
efined where all of the eigenfunctions are, i.e., for k�R and �k��q0, or, more precisely, on the
riented half-lines defined in Fig. 2, namely on aI�dII, bI�cII, cI�bII, and dI�aII. Note also that
pper and lower banks of the cut are not equivalent, because both 	�k� and the scattering eigen-
unctions are discontinuous along the cut. These semilines define the contour L
aI�bI�cI�dI�dII�cII�bII�aII namely L= �q0+ i0,�+ i0�� �−�+ i0,−q0+ i0��−�−q0− i0,
�− i0��−��− i0,q0− i0� on the upper sheet.

Some of the scattering coefficients can be analytically extended off the real axis. From Eqs.
2.15� one can derive Wronskian representations for the scattering coefficients. Unlike the scalar
ase, however, such representations are not definitive in order to establish analyticity, since they
ll involve either �2�x ,k� and/or 
2�x ,k�, which do not admit analytic continuation. However, one
an derive alternative representations for the scattering coefficients that provide the analytic ex-
ension sought for. For instance, using the first column of Eq. �2.15a� and the asymptotics �2.4b�,
ne can check that

a11�k� =
1

2	�	 + k�
lim

x→+�
ei	x��	 + k��1

�1��x,k� + iq+
�1��1

�2��x,k� + iq+
�2��1

�3��x,k�� , �2.16�

nd since this expression for a11�k� only depends on the components of the vector ei	x�1�x ,k�, it
ndicates that for suitable potentials a11�k� can be analytically extended on the upper sheet of the
iemann surface. Similarly one finds that a33�k� and b11�k� can be analytically extended on the

ower sheet of the Riemann surface, and b33�k� can be extended on the upper sheet of the Riemann
urface. In general, however, the remaining scattering coefficients do not have any special analy-
icity properties.

The problem of determining the class of potentials for which a limit like �2.16� �with respect
o a parameter, here x� of an analytic function of k is still an analytic function of k, is beyond the
cope of this paper. We point out that this result is true for all the special solutions considered in

IG. 2. �a� The two-sheeted covering of the complex plane defined by the scattering parameters �k ,	�. �b� The topologi-
ally equivalent genus-0 Riemann sphere. �c� The corresponding complex plane for the uniformization variable z=k+	
which will be introduced in Sec. II D�.
his work.
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. Adjoint problem and auxiliary eigenfunctions

In order to formulate and solve the inverse scattering problem, one needs two independent sets
f analytic eigenfunctions. The main issue at this stage is eliminating the nonanalytic eigenfunc-
ions �2 and 
2. The approach introduced by Kaup in Ref. 15 for investigating the three-wave
nteraction is generalized here in order to obtain a representation of the nonanalytic eigenfunctions
n terms of analytic eigenfunctions and scattering data. The key idea is to consider the “adjoint”
igenvalue problem

vx
ad = �− ikJ + QT�vad �2.17�

here Q and J are defined in Eq. �2.2�. One then recalls the well-known fact �see, for instance
ef. 16� that if uad�x ,k� and wad�x ,k� are two arbitrary solutions of the adjoint problem �2.17�, then

v�x,k� = − J�uad�x,k� Ù wad�x,k��eikx, �2.18�

here Ù denotes the vector product, is a solution of the original scattering problem �2.1a�. As
efore, one defines two sets of solutions of Eq. �2.17�, i.e., as x→−�

�1
ad�x,k� 	 �	 + k

− iq−
�ei	x, �2

ad�x,k� 	 � 0

ir−
� �e−ikx, �3

ad�x,k� 	 �	 − k

iq−
�e−i	x �2.19a�

nd as x→ +�


1
ad�x,k� 	 �	 + k

− iq+
�ei	x, 
2

ad�x,k� 	 � 0

ir+
� �e−ikx, 
3

ad�x,k� 	 �	 − k

iq+
�e−i	x. �2.19b�

ith techniques identical to those used to derive the integral equations and the Green’s functions
ssociated to the eigenfunctions of the scattering problem �2.1a�, one can then show that
i	x�3

ad�x ,k� and e−i	x
1
ad�x ,k� are analytic in the upper sheet of the Riemann surface, e−i	x�1

ad�x ,k�
nd ei	x
3

ad�x ,k� are analytic on the lower sheet and eikx�2
ad�x ,k� and eikx
2

ad�x ,k� on neither sheet.
nalogues of Eqs. �2.15� also exist,

�ad�x,k� =�ad�x,k�B̃T�k�, �ad�x,k� =�ad�x,k�ÃT�k� , �2.20�

here �ad�x ,k�= ��1
ad ,�2

ad ,�3
ad� and �ad�x ,k�= �
1

ad ,
2
ad ,
3

ad�, and where Ã�k�= �ãij� and B̃�k�
�b̃ij�= Ã−1�k� are the adjoint scattering matrices.

From these adjoint states, we can now use Eqs. �2.19� to define via �2.18� two new solutions
f the original scattering problem �2.1a�, namely,

�̄�x,k� = − eikxJ��1
ad�x,k� Ù 
3

ad�x,k�� , �2.21a�

��x,k� = − eikxJ��3
ad�x,k� Ù 
1

ad�x,k�� . �2.21b�

y construction, �̄�x ,k�e−ikx is analytic in the lower sheet �where �1
ad�x ,k�e−i	x and 
3

ad�x ,k�ei	x

re�, and ��x ,k�e−ikx is analytic in the upper sheet �where �3
ad�x ,k�ei	x and 
1

ad�x ,k�e−i	x are�.
oreover, by comparing the asymptotic behavior as x→ ±� of eigenfunctions and adjoint eigen-

unctions, one can check that, for all cyclic indices j , l ,m,

� j�x,k� = − eikxJ��l
ad�x,k� Ù �m

ad�x,k��/� j�k� , �2.22a�


 j�x,k� = − eikxJ�
l
ad�x,k� Ù 
m

ad�x,k��/� j�k� , �2.22b�

nd reciprocally

�ad�x,k� = − e−ikxJ��l�x,k� Ù �m�x,k��/� j�k� , �2.22c�
j
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 j
ad�x,k� = − e−ikxJ�
l�x,k� Ù 
m�x,k��/� j�k� , �2.22d�

here

�1�k� = 	 − k, �2�k� = 2	, �3�k� = 	 + k . �2.23�

rom Eqs. �2.22� and �2.15�, �2.20� it then follows that

ÃT�k� = ��k�A�k��−1�k�, B̃T�k� = ��k�B�k��−1�k� , �2.24�

here ��k�=diag��1�k� ,�2�k� ,�3�k��. Substituting the first of Eq. �2.20� into Eq. �2.21� and using
2.22b� yields

��x,k� = 2	�b33�k�
2�x,k� − b23�k�
3�x,k�� , �2.25a�

�̄�x,k� = 2	�b21�k�
1�x,k� − b11�k�
2�x,k�� . �2.25b�

ach of these two relations provides a decomposition of the nonanalytic eigenfunction 
2�x ,k�,


2�x,k� =
b21�k�
b11�k�


1�x,k� −
1

2	

�̄�x,k�
b11�k�

=
b23�k�
b33�k�


3�x,k� +
1

2	

��x,k�
b33�k�

. �2.26�

imilar relations hold for the eigenfunction �2�x ,k�, where now the scattering coefficients aij�k�
re involved. Precisely, one finds

�̄�x,k� = 2	�a23�k��3�x,k� − a33�k��2�x,k�� , �2.27a�

��x,k� = 2	�a11�k��2�x,k� − a21�k��1�x,k�� �2.27b�

nd consequently one obtains similar representations for �2�x ,k�:

�2�x,k� =
a23�k�
a33�k�

�3�x,k� −
1

2	

�̄�x,k�
a33�k�

=
a21�k�
a11�k�

�1�x,k� +
1

2	

��x,k�
a11�k�

. �2.28�

hese expressions will be key to define the inverse scattering problem in Sec. III.

. Symmetries

Importantly, the scattering problem admits two symmetries, which relate the value of the
igenfunctions on different sheets of the Riemann surface. These symmetries translate into com-
atibility conditions �constraints� on the scattering data, and will play a fundamental role in the
ormulation of the inverse problem.

First symmetry �k ,	�→ �k* ,	*�: When the potential satisfies the symmetry condition r=q*,
ne has QH=Q, and therefore from Eq. �2.17� it follows that

�

�x
�vad�k*��* = �ikJ + QH��vad�k*��* = �ikJ + Q��vad�k*��*.

ence, taking into account the boundary conditions �2.4� and �2.19�, we have

� j
ad�k,	� = �� j�k*,	*��*, 
 j

ad�k,	� = �
 j�k*,	*��*, j = 1,2,3 �2.29�

nd, as a consequence of Eqs. �2.24�, �2.15�, and �2.20�

��k,	�B�k,	��−1�k,	� = AH�k*,	*� , �2.30�
here ��k ,	�=diag��1 ,�2 ,�3� as before. In particular, Eqs. �2.30� give
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b11�k,	� = a11
* �k*,	*�, b33�k,	� = a33

* �k*,	*� �2.31�

howing that a11�k ,	� �respectively, b33�k ,	�� has a zero on the upper sheet of the Riemann
urface at a point �kn ,	�kn�� if and only if b11�k ,	� �respectively, a33�k ,	�� has a zero at the
onjugate point �kn

* ,	*�kn
*�� on the lower sheet.

Second symmetry �k ,	�→ �k ,−	�: This involution relates the values of the eigenfunctions on
he two sheets, and in particular across the cuts, for arbitrary fixed k on either sheet and 	→−	.
ndeed, the scattering problem is clearly invariant with respect to the exchange �k ,	�→ �k ,−	�,
nd by looking at the boundary conditions �2.4� and �2.5� one can check that


1�x,k,− 	� = − 
3�x,k,	�, �1�x,k,− 	� = − �3�x,k,	� �2.32a�

hile 
2 and �2 are invariant with the respect to the symmetry 	↔−	, i.e.,


2�x,k,− 	� = 
2�x,k,	�, �2�x,k,− 	� = �2�x,k,	� . �2.32b�

herefore, from the equations �2.15a� defining the scattering coefficients one has

a11�k,− 	� = a33�k,	�, a22�k,− 	� = a22�k,	� , �2.33a�

a12�k,− 	� = − a32�k,	�, a13�k,− 	� = a31�k,	�, a21�k,− 	� = − a23�k,	� . �2.33b�

he same symmetry relations hold for the coefficients bij�k�, i.e.,

b11�k,− 	� = b33�k,	�, b12�k,− 	� = − b32�k,	�, b13�k,− 	� = b31�k,	� �2.34a�

b22�k,− 	� = b22�k,	�, b21�k,− 	� = − b23�k,	� . �2.34b�

ote that Eq. �2.33a� implies that �kn ,	�kn�� is a zero of a11�k ,	� in the upper sheet if and only if
kn ,−	�kn�� is a zero for a33�k ,	� in the lower sheet, and the same for b11�k ,	� and b33�k ,	�.
inally, note that, taking into account Eqs. �2.32� and �2.34�, comparing Eqs. �2.25a� and �2.25b�
ields

��x,k,	� = �̄�x,k,− 	� . �2.35�

. Uniformization coordinate

In a similar way as for the scalar problem �e.g., see Ref. 11�, we can introduce a uniformiza-
ion variable z �global uniformizing parameter� defined by the conformal mapping

z = k + 	�k� . �2.36a�

he inverse mapping is given by

k = 1
2 �z + ẑ*�, 	 = z − k = 1

2 �z − ẑ*� , �2.36b�

here we have introduced the shorthand notation

ẑ = q0
2/z*, �2.36c�

hich we will use throughout the rest of this work. �Note 	−k=−ẑ*, which will also be useful
ater on.� With regard to the mapping �k ,	�→z, it should be observed that �cf. Fig. 2�a�,�c��:

i� The branch cuts on the two sheets of the Riemann surface are mapped onto the real z-axis.
ii� The two sheets C1 and C2 of the Riemann surface are, respectively, mapped onto the upper

and lower half-planes of the complex z-plane.
iii� A neighborhood of k=� on either sheet is mapped onto a neighborhood of z=� or z=0
depending on the sign of kim �cf. Sec. II E�.
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iv� The symmetry k− i0→k+ i0 on the contours �giving the discontinuity of eigenfunctions and
scattering data on the banks of the cut� transforms into z→ ẑ*=q0

2 /z on the real z-axis.

According to the discussion in Secs. I A and I B, the eigenfunctions �1�x ,z�ei	�z�x,

3�x ,z�e−i	�z�x and ��x ,z�e−ik�z�x are analytic in the upper half-plane of z, while �3�x ,z�e−i	�z�x,

1�x ,z�ei	�z�x and �̄�x ,z�e−ik�z�x are analytic in the lower half-plane. Similarly, the scattering coef-
cients a11�z� and b33�z� are analytic in the upper half-plane of z, while a33�z� and b11�z� are
nalytic in the lower half-plane.

It should be noted that although the uniformization coordinate will be important in the inverse
roblem, it is not essential in our formulation of the direct problem. We introduce it here because
t turns out to be convenient when discussing the location of the discrete eigenvalues, which is
one in Sec. II F.

In terms of the global parameter z, the first symmetry becomes z→z*. Under this transforma-
ion, the symmetry relations �2.29� and �2.30� are then, respectively, written as

� j
ad�x,z� = �� j�x,z*��*, 
 j

ad�x,z� = �
 j�x,z*��*, j = 1,2,3, �2.37�

b�j
* �z*� = � j�z�aj��z���

−1�z�, �, j = 1,2,3, �2.38�

here

�1�z� = − ẑ*, �2�z� = 2	�z�, �3�z� = z . �2.39�

quation �2.38� can also be written compactly as

��z�B�z��−1�z� = AH�z*� , �2.40�

here ��z�=diag��1 ,�2 ,�3� as before. Taking into account Eq. �2.22�, the symmetries �2.37� can
e written in terms of eigenfunctions as follows:

� j
*�x,z*� = − e−ik�z�xJ��l�x,z� Ù �m�x,z��/� j�z� �2.41a�

nd


 j
*�x,z*� = − e−ik�z�xJ�
l�x,z� Ù 
m�x,z��/� j�z� �2.41b�

here j , l ,m are cyclic indices.
The second symmetry relates values of eigenfunctions and scattering coefficients at points

k ,	� and �k ,−	� on the two sheets or at the cuts. In terms of the uniformization variable z, the
ransformation then becomes z→ ẑ*=q0

2 /z. Hence the symmetry relations �2.33� can be written as

a11�ẑ*� = a33�z�, a12�ẑ*� = − a32�z� , �2.42a�

a13�ẑ*� = a31�z�, a21�ẑ*� = − a23�z� , �2.42b�

nd the same relations hold for the coefficients bij�z�. Also note that the symmetry relations �2.32�
etween the auxiliary eigenfunctions can be written as

�1�x,z� = − �3�x, ẑ*�, 
1�x,z� = − 
3�x, ẑ*� , �2.43a�

��x,z� = �̄�x, ẑ*� . �2.43b�

Taking into account Eq. �2.30� and recalling that B�z�=A−1�z� and that both matrices have unit

eterminant, on either side of the real z-axis we find
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�a11�z��2 + �a12�z��2
�1�z�
�2�z�

+ �a13�z��2
�1�z�
�3�z�

= 1,

here z�R. Combining this with Eq. �2.39� we then obtain

�a11�z��2 = 1 +
q0

2

z2 �a13�z��2 +
q0

2

z2 − q0
2 �a12�z��2 " z � R . �2.44�

he second term on the right-hand side is non-negative; the last term, however, can be either
ositive or negative and therefore one cannot a priori exclude real zeros of a11�z� if z

� �−q0 ,q0�. Similar results follow for zeros of a33�z�, b11�z�, and b33�z�, taking into account the
ymmetry relations �2.38� and �2.42�.

Note that both symmetry transformations relate values in the upper half z-plane to values in
he lower half z-plane, since both z* and ẑ* are in the opposite half-plane as z. In the following we
ill assume that the scattering coefficients a11�z�, etc., have no zeros on the real z-axis.

. Asymptotic behavior of eigenfunctions and scattering data

In order to determine the asymptotic behavior of the eigenfunctions for large values of the
cattering parameter k, we first note the following: in the upper sheet of the Riemann surface �i.e.,
hen 	im�0�, one has, above the cut �i.e., when kim�0�

	 + k 	 2k + O�1�, 	 − k 	 −
q0

2

2k
+ o�1/k� as �k� → � , �2.45a�

nd below the cut �i.e., when kim�0�

	 + k 	
q0

2

2k
+ o�1/k�, 	 − k 	 − 2k + O�1� as �k� → � . �2.45b�

imilar relations hold in the lower sheet of the Riemann surface �i.e., when 	im0�. Using these
elations we can obtain the large-k expansion of the eigenfunctions on each sheet. It is more
onvenient however to express this behavior in terms of the uniformization variable z, which will
e used in the inverse problem. To this aim, we note that �cf. Fig. 2�

i� �k�→� in the upper-half-plane of sheet I corresponds to z→� in the upper-half z-plane,
ii� �k�→� in the lower-half-plane of sheet II corresponds to z→� in the lower-half z-plane,
iii� �k�→� in the lower-half-plane of sheet I corresponds to z→0 in the upper-half z-plane,
iv� �k�→� in the upper-half-plane of sheet II corresponds to z→0 in the lower-half z-plane.

t should be noted here that there is no conceptual distinction between the points z=0 and z=� in
he z-plane, and one can change one into the other by simply defining z=k−	 instead of z=k
	.

Taking Eqs. �2.45� into account and using both the integral equations �2.8� and the WKB
xpansions of the eigenfunctions �see the Appendix� we obtain that as z→� in the upper-half
-plane one has

�1�x,z�ei	x 	 � z

ir�x�
�, 
3�x,z�e−i	x 	 − �qT�x�r+/z

ir+
� , �2.46a�

hile as z→0 in the upper-half z-plane one has

�1�x,z�ei	x 	 �qT�x�r−/ẑ*

ir−
�, 
3�x,z�e−i	x 	 − � ẑ*

ir�x�
� . �2.46b�
imilarly, as z→0 in the lower-half z-plane one has
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�3�x,z�e−i	x 	 − � ẑ*

ir�x�
�, 
1�x,z�ei	x 	 �qT�x�r+/ẑ*

ir+
� , �2.46c�

hile as z→� in the lower-half z-plane one has

�3�x,z�e−i	x 	 − �qT�x�r−/z

ir−
�, 
1�x,z�ei	x 	 � z

ir�x�
� . �2.46d�

symptotic expansions for the adjoint eigenfunctions can also be obtained. Then, using the as-
mptotics of � j

ad�x ,z� and 
 j
ad�x ,z� as well as Eqs. �2.21�, one can obtain the asymptotic expan-

ions for the auxiliary eigenfunctions �̄�x ,z� and ��x ,z�. Explicitly, in the upper-half z-plane one
as

��x,z�e−ikx 	 − �qT�x�q−
�

iq−
�z

� as z → � , �2.47a�

��x,z�e−ikx 	 �qT�x�q+
�

iq+
�ẑ* � as z → 0, �2.47b�

hereas in the lower-half z-plane

�̄�x,z�e−ikx 	 − �qT�x�q−

iq−
�ẑ* � as z → 0, �2.47c�

�̄�x,z�e−ikx 	 �qT�x�q+
�

iq+
�z

� as z → � . �2.47d�

quations �2.16� and �2.46� also allow us to obtain the asymptotic behavior of the scattering
oefficients. For example, in the upper-half z-plane, as z→� one has

a11�z� 	 1, b33�z� 	 q−
Tr+/q0

2, �2.48a�

hile as z→0 one has

a11�z� 	 q+
Tr−/q0

2, b33�z� 	 1. �2.48b�

imilar expressions hold for b11�z� and a33�z� in the lower-half z-plane: namely, as z→0 one has

a33�z� 	 1, b11�z� 	 q−
Tr+/q0

2 �2.48c�

hile as z→� one has

a33�z� 	 q+
Tr−/q0

2, b11�z� 	 1. �2.48d�

ote that q+
Tr−= �q−

Tr+�*=ei���1�
�q0

�1��2+ei���2�
�q0

�2��2, where we have introduced the asymptotic

hase differences for the potentials, ���1�=�+
�1�−�−

�1� and ���2�=�+
�2�−�−

�2� �cf. Eq. �2.3��. Hereafter,
e will assume that these asymptotic phase differences are the same in both components, namely

���1� = ���2�
¬ �� . �2.49�

f Eqs. �2.49� are satisfied, then

q+
Tr− = �q−

Tq+�* = ei��q0
2, �2.50�
nd the asymptotic behaviors of the scattering coefficients in Eqs. �2.48� simplify correspondingly.
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. Discrete eigenvalues and bound states

Recall that in the 2�2 scattering problem for the nondecaying scalar NLS equation there is a
ne-to-one correspondence between poles of the transmission coefficients �here, zeros of a11�z�
tc� and eigenvalues, which, in turn, are related to bound states. Hence, the unitarity relation �i.e.,
he analog of Eq. �2.44��, together with the self-adjointness of the scattering problem, ensure that
he transmission coefficients can only have poles at k=kn� �−q0 ,q0�, i.e., for z=zn on the circle C0

f radius q0 centered at the origin �e.g., see Ref. 11�. As we will see in the following, in the case
f vector NLS equation with nondecaying boundary conditions, the decay properties of the eigen-
unctions at a pole of the transmission coefficients are not sufficient to give a bound state.

Importantly, when r=q* any solution v�x ,k� of the scattering problem �2.1a� satisfies the
elation

− i�k − k*��v�x,k��2 =
�

�x
��v�1��x,k��2 − �v�2��x,k��2 − �v�3��x,k��2� . �2.51�

quation �2.51� shows that in order for k=kn to be an eigenvalue corresponding to a square
ntegrable eigenfunction, kn must be real �i.e., kn=kn

*�. For kn�R with �kn��q0 �i.e., for z�C0�
ne has 	�kn�= ± i
q0

2−kn
2 �with the upper/lower sign on sheet I/II of the Riemann surface, respec-

ively�. Correspondingly, �1�x ,kn ,	�kn�� and �3�x ,kn ,	�kn�� are exponentially decaying as x→
� while 
1�x ,kn ,	�kn�� and 
3�x ,kn ,	�kn�� are exponentially decaying as x→ +�. As we will
ee in Sec. II F 1, poles of the transmission coefficient at these points then give rise to bound
tates. It should be noted that, unlike the scalar case, the unitarity conditions �e.g., see Eq. �2.44��
re not enough to exclude poles of the transmission coefficients for k�R with �k��q0 �i.e., for
eal values of z�. In these cases, however, all eigenfunctions are oscillating as x→ ±�. Hence, the
nly eigenvalues k=kn corresponding to square integrable eigenfunctions lie in the segment
−q0 ,q0�. In terms of the uniformization variable z, this means that any eigenfunctions belonging
o L2�R� correspond to discrete eigenvalues on the circle C0 of radius q0. Therefore, if the scat-
ering coefficients a11�z�, etc., have a zero off the circle C0, then the corresponding eigenfunctions
annot form a bound state, that is, either they are not decaying rapidly enough at both space
nfinities, or they are singular, which prevents the eigenfunction from being L2�R�. We will see
hat both situations can in principle occur, the first case corresponding to zeros zn of a11�z� inside
he circle, while the second case to zeros outside the circle.

In order to locate discrete eigenvalues as it will apply to the inverse problem, it is convenient
o introduce the 3�3 matrices

E+�x,z� = ��1,�,
3�, E−�x,z� = �
1,�̄,�3� .

ith this notation, E+�x ,z� collects three eigenfunctions which are analytic in the upper-half
-plane, and E−�x ,z� three eigenfunctions analytic in the lower-half-plane. Then we note that Eqs.
2.6�, �2.25�, and �2.27� together imply

det�E+�x,z�� = Wr��1�x,z�,��x,z�,
3�x,z�� = − 4q0
2	2�z�a11�z�b33�z�eik�z�x, �2.52a�

det�E−�x,z�� = Wr�
1�x,z�,�̄�x,z�,�3�x,z�� = 4q0
2	2�z�a33�z�b11�z�eik�z�x. �2.52b�

quation �2.52a� shows that the Wronskian vanishes �i.e., the three solutions which comprise E+

ecome linearly dependent� at the zeros of a11�z� and b33�z�. Due to the symmetries �2.38� and
2.42� among the scattering coefficients, however, we have

a11�zn� = 0 Û b11�zn
*� = 0 Û b33�ẑn� = 0 Û a33�ẑn

*� = 0 �2.53�

where as before we used the notation �2.36c�, i.e., ẑ=q0
2 /z*�. If the zero zn of a11�z� is on the circle

0 of radius q0, then ẑn�zn, and therefore a11�z� and b33�z� vanish at the same point. Hence, the
ronskian �2.52a� will have a double zero at z=zn in this case. However, if a11�z� admits a simple
ero at a point z=zn off the circle C0 �i.e., �zn��q0 and Im zn�0�, then such zeros appear in
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uartets �cf. Fig. 3�, and the Wronskian �2.52a� will have a simple zero both at zn and at ẑn

q0
2 /zn

* in the upper-half-plane. Similarly, with regard to Eq. �2.52b�, a33�z� and b11�z� can either
oth vanish at the conjugate points zn

*� ẑn
*, on the lower-half circle, or vanish individually at two

ifferent points in the lower-half-plane �ẑn
* and zn

*=q0
2 /zn, respectively�. Hereafter we will use �n to

enote zeros of a11�z� on the circle C0, and we will reserve the notation zn for the zeros of a11�z�
ff the circle C0.

. Zeros on the circle

Let us first consider the case of zeros on the circle of radius q0 and assume that a11�z� and

33�z� both have a simple zero at the point z=�n=kn+ i�n, with �kn��q0 and �n=
q0
2−kn

2�0. As we
oted earlier, in this case the Wronskians �2.52a� and �2.52b� each have a double zero, respec-
ively, at z=�n and at z=�n

*. In principle there are two possibilities: either ��x ,�n�=0 or ��x ,�n�
0. If ��x ,�n�=0, then also �̄�x ,�n

*�=0, due to the symmetry �2.43b� �since in this case �n
*

q0
2 /�n�. If ��x ,�n��0 instead, one also has �̄�x ,�n

*��0. In the following we show that in fact it
s always the case that ��x ,�n�=��x ,�n

*�=0.
Indeed, let �n be a zero of a11�z� and b33�z� on the circle of radius q0. Then, according to Eq.

2.21b�, ��x ,�n�=0 if and only if �3
ad�x ,�n�Ù
1

ad�x ,�n�=0. Since �3
ad�x ,z� and 
1

ad�x ,z� are eigen-
unctions whose asymptotic behavior is fixed, they cannot vanish identically for all x. Hence for
�x ,�n� to be zero �3

ad�x ,�n� and 
1
ad�x ,�n� must be proportional to each other. Then, due to the

ymmetry �2.29�, it follows that �3�x ,�n
*��
1�x ,�n

*�. Moreover, Eq. �2.43b� implies that ��x ,�n�
�̄�x ,�n

*�, and therefore �recalling the definition �2.21a�� we conclude that

��x,�n� = �̄�x,�n
*� = 0 iff �3�x,�n

*� � 
1�x,�n
*� and �1�x,�n� � 
3�x,�n� . �2.54�

uppose now that ��x ,�n��0 �and hence also �̄�x ,�n
*��0�. If Eqs. �2.25a� and �2.27b� can be

ontinued off the real z-axis, then it follows that

��x,�n� � 
3�x,�n�, ��x,�n� � �1�x,�n�

with nonzero proportionality coefficients because by assumption ��x ,�n��0�. If this is the case,
hen �1�x ,�n��
3�x ,�n�, and �due to the symmetry �2.29�� one also has �1

ad�x ,�n
*��
3

ad�x ,�n
*�. But

hen it follows that �̄�x ,�n
*�=0, which contradicts the hypothesis. In conclusion, if �n and �n

* are a
air of zeros on the circle, then ��x ,�n�= �̄�x ,�n

*�=0, Eq. �2.54� holds and one can write

�1�x,�n� = bn
�1�
3�x,�n� , �2.55a�

�3�x,�n
*� = b̄n

�1�
1�x,�n
*� , �2.55b�

orresponding to a bound state. Note that due to the symmetry �2.32a� between the eigenfunctions,
rom Eqs. �2.55� it follows that

b̄n
�1� = bn

�1�. �2.56�

Since ��x ,�n�= �̄�x ,�n
*�=0 for all zeros �n of a11�z� and �n

* of a33�z� on the circle of radius q0,
t is then natural in this case to rescale the Wronskians in Eq. �2.52a� as

Wr��1�x,z�,
��x,z�

2	�z�b33�z�
,
3�x,z�� = − 2q0

2	�z�a11�z�eik�z�x, �2.57a�

Wr�
1�x,z�,
�̄�x,z�

2	�z�b11�z�
,�3�x,z�� = 2q0

2	�z�a33�z�eik�z�x. �2.57b�

*
he rescaled Wronskians will then have simple zeros at �n and �n.
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. Zeros off the circle

Suppose that a11�z�, which is analytic in the upper-half z-plane, has a simple zero at a point
=zn=kn+ i�n, with �n�0 and �zn��q0. First of all, note that, according to �2.36b�,

k�zn� = 1
2 �kn�1 + �ẑn�2/q0

2� + i�n�1 − �ẑn�2/q0
2�� ,

	�zn� = 1
2 �kn�1 − �ẑn�2/q0

2� + i�n�1 + �ẑn�2/q0
2�� .

hus, the behavior of eik�zn�x at large x depends on whether �zn��q0 �recall that ẑ=q0
2 /z*; hence,

ne has �ẑn��q0 for �zn��q0�, and it will be exponentially decaying at one space infinity and
xponentially growing at the other one. On the other hand, �1�x ,zn�	e−i	�zn�x will be decaying as
→−� and 
3�x ,zn�	ei	�zn�x will be decaying as x→ +� irrespective of whether zn is inside or
utside the circle.

If the zero zn of a11�z� is off the circle C0, then b33�z� will have a zero at point ẑn=q0
2 /zn

*

zn, but b33�zn��0 in general. Then from Eq. �2.52a� it follows that zn is a simple zero of the
ronskian. In this case we assume that ��x ,zn� does not vanish. Then from Eq. �2.25a� we deduce

hat

��x,zn� 	 − 2i	�zn�b33�zn�� 0

q+
� �exp� 1

2 �ikn�1 + �zn�2/q0
2� + �n�1 − �zn�2/q0

2��x�, x → + � ,

�2.58�

here we note that the other contribution formally obtained from b23�z�
3�x ,z� in Eq. �2.25a� is
xponentially small �and in any case, smaller than the contribution of the remaining term�. On the
ther hand, from Eq. �2.27b� it follows that, at a zero zn of a11�z�, the eigenfunction ��x ,zn� is
roportional to �1�x ,zn�:

�1�x,zn� = bn
�2���x,zn� . �2.59�

f �zn��q0 �i.e., if the zero is outside the circle C0�, we would obtain a bound state, since the
igenfunctions ��x ,zn� and �1�x ,zn� would be decaying at both space infinities. Therefore zeros of

11�z� outside the circle C0 cannot occur for a smooth eigenfunction, since this would violate the
igenvalue relation �2.51�. On the other hand, if �zn��q0 �i.e., if the zero is inside C0�, the relation
2.59� still holds, but the eigenfunctions ��x ,zn� and �1�x ,zn� will be exponentially growing as
→ +�, according to Eq. �2.58�, and this does not contradict Eq. �2.51�. Hence zeros zn inside the
ircle C0 are not forbidden.

Similarly, the Wronskian �2.52a� vanishes at the zero of b33�z� corresponding to zn, that is
according to Eq. �2.53��, at the point ẑn=q0

2 /zn
*. If zn is inside the circle C0 of radius q0, then ẑn

ill be outside the same circle, and vice versa. Also, in general a11�ẑn��0, and consequently from
q. �2.27b� it follows

��x, ẑn� 	 − 2i	�ẑn�a11�ẑn�� 0

q−
� �exp� 1

2 �ikn�1 + �zn�2/q0
2� − �n�1 − �zn�2/q0

2��x�, x → − � .

�2.60�

rom Eq. �2.25a�, however, one deduces that ��x , ẑn� is proportional to 
3�x , ẑn�,

��x, ẑn� = b̂n
�2�
3�x, ẑn� . �2.61�

herefore, if �zn��q0 �i.e., if ẑn is inside C0�, this would be a bound state, since 
3�x , ẑn� decays as
→ +� and ��x , ẑn� as x→−�, according to Eq. �2.60�. Hence, as before, this situation cannot
ccur for a smooth eigenfunction, in accordance with Eq. �2.51�. On the other hand, if �zn��q0

i.e., if ẑn is outside C0�, the eigenfunctions ��x ,zn� and 
3�x ,zn� are exponentially growing as

→ +�. Hence such situations do not contradict Eq. �2.51�.
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Finally, one has analogous results for the eigenfunctions in the lower-half-plane in correspon-
ence to the points zn

*=kn− i�n �zeros of b11�z� off the circle C0� and ẑn
*=q0

2 /zn �zeros of a33�z� off
he circle C0�. Specifically, at points zn

*, where b11�zn
*�=0, one has

�̄�x,zn
*� = b̄n

�2�
1�x,zn
*� . �2.62�

gain, if �zn��q0, this would correspond to a bound state. On the other hand, if �zn��q0 the
igenfunctions in �2.62� will be growing as x→−�. Also, at points q0

2 /zn� ẑn
*, where a33�ẑn

*�=0,
ne has �̄�x , ẑn

*� proportional to �3�x , ẑn
*�,

�3�x, ẑn
*� = b̌n

�2��̄�x, ẑn
*� . �2.63�

Summarizing, in the case of a pair of zeros zn and ẑn in the upper-half-plane such that

11�zn�=0 and b33�ẑn�=0 �with zn inside the circle C0 of radius q0 and ẑn=q0
2 /zn

* outside C0�, the
igenfunctions are related to each other as

��x, ẑn� = b̂n
�2�
3�x, ẑn� , �2.64a�

�1�x,zn� = bn
�2���x,zn� � bn

�2��̄�x, ẑn
*� �2.64b�

cf. Eqs. �2.61� and �2.59��, but neither ��x , ẑn� nor �1�x ,zn� are bound states. In Eq. �2.64b� we
sed the symmetry �2.43b� to express ��x ,z� in terms of �̄�x ,z�. At the corresponding pair of zeros
n the conjugate points in the lower half plane it is a33�ẑn

*�=0 and b11�zn
*�=0, and one has the

ollowing relations:

�3�x, ẑn
*� = b̌n

�2��̄�x, ẑn
*� � − bn

�2��̄�x, ẑn
*� , �2.64c�

�̄�x,zn
*� = b̄n

�2�
1�x, ẑn
*� � − b̂n

�2�
1�x,zn
*� �2.64d�

cf. Eqs. �2.63� and �2.62��, where we have used the symmetries �2.43� for the eigenfunctions in
rder to express the proportionality constants in terms those appearing in Eqs. �2.64�.

Finally, it should be noted that there is no conceptual difference between the interior and the
xterior of the circle C0. The reason why the zn are only allowed to be inside C0 is because they
re defined as the zeros of a11�z�. One could equivalently define zn as the zeros of b33�z� �which
mounts to switching zn↔ ẑn�, in which case one would obtain that zn are only allowed to be
utside C0.

. Symmetries in the norming constants

Eigenvalues on the circle: We first consider a pair of zeros ��n ,�n
*� on the circle C0 of radius

0. At these points, Eqs. �2.55� hold, with b̄n
�1�=bn

�1�, according to Eq. �2.56�. Moreover, from
ymmetries Eqs. �2.41a� and �2.55� if follows


3
*�x,�n� = �1/bn

�1��*�1
*�x,�n� = − �1/bn

�1��*e−ik��n
*�xJ��2�x,�n

*� Ù �3�x,�n
*��/�1��n

*�

nd, on the other hand, Eq. �2.41b� implies


3
*�x,�n� = − e−ik��n

*�xJ�
1�x,�n
*� Ù 
2�x,�n

*��/�3��n
*� .

hen observe that from Eqs. �2.26� and �2.28� it follows


1�x,�n
*� Ù 
2�x,�n

*� = −
1

2	��*�

1�x,�n

*� Ù
�̄�x,�n

*�
b11��

*�
, �2.65a�
n n
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�2�x,�n
*� Ù �3�x,�n

*� = −
1

2	��n
*�
�̄�x,�n

*�
a33��n

*�
Ù �3�x,�n

*� , �2.65b�

nd from the discussion in Sec. II F 1 we have �̄�x ,�n
*� /a33��n

*��0. Back-substituting, we finally
btain

�bn
�1��* = −

�3��n
*�

�1��n
*�

b11��n
*�

a33��n
*�

b̄n
�1�.

n order to simplify the above relation, first note that from Eq. �2.39� it follows −�1��n
*� /�3��n

*�
�n /�n

*. For the special case of reflectionless potential, with only one pair of eigenvalues �zeros�
�n ,�n

*� on the circle C0 of radius q0, one has

a11�z� =
z − �n

z − �n
* , a33�z� = a11�ẑ*� =

�n

�n
* ·

z − �n
*

z − �n
, b11�z� = a11

* �z*� =
z − �n

*

z − �n

o that b11�z� /a33�z���n
* /�n. In conclusion, one has

�bn
�1��* = � �n

*

�n
�2

b̄n
�1� � � �n

*

�n
�2

bn
�1� �2.66�

hich, in particular, implies that

�n
*

�n
bn

�1� � R .

igenvalues off the circle: We now consider the case of zeros off the circle C0, and establish a

elation between the norming constants bn
�2� and b̂n

�2� in Eq. �2.64�. Recall that

��x, ẑn� = b̂n
�2�
3�x, ẑn�, �1�x,zn� = bn

�2���x,zn�

nd, instead of the second relation, we could as well make use of the symmetry relations �2.43�
nd consider

�3�x, ẑn
*� = − bn

�2��̄�x, ẑn
*� . �2.67�

hen we can write

�*�x, ẑn� = �b̂n
�2��*
3

*�x, ẑn� = −
1

2	�ẑn
*��3�ẑn

*�b11�ẑn
*�

�b̂n
�2��*

bn
�2� �

*�x, ẑn�

where Eqs. �2.41b�, the first of Eqs. �2.26� and Eqs. �2.67�, �2.37�, and �2.21b� were used in turn�.
s a result we obtain

�b̂n
�2��* = − 2	�ẑn

*��3�ẑn
*�b11�ẑn

*�bn
�2�. �2.68�

he previous relation can be simplified by taking into account that −2	�ẑn
*�= �zn

2−q0
2� /zn and

3�ẑn
*�=q0

2 /zn, and that in the reflectionless case, with only one quartet of eigenvalues �zn ,zn
* , ẑn , ẑn

*�
cf. Fig. 3�, one has

b11�z� =
z − zn

*

z − zn
, b11�ẑn

*� =
q0

2 − �zn�2

q0
2 − zn

2

ˆ 2 *
again recall z=q0 /z �, so that
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�b̂n
�2��* =

q0
2

zn
2 ��zn�2 − q0

2�bn
�2�. �2.69�

II. INVERSE PROBLEM

In order to formulate the inverse scattering in terms of a Riemann-Hilbert �RH� problem, one
eeds a representation of eigenfunctions that are meromorphic in the upper-half z-plane in terms of
combination of eigenfunctions that are meromorphic in the lower-half-plane via suitably defined

ump conditions. In this case one employs the two sets of analytic eigenfunctions E+�x ,z�
��1 ,� ,
3� and E−�x ,z�= �
1 , �̄ ,�3�, which have already been used in Sec. II F. One then uses
qs. �2.15a�, which define the scattering coefficients, together with Eq. �2.25a� �which gives
�x ,z� in terms of 
2�x ,z� and 
3�x ,z�� and Eqs. �2.26� �which give 
2�x ,z� in terms of 
1�x ,z�
nd �̄�x ,z��, to obtain for all z�R,

�3�x,z�
a33�z�

e−i	�z�x = 
3�x,z�e−i	�z�x − �b31�z�
b11�z�


1�x,z� +
a32�z�
a33�z�

�̄�x,z�
2	�z�b11�z��e−i	�z�x, �3.1a�

�1�x,z�
a11�z�

ei	�z�x = 
1�x,z�ei	�z�x + �a12�z�
a11�z�

��x,z�
2	�z�b33�z�

−
b13�z�
b33�z�


3�x,z��ei	�z�x, �3.1b�

��x,z�
2	�z�b33�z�

e−ik�z�x = −
�̄�x,z�

2	�z�b11�z�
e−ik�z�x + �b21�z�

b11�z�

1�x,z� −

b23�z�
b33�z�


3�x,z��e−ik�z�x.

�3.1c�

ote that in the equations above we have used the relation A�z�=B�z�−1 among the scattering
oefficients. Recalling the symmetries �2.42� and �2.43b�, the system of Eqs. �3.1� can be written
s

�3�x,z�
a33�z�

e−i	�z�x = 
3�x,z�e−i	�z�x − ��1�z�
1�x,z� − �2�ẑ*�
�̄�x,z�

2	�z�b11�z��e−i	�z�x, �3.2a�

�1�x,z�
a11�z�

ei	�z�x = 
1�x,z�ei	�z�x − ��1�ẑ*�
3�x,z� − �2�z�
�̄�x, ẑ*�

2	�z�b11�ẑ*�
�ei	�z�x, �3.2b�

��x,z�
2	�z�b33�z�

e−ik�z�x = −
�̄�x,z�

2	�z�b11�z�
e−ik�z�x + ��̄2�z�
1�x,z� + �̄2�ẑ*�
3�x,z��e−ik�z�x, �3.2c�

here again ẑ=q0
2 /z*, and where we have introduced the analogs of reflection coefficients

�1�z� =
b31�z�
b11�z�

, �2�z� =
a12�z�
a11�z�

, �̄2�z� =
b21�z�
b11�z�

. �3.3�

ote that only two of the above three coefficients are independent, since according to Eq. �2.40�
ne has

�̄2
*�z*� =

q0
2

q2 − z2�2�z� . �3.4�

0
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. Riemann-Hilbert problem

The system of Eqs. �3.2� can be considered as a generalized matrix Riemann-Hilbert problem
n the real z-axis in the variables z, ẑ*�q0

2 /z, with poles in correspondence with the zeros of

11�z� and b33�z� in the upper-half-plane, as well as the zeros of b11�z� and a33�z� in the lower-
alf-plane. The next task is to solve the above RH problem by expressing the solutions in terms of
linear system of algebraic-integral equations.

Let us consider the first equation, namely Eq. �3.2a�. From the asymptotic expansions �2.46�
t follows

�3�x,z�
a33�z�

e−i	�z�x 	 
3�x,z�e−i	�z�x 	 � 0

− ir+
�, z → � , �3.5a�

�3�x,z�
a33�z�

e−i	�z�x 	 
3�x,z�e−i	�z�x 	 � − ẑ*

− ir�x�
�, z → 0. �3.5b�

herefore, in Eq. �3.2a� we subtract from both sides the behavior at infinity and the pole at zero
which are the same for the left-hand side and the first term on the right-hand side�. Also, note that
he left-hand side is meromorphic in the lower-half-plane, with �simple� poles at the zeros of a33�z�
which we have denoted by �n

* , ẑn
*�, while the first term on the right-hand side is analytic in the

pper-half-plane. Hence, we also subtract from both sides of the equation the residues at the poles.
e then introduce the Cauchy projectors,

P±�f��z� =
1

2�i


−�

� f���
� − �z ± i0�

d� , �3.6�

hich are well defined for any function f��� that is integrable on the real line �e.g., see Ref. 23�.
pplying P+ to Eq. �3.2a� after the above-mentioned subtractions, we then get


3�x,z�e−i	�z�x = − � ẑ*

ir+
� + �

n=1

��n�=q0

N1 �3�x,�n
*�e−i	��n

*�x

a33� ��n
*��z − �n

*�
+ �

n=1

�zn��q0

N2 �3�x, ẑn
*�e−i	�ẑn

*�x

a33� �ẑn
*��z − ẑn

*�

+
1

2�i


−�

� d�

� − �z + i0���1���
1�x,�� − �2��̂*�
�̄�x,��

2	���b11���
�e−i	���x, �3.7�

here N1 and N2 are, respectively, the number of zeros �n of a11�z� on the circle C0 of radius q0

nd of zeros zn inside the circle C0 �cf. section II F 2�. Regarding the contribution of the discrete
pectrum we now take into account that for any zero �n on the circle C0, according to Eq. �2.55b�
e can write �3�x ,�n

*�= b̄n
�1�
1�x ,�n

*�, while for any zero zn off the circle C0, Eq. �2.64c� gives

3�x , ẑn
*�=−bn

�2��̄�x , ẑn
*�. Therefore, from Eq. �3.7� we obtain


3�x,z�e−i	�z�x = − � ẑ*

ir+
� + �

n=1

��n�=q0

N1

C̄n
�1�
1�x,�n

*�e−i	��n
*�x

z − �n
* + �

n=1

��n��q0

N2

Cn
�2� �̄�x, ẑn

*�e−i	�ẑn
*�x

ẑn
*�z − ẑn

*�

+
1

2�i


−�

� d�

� − �z + i0���1���
1�x,�� − �2��̂*�
�̄�x,��

2	���b11���
�e−i	���x.

�3.8a�

n a similar way one can treat Eqs. �3.2b� and �3.2c�. Applying a projector P− and using �2.55a�,

2.64b�, and �2.64d� yields in these cases
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1�x,z�ei	�z�x = � z

ir+
� + �

n=1

��n�=q0

N1 z

z − �n
Cn

�1�
3�x,�n�ei	��n�x + �
n=1

��n��q0

N2 z

z − zn
Cn

�2��̄�x, ẑn
*�ei	�zn�x

−
z

2�i


−�

� d�

� − �z − i0���1��̂*�
3�x,�� − �2���
�̄�x, �̂*�

2	���b11��̂*�
� ei	���x

�
, �3.8b�

�̄�x,z�e−ik�z�x

2	�z�b11�z�
= � 0

iq+
� � − �

n=1

�zn��q0

N2

C̄n
�2�
1�x,zn

*�e−ik�zn
*�x z

�z − ẑn��z − zn
*�

−
1

2�i


−�

� d�

� − �z − i0�
��̄2���
1�x,�� + �̄2��̂*�
3�x,���e−ik���x. �3.8c�

ote that in Eqs. �3.8� we have introduced the norming constants

C̄n
�1� =

b̄n
�1�

a33� ��n
*�

, Cn
�1� =

bn
�1�

�na11� ��n�
, Cn

�2� =
bn

�2�

zna11� �zn�
, C̄n

�2� = −
b̄n

�2�

zn
*b11� �zn

*�
�

b̂n
�2�

zn
*b11� �zn

*�
.

�3.9�

rom the symmetry �2.42�, whenever ��n�=q0, it follows

a11� ��n� = −
q0

2

�n
2 a33� ��n

*� = −
�n

*

�n
a33� ��n

*� . �3.10�

ence, recalling Eq. �3.9� and �2.56�, one has

C̄n
�1� =

b̄n
�1�

a33� ��n
*�

= −
bn

�1��n
*

�na11� ��n�
� − �n

*Cn
�1�. �3.11a�

lso, symmetry �2.38� implies �b11� �zn
*��*=a11� �zn� and therefore

�C̄n
�2��* =

q0
2

zn
2 ��zn�2 − q0

2�Cn
�2�. �3.11b�

quations �3.8� are the fundamental equations for the inverse scattering problem. They contain the

1+N2 independent �complex� norming constants Cn
�1� and Cn

�2�. In the absence of discrete eigen-
alues �that is, when N1=N2=0�, Eqs. �3.8� are a linear system of three vector integral equations
or the three eigenfunctions 
1�x ,z�, 
3�x ,z�, and �̄�x ,z�. In general �that is, when N1�0 or N2

0�, the system is consistently closed by evaluating the first equation at z=�n, for n=1, . . . ,N1,
he second at z=�n

* for n=1, . . . ,N1 and z=zn
* for n=1, . . . ,N2 and the last one at z= ẑn

*, n
1, . . . ,N2.

It should be noted that, using the WKB expansions for the eigenfunctions �see the Appendix�
nd the Wronskian relations for the scattering coefficients, one can show that the reflection coef-
cients �3.3� decay as appropriate powers of z both as z→0 and as z→� so as to make the
ntegrals in Eqs. �3.8� convergent.
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. Trace formula

From the definition of the reflection coefficients �3.3� and the symmetries �2.38�, we can write
q. �2.44� as

�a11�z��−2 = 1 −
z2

q0
2 ��1�z��2 −

q0
2

z2 − q0
2 ��2�z��2. �3.12�

ecall that a11�z� is analytic in the upper-half z-plane, with a11�z�	1 as �z�→�, and that it has
simple� zeros at the points ��n�n=1

N1 on the circle C0 of radius q0, and �zn�n=1
N2 off the circle C0.

herefore, assuming that it does not vanish for any z�R, one can explicitly write

a11�z� = �
n=1

N1 z − �n

z − �n
* �

n=1

N2 z − zn

z − zn
* exp�−

1

2�i


−�

+� log�1 − �2��1����2/q0
2 − q0

2��2����2/��2 − q0
2��

� − z
d�� .

�3.13�

he scattering coefficients a33�z�, b11�z�, and b33�z� can obviously be obtained from a11�z� by
ymmetry �cf. Eqs. �2.38� and �2.42��. In fact, it is worth noting that all other entries in the
cattering matrix A�z�= �aij�z�� and its inverse B�z�= �bij�z�� can be reconstructed in terms of the
eflection coefficients �3.3� and of the elements of the discrete spectrum, once the symmetries
2.38� and �2.42� are taken into account. In this sense, the reflection coefficients �3.3�, together
ith the discrete eigenvalues and relative norming constants, constitute a minimal set of scattering
ata.

We also mention that from the asymptotic behavior �2.48b� of a11�z� as z→0, the following
elation between the scattering data and the asymptotic phase differences ��=�+

�j�−�−
�j� in the

otentials can be obtained:

ei�� = �
n=1

N1 �n

�n
* �

n=1

N2 zn

zn
* exp�−

1

2�i


−�

+� log�1 − �2��1����2/q0
2 − q0

2��2����2/��2 − q0
2��

�
d�� .

�3.14�

quation �3.14� is the analog of the �-condition that was obtained in Ref. 11 for the scalar NLS
quation.

V. TIME EVOLUTION

Equation �2.1b� fixes the time evolution of eigenfunctions and scattering data, as well as the
symptotic phases of the potential. Thus, asymptotically, the time dependence of the eigenfunc-
ions is given by

�v
�t

	 �2ik2 + iq0
2 − 2kq±

T

− 2kr± − 2ik2I2 − ir±q±
T �v as x → ± � . �4.1�

he eigenfunctions � j�x , t ,k� and 
 j�x , t ,k� however are defined at all times t by the asymptotic
ehavior in Eqs. �2.4� as x→ ±�. Those boundary conditions are not compatible with the time
volution prescribed by Eq. �2.1b�. To determine the time evolution of � j�x , t ,k� and 
 j�x , t ,k�,
ne can introduce modified eigenfunctions which are simultaneously solutions of the x and t part

˜ i��
�1�

t
f the Lax pair. For instance, let �1�x , t ,k�=e �1�x , t ,k�, so that
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��̃1

�t
= i��

�1��̃1 + ei��
�1�t��1

�t
. �4.2�

equiring that �̃1�x , t ,k� be a solution of the time-differential Eq. �2.1b� �and hence, asymptoti-
ally as x→−�, of Eq. �4.1� with the lower sign�, and recalling that r−

�j��t� depends on t via the
hase �−

�j��t� �cf. �2.3��, one then obtains from �2.4� and �2.5�,

�1 	 �	 + k

ir−�t�
�e−i	x,

��1

�t
	 � 0

�̇−�t�ir−�t�
�e−i	x,

��1

�x
	 − i	�	 + k

ir−�t�
�e−i	x,

here �̇±�t�=diag��̇±
�1��t� , �̇±

�2��t�� and the dot denotes differentiation with respect to time. Substi-
uting these into Eq. �4.1� and looking at each of the three components of �̃1�x , t ,k� we then
btain, respectively, from each component,

��
�1� = 2k	 + q0

2 = �̇−
�1� − q0

2 + 2k	 = �̇−
�2� − q0

2 + 2k	 .

n order for these three expressions to be compatible, it is necessary that �̇−
�1��t�= �̇−

�2��t�=2q0
2, that

s,

�−
�j��t� = �−

�j� + 2q0
2t, j = 1,2, �4.3�

hich completely fixes the time evolution of the asymptotic phases �−
�j� for the potential. In a

imilar way one can obtain the evolution of the asymptotic phases as x→ +� to show that

�±
�j��t� = �±

�j��0� + 2q0
2t, j = 1,2. �4.4�

Note that Eq. �4.4� can also be obtained directly from the asymptotics of the VNLS Eq. �1.3� as
→ ±�.� Moreover, one finds that all of the eigenfunctions � j�x , t ,k� and 
 j�x , t ,k� satisfy a
odified version of Eq. �2.1b�,

�v j

�t
= �2ik2 + iqTr − 2kqT − iqx

T

− 2kr + irx − 2ik2I2 − irqT �v j − i��
�j�v j , �4.5�

here ��=diag���
�1� ,��

�2� ,��
�3��, and

���
�1�,��

�2�,��
�3�� = �2k	 + q0

2,− 2k2 − 2q0
2,q0

2 − 2k	� .

ifferentiating the scattering equations �2.15a� with respect to t and taking into account Eq. �4.5�,
ne then obtains the time evolution of the elements of the scattering matrix A,

�aj�

�t
= i���

��� − ��
�j��aj�, j,� = 1,2,3. �4.6�

rom Eq. �4.6� it follows immediately that all the diagonal elements a���k� of the scattering matrix
re time independent. Since a11�k� and a33�k� �as well as b11�k� and b33�k�, which are related to the
revious ones by symmetries �2.31�� are constants of the motion, the eigenvalues kn, being the
eros of a11�k�, are also time independent. The same holds for the zeros of a33�k�. It is convenient
o write explicitly the time dependence of the off-diagonal scattering coefficients

a13�k,t� = e−4ik	ta13�k,0�, a31�k,t� = e4ik	ta31�k,0� , �4.7a�

2i�k2−k	+q0
2�t+iq0

2t −2i�k2−k	+q0
2�t−iq0

2t
a23�k,t� = e a23�k,0�, a32�k,t� = e a32�k,0� , �4.7b�
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a12�k,t� = e−2i�k2+k	+q0
2�t−iq0

2ta12�k,0�, a21�k,t� = e2i�k2+k	+q0
2�t+iq0

2ta21�k,0� . �4.7c�

he evolution of the coefficient bj��k , t� is the same as that of the aj��k , t�.
In a similar way one can determine the time dependence of the norming constants. Indeed,

ifferentiating �2.55a� and �2.55b� and taking into account Eq. �4.5� we get for an eigenvalue �n

kn+ i�n with ��n�=q0,

bn
�1��t� = bn

�1��0�e4kn�nt, b̄n
�1��t� = b̄n

�1��0�e4kn�nt. �4.8�

herefore, according to the definitions �3.9�

C̄n
�1��t� = C̄n

�1��0�e4kn�nt, Cn
�1��t� = Cn

�1��0�e4kn�nt, n = 1, . . . ,N1. �4.9�

imilarly, for eigenvalues zn and ẑn off the circle �cf. Fig. 3�, Eqs. �2.61� and �2.59� yield

bn
�2��t� = bn

�2��0�exp�− i�zn
2 + 4q0

2�t�, b̂n
�2��t� = b̂n

�2��0�exp�i��zn
*�2 + 4q0

2�t�, n = 1, . . . ,N2.

�4.10�

. Conserved quantities

According to Eq. �4.6�, the scattering coefficient a11�z� is time independent. Since a11�z� is
nalytic in the upper-half z-plane and a11�z�→1 as z→�, it admits an asymptotic Laurent series
xpansion whose coefficients are constants of motion. Similarly, the coefficients of the Taylor
eries expansion of a11�z� about z=0 are constant of the motion as well. Moreover, one can write
he following expansions of the modified eigenfunction M1�x ,z�:

M1
�j��x,z� = zM1,�

�j,−1��x� + M1,�
�j,0��x� +

1

z
M1,�

�j,1��x� +
1

z2 M1,�
�j,2��x� + ¯ , j = 1,2,3 �4.11�

s z→�, and

M1
�j��x,z� = M1,0

�j,0��x� + zM1,0
�j,1��x� + z2M1,0

�j,2��x� + ¯ , j = 1,2,3 �4.12�

s z→0. Substituting Eqs. �4.11� and �4.12� in Eq. �2.16�, we can then obtain two infinite sets of
onserved quantities:

Im = M1,�
�1,m��+ �� + iq+

�1�M1,�
�2,m−1��+ �� + iq+

�2�M1,�
�3,m−1��+ ��, m = 0,1,2, . . . , �4.13a�

Km = M1,0
�1,m−2��+ �� + iq+

�1�M1,0
�2,m��+ �� + iq+

�2�M1,0
�3,m��+ ��, m = 1,2, . . . , �4.13b�

here

M1,�
�j,m��+ �� = lim

x→+�
M1,�

�j,m��x�, M1,0
�j,m��+ �� = lim

x→+�
M1,0

�j,m��x�, j = 1,2,3

nd where M1,�
�2,−1��+��, M1,�

�3,−1��+�� and M1,0
�1,−1��+��, M1,0

�1,−2��+�� are all assumed to be identically
ero.

The first few coefficients of the asymptotic expansions �4.11� and �4.12� are computed in the
ppendix, by means of a WKB expansion. Taking into account �1.2� and �1.3� and �1.10�, �1.11�,
e can write explicitly the first few conserved quantities in �4.13�. From Eq. �4.13a� we have

I0 = � ��q�x,t��2 − q0
2�dx, I1 = � qT�x,t�rx�x,t�dx , �4.14a�
−� −�
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I2 = 
−�

�

�qT�x,t�rxx�x,t� − �q�x��2��q�x,t��2 − q0
2��dx , �4.14b�

r equivalently

I2 = − 
−�

�

��qx�x,t��2 + ��q�x,t��4 − q0
4��dx ,

tc. Note that I2 is the Hamiltonian of the VNLS equation �1.3�. Similarly, from Eq. �4.13b� one
btains

K1 = q+
Tr−, K2 = 

−�

�

q+
T�r�x,t�qT�x,t�r− − q0

2r−�dx , �4.15a�

nd so on and so forth. Note that assuming the asymptotic phase differences are the same in both
omponents �cf. Eq. �2.49��, Eq. �4.15a� becomes

K1 = ei��q0
2, K2 = ei��q0

2I0,

tc., which show that the asymptotic phase difference is constant, in agreement with Eq. �4.4�.
Finally, note that motion constants are also given in terms of the scattering data by the trace

ormula �3.13�. In fact, recalling that a11�z�, as well as its zeros zn ,�n �discrete eigenvalues� are
ime independent, the coefficients of the expansions of a11�z� both as z→0 and as z→� in the
pper-half-plane of z, i.e.,

Jn = 
−�

+�

�n log�1 − �2��1����2/q0
2 − q0

2��2����2/��2 − q0
2��d�, n � Z �4.16�

rovide an infinite set of conserved quantities, assuming all of these integrals are convergent.

. EXPLICIT SOLUTIONS

Let us discuss the special solutions obtained in the case where there is no continuum spec-
rum, that is, for reflectionless potentials, � j�z�= �̄ j�z��0 for j=1,2 and all z�R.

. Dark-dark soliton solutions

We first consider the case of a reflectionless potential with one single eigenvalue on the circle

0 of radius q0 �i.e., N1=1 and N2=0�, and let �1=k1+ i�1 with −q0�k1�q0 and �1=
q0
2−k1

2. In
his case the first two equations of the inverse problem �namely Eqs. �3.8a� and �3.8b�� reduce to
he closed system


3�x,z�e−i	�z�x = − � ẑ*

ir+
� + C̄1

�1�
1�x,�1
*�e−�1x

z − �1
* , �5.1a�


1�x,z�ei	�z�x = � z

ir+
� +

z

z − �1
C1

�1�
3�x,�1�e−�1x. �5.1b�

valuating Eq. �5.1a� at z=�1 and Eq. �5.1b� at z=�1
*, we get a linear system whose solution is
iven by
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3�x,�1� = − � �1
*

ir+
�e−�1x

1 +
iC̄1

�1�

2�1
e−2�1x

1 −
C1

�1�C̄1
�1�

�2�1�2 �1
*e−4�1x

, �5.2a�


1�x,�1
*� = � �1

*

ir+
�e−�1x

1 −
i�1

*C̄1
�1�

2�1
e−2�1x

1 −
C1

�1�C̄1
�1�

�2�1�2 �1
*e−4�1x

, �5.2b�

here we used the fact that ��1�2=q0
2. We write the common denominator of Eqs. �5.2� as

1 −
C1

�1�C̄1
�1�

�2�1�2 �1
*e−4�1x � �1 + �e−2�1x��1 − �e−2�1x�

ith �2�1��2=C1
�1�C̄1

�1��1
*. Then from �3.11a� it follows

C̄1
�1� = − �1

*C1
�1� �5.3�

nd therefore

iC̄1
�1�

2�1
= �


C1
�1�C̄1

�1��1
*

2�1
� � � �5.4�

o that the eigenfunctions �5.2a� and �5.2b� can be written as


1�x,�1
*� = − 
3�x,�1� = � �1

*

ir+
�e−i�1x 1

1 ± �e−2�1x . �5.5�

ecalling the definitions �3.9� and the symmetry relation �3.10�, we get

C1
�1�C̄1

�1��1
* = − b̄1

�1�b1
�1�/�a33� ��1

*��2.

urthermore, in the pure one-soliton case, one has �1
*a33� ��1

*�=�1 / ��1
*−�1� and hence the previous

elation becomes C1
�1�C̄1

�1��1
*= �2�1�2b̄1

�1�b1
�1���1

* /�1�2 so that �2= b̄1
�1�b1

�1���1
* /�1�2. Finally, using the

ymmetry �2.66� we have

�2 = �b1
�1��2,

hat is �= �b1
�1�� assuming without loss of generality that ��0. Then, from Eq. �5.4� it follows that

¯
1
�1�= ± i�2�1�� that is, C̄1

�1� is purely imaginary. In the following, in order to exclude singular

olutions from the IST procedure, we assume the imaginary part of C̄1
�1� is positive, i.e., corre-

ponding to the upper sign. Then from �5.1a� we obtain


3�x,z�e−i	�z�x = − � ẑ*

ir+
� +

2i�1�

z − �1
*� �1

*

ir+
� e−2�1x

1 + �e−2�1x . �5.6�
ccording to �2.46b�, from the last two components of �5.6� in the limit z→0 it follows
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r�x� = r+�1 +
2i�1�

�1
*

e−2�1x

1 + �e−2�1x� . �5.7�

aking into account the time dependence of the norming constant as given in Eq. �4.9� and then
aking the complex conjugate to get q�x , t� one obtains a solution of the VNLS equation

q�x,t� = q+�0�e2iq0
2t�1 + �e2i� − 1�

e2q0 �sin ���x−2q0 �cos ��t−x0�

1 + e2q0 �sin ���x−2q0 �cos ��t−x0�� , �5.8a�

�1 = k1 + i�1 = q0e−i�, e2�1x0 = ��0� � �b1
�1��0�� �5.8b�

hich is of the same type as Eq. �1.2� in both components, multiplied by the constant polarization
i.e., unit magnitude� vector p+=q+�0� /q0. Let us also mention that from Eq. �5.7� it follows that
�x�→r+ as x→ +�. Also, as x→−� one has

r�x� 	 �1 +
2i�1

�1
* �r+ =

�1

�1
*r+

herefore the asymptotic behavior satisfies the analog of the �-condition for the scalar NLS
quation �cf. Ref. 11�, that is,

r−
�j�

r+
�j� =

�1

�1
* , j = 1,2 �5.9�

n agreement with Eq. �3.14� with � j =0, N1=1 and N2=0. Note that the right-hand side of Eq.
5.9� is independent of j, which is consistent with the assumption that the asymptotic phase
ifference is the same in both components.

. Dark-bright soliton solutions

We now consider one quarter of eigenvalues off the circle C0 of radius q0 �cf. Fig. 3� and no
ontinuous spectrum �i.e., N1=0 and N2=1�. The system of equation �3.8� for the inverse problem
hen reduces to


3�x,z�e−i	�z�x = − � ẑ*

ir+
� +

C1
�2�

ẑ1
*

�̄�x, ẑ1
*�e−i	�ẑ1

*�x

z − ẑ1
* , �5.10a�


1�x,z�ei	�z�x = � z

ir+
� +

z

z − z1
C1

�2��̄�x, ẑ1
*�ei	�z1�x, �5.10b�

�̄�x,z�e−ik�z�x

2	�z�b11�z�
= � 0

iq+
� � − C̄1

�2� z

�z − ẑ1��z − z1
*�

1�x,z1

*�e−ik�z1
*�x, �5.10c�

here C̄1
�2� and C1

�2� are given by Eqs. �3.9�. To obtain a closed system, we evaluate the second
quation at point z=z1

* and the third equation at z= ẑ1
*, which gives a system of two equations for

wo unknowns, 
1�x ,z1
*� and �̄�x , ẑ1

*�. Then, back-substituting, we obtain the expression of all the
z-dependent� eigenfunctions. Indeed, from Eqs. �5.10b� and �5.10c� one obtains

�̄�x, ẑ1
*� =

eik�ẑ1
*�x

1 + �1�1e−2�1x��1� 0

iq+
� � − �1� z1

*

ir+
�e−i�k�z1

*�+	�z1
*��x� ,
here
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�1 = 2	�ẑ1
*�b11�ẑ1

*�, �1 = �1C̄1
�2� ẑ1

*

�ẑ1
* − ẑ1��ẑ1

* − z1
*�

, �1 = C1
�2� z1

*

z1
* − z1

�5.11�

nd, substituting into Eq. �5.10b�,


1�x,z�ei	�z�x = � z

ir+
� +

z

z − z1
C1

�2� eiz1x

1 + �1�1e−2�1x��1� 0

iq+
� � − �1� z1

*

ir+
�e−iz1

*x� .

o find a dark-bright soliton solution, we take r+
�1�=0 �and consequently q+

�1�=0� with r+
�2�

�q+
�2��*�0, and we look at the second and third components of 
1�x , t�ei	x, which, according to

2.46d�, in the limit z→� reconstruct the potential r�x�. Explicitly, we get

r�1��x� = �1q+
�2�C1

�2�eik1x e−�1x

1 + �1�1e−2�1x , �5.12a�

r�2��x� = r+
�2��1 − C1

�2��1
e−2�1x

1 + �1�1e−2�1x� . �5.12b�

n the pure one-soliton case, using the analyticity properties we can write explicitly the scattering
oefficients b11�z� and a11�z� and their derivatives. Recalling that a11�z� is analytic in the upper-
alf-plane, that it goes to 1 as z→�, and assuming that it has a single, simple zero at z=z1 �cf. Eq.
2.53��, we get

a11�z� =
z − z1

z − z1
* , a11� �z1� =

1

z1 − z1
* .

hus, recalling that b11�z�=a11
* �z*� and substituting into Eq. �5.11�, we obtain

�1 =
q0

2 − �z1�2

z1
, �1 = C̄1

�2� z1
*

z1
* − z1

, �1 = C1
�2� z1

*

z1
* − z1

. �5.13�

ote that �1 vanishes if �z1�=q0 so that for zeros on the circle C0 the bright component becomes
rivial. Note also that from Eq. �3.11b� it follows that

�1�1 �
q0

2

4�1
2 �q0

2 − �z1�2��C1
�2��2

hich is real and positive for any eigenvalue z1 inside the circle C0 of radius q0. Note that having
z1��q0 �i.e., an eigenvalue outside C0� would produce a singular potential.

Inserting the time dependence �4.10� into the expressions for the potential �5.12�, we finally
btain the dark-bright soliton solution of the VNLS equation �1.3�,

r�1��x,t� = �1�q0
2/�z1�2 − 1�1/2ei�1−2iq0

2t+ik1x−i�k1
2−�1

2�t sech��1�x − 2k1t� + x0� , �5.14a�

r�2��x,t� = q0ei�2−2iq0
2t�1 +

2i�1

z1
*

exp�− 2�1x + 4k1�1t + 2x0�
1 + exp�− 2�1x + 4k1�1t + 2x0�� , �5.14b�

here

e2x0 =
q0

2

4�1
2 �q0

2 − �z1�2��C1
�2��0��2, �1 = arg C1

�2��0� + �+
�2��0�, �2 = − �+

�2��0� . �5.15�

s usual, the solution q�x , t� of Eq. �1.3� is obtained taking the complex conjugate of Eq. �5.14�.

he dark-bright solution �5.14� can be written in the more compact form
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q�1��x,t� = − �1 sin �
q0
2 − �z1�2 sech��1�x − 2k1t� + x0�e−ik1x+i�2q0

2+�k1
2−�1

2��t−i�1, �5.16a�

q�2��x,t� = q0�cos � + i sin � tanh��1�x − 2k1t� + x0��e2iq0
2t−i�2, �5.16b�

here

k1 = �z1�cos �, �1 = − �z1�sin � . �5.17�

gain, note that the condition k1
2+�1

2��z1�2�q0
2 �i.e., the requirement that the discrete eigenvalue

1 is inside the circle C0 of radius q0� is necessary and sufficient to ensure the regularity of the
olution at all times.

Equation �5.16� describes a two-component solution in which the second component
�2��x , t� represents a dark soliton similar to that in Eq. �1.2� �but with a different relation between
mplitude and velocity�, while the first component q�1��x , t� describes a bright soliton similar to
hat of the scalar focusing NLS �but with a different relation between amplitude and phase�. The
wo components travel together at the same speed 2k1. Note that the amplitude of the bright soliton
omponent and that of the intensity dip in the dark soliton component are related by the condition

1
2+�1

2�q0
2, and the amplitude of the bright component goes to zero as the eigenvalue approaches

he circle �i.e., in the limit �z1�→q0�. With proper identification of the parameters, Eqs. �5.16� also
oincide with the dark-bright soliton solution given in Ref. 19 in the case of x-independent
symptotic boundaries and with x0=0.

I. SMALL AMPLITUDE LIMIT

It is useful to consider the limit in which the solution q�x , t� of Eq. �1.3� is a small perturba-
ion of the background field.

. Linearization

Recall that q�x , t�→q±�t�=ei�±�t�q0 as x→ ±�, with �±�t�=diag��±
�1� ,�±

�2��, and �±
�j��t�

=�±
�j��0�+2iq0

2t, and with q0= �q0� as usual. We then consider the “normalized” vector NLS equa-
ion

iq̃t = q̃xx + 2�q0
2 − �q̃�2�q̃ , �6.1�

or the rescaled field q̃�x , t�=q�x , t�e−2iq0
2t, and we define

q̃�x,t� = ei�+�0��q0 + u�x,t�� , �6.2�

ith �u�x , t�� q0, so that u�x , t� represents a small perturbation of the background field q+�t�.
nserting Eq. �6.2� into the rescaled VNLS equation �6.1� and neglecting higher powers of u we
hen obtain a linearization of the VNLS equation around the background solution,

iut = uxx − 2q0q0
T�u + u * � . �6.3�

e now look for solutions of Eq. �6.3� employing standard Fourier transforms, where for conve-
ience we write the transform pair as follows:

u�x,t� =
1

2�


−�

�

û�k,t�e2ikx dk, û�k,t� = 2
−�

�

u�x,t�e−2ikx dx . �6.4�

nserting the first of Eqs. �6.4� into Eq. �6.3� with �6.2�, one finds a system of four first-
rder differential equations in time for the functions û�k , t���û1�k , t� , û2�k , t�� and û*�−k , t�T

ˆ* ˆ* T
�u1�−k , t� ,u2�−k , t�� , which can then be solved to obtain
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û�k,t� = A1�k�e4ik2tq0
� + �k − 
k2 + q0

2�A2�k�e−4ik
k2+q0
2tq0 + �k + 
k2 + q0

2�A3�k�e4ik
k2+q0
2tq0,

�6.5�

here q0
�= �q0

�2� ,−q0
�1��T�R2. The functions A1�k� ,A2�k� ,A3�k� satisfy the symmetry conditions

A2
*�− k� = − A2�k�, A3

*�− k� = − A3�k� , �6.6�

nd can be written in terms of the Cauchy data as follows:

A1�k� =
û0

T�k�q0
�

q0
2 , �6.7a�

A2�k� =
1

4kq0
2
k2 + q0

2
��− k + 
k2 + q0

2�q0
Tû0�k� + �k + 
k2 + q0

2�q0
Tû0

*�− k�� , �6.7b�

A3�k� =
1

4kq0
2
k2 + q0

2
��− k + 
k2 + q0

2�q0
Tû0

*�− k� + �k + 
k2 + q0
2�q0

Tû0�k�� , �6.7c�

here û0�k�= û�k ,0�. Together, Eqs. �6.5� and �6.7� yield the solution of the linearized VNLS Eq.
6.3� in terms of given Cauchy data, which in turn provides an approximation of the solution
�x , t� of the VNLS equation �1.3� in the small amplitude limit.

. Small amplitude limit from the inverse problem

If we consider the equations of the inverse problem �3.8a�, �3.8b�, and �3.8c� with no solitons,
n the small amplitude limit we can approximate each term on the left-hand side with a series in
owers of � j�z , t�. Keeping only linear terms in � j�z , t�, according to Eq. �2.46b�, the expansion as
→0 of the last two components of 
3�x ,z�e−i	�z�x yields

q�x,t� = q+�t��1 +
1

2�i


−�

� d�

�
�1

*��,t�e2i	���x� − r+
��t�

1

2�i


−�

� d�

�
�2

*��̂*,t�e−i�k���−	����x �6.8�

with �̂=q0
2 /�* as usual�. In order to compare with the Fourier transform solutions obtained in the

receding sections, we recall that q±�t�=ei�±�t�q0 and r±�t�=exp�−i�±�t�� q0, and we consider

gain the normalization q̃�x , t�=q�x , t�e−2iq0
2t. Then, taking into account the time dependence of the

cattering coefficients �cf. Eqs. �4.7��, from Eqs. �6.8� we get

q̃�x,t� = q+�1 +
1

2�i


−�

� d�

�
�1

*��,0�e2i	���x−4ik���	���t� − r+
� 1

2�i


−�

� d�

�
�2

*��̂*,0�e−i�q0
2/��x+i�q0

2/��2t,

�6.9�

here now q+�q+�0� and r+�r+�0�. In order to compare with the results in the preceding
ection, we then perform appropriate changes of variables. Consider the term in square brackets in
q. �6.9�. First, we revert from � to the original coordinates k ,	�k�, so that k runs over the contour
given by the branch cuts in Fig. 1 and defined in Sec. II A. Then we introduce the variable

! = 
k2 − q0
2,
o that ! d!=k dk, obtaining
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−�

� d�

�
�1

*��,0�e2i	���xe−4ik���	���t = 
L

dk

	�k�
�1

*�k,	�k�,0�e2i	�k�xe−4ik	�k�t

= 
−�

� d!


!2 + q0
2
e2i!x��1

*�
!2 + q0
2,!,0�e−4i!
!2+q0

2t

− �1
*�− 
!2 + q0

2,!,0�e4i!
!2+q0
2t� . �6.10�

n the other hand, the second term in Eq. �6.9� can be written as an ordinary Fourier transform by
imply performing the change of variable 2!=−q0

2 /�. By comparison, one can then show that Eq.
6.9�, obtained solving the inverse problem in the limit of small amplitude, indeed coincides with
he solution obtained via linearization, i.e., Eq. �6.2� with u�x , t� given by Eq. �6.4� and û�k , t� by
q. �6.5�. More precisely, one has

A1�!� = −
1

2k
e−i��+

�1�+�+
�2���2

*�− 2!,	�− 2!�,0� , �6.11a�

A2�!� =
i


!2 + q0
2�
!2 + q0

2 − !�
�1

*�
!2 + q0
2,!,0� , �6.11b�

A3�!� =
i


!2 + q0
2�
!2 + q0

2 + !�
�1

*�− 
!2 + q0
2,!,0� . �6.11c�

hen, as a consequence of the symmetry conditions �6.6�, it follows that

�1�
!2 + q0
2,− !,0� =


!2 + q0
2 + !


!2 + q0
2 − !

�1
*�
!2 + q0

2,!,0� ,

hat is, in terms of the uniformization variable z,

�1�ẑ*� =
z2

q0
2�1

*�z�, z � R . �6.12�

ote that Eq. �6.12� arises from the scattering data relations as well. Indeed, from the definitions
3.3� and symmetry �2.38� it follows

�1
*�z� =

b31
* �z�

b11
* �z�

= �1�z�
a13�z�
a11�z�

�3
−1�z� � −

q0
2

z2

a13�z�
a11�z�

�6.13a�

nd the analog of symmetries �2.42� for the coefficients bij�z� yields

�1�z� =
b31�z�
b11�z�

=
b13�ẑ*�
b33�ẑ*�

. �6.13b�

ecalling that B�z�= �bij�z�� is the inverse matrix of A�z�= �aij�z��, one can write

b13�z� = a12�z�a23�z� − a13�z�a22�z�, b33�z� = a11�z�a22�z� − a12�z�a21�z� . �6.14�

hen, since in the small amplitude limit terms aij�z� with i� j are o�1� while ajj�z�=O�1�, one has

�1�z� =
b13�ẑ*�
b33�ẑ*�

	 −
a13�ẑ*�a22�ẑ*�
a11�ẑ*�a22�ẑ*�

,

nd consequently Eq. �6.12� follows from Eq. �6.13�.
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II. CONCLUSION

We have presented the inverse scattering transform �IST� for the defocusing VNLS equation
1.3� with nonvanishing boundary conditions as �x�→�. The direct problem is constructed in
erms of scattering eigenfunctions and adjoint eigenfunctions. The six scattering eigenfunctions
rovide four analytic functions, and the adjoint problem is used to construct two additional ana-
ytic functions. A global uniformizing parameter, z, is introduced in order to simplify and elucidate
he analysis. The discrete eigenvalues are studied and it is found that one can have pairs of
igenvalues on a circle and/or quartets of eigenvalues symmetrically located inside and outside the
ircle. The inverse problem is formulated as a generalized Riemann-Hilbert �RH� problem for
eromorphic functions in the complex plane of the uniformizing parameter z. The RH problem is

ransformed into a closed linear system of algebraic-integral equations. The trace formula, con-
ervation laws, and explicit solutions �dark-dark and dark-bright solitons� are obtained. The solu-
ion in the small amplitude limit is studied by direct Fourier transform methods and it is shown to
gree with the linearized reduction of the inverse problem.
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PPENDIX: WKB EXPANSION OF THE EIGENFUNCTIONS

Consider the following ansatz for the expansion of the eigenfunction M1�x ,z� as z→�:

M1
�1��x,z� = zM1,�

�1,−1��x� + M1,�
�1,0��x� + z−1M1,�

�1,1��x� + z−2M1,�
�1,2��x� + ¯ , �A1a�

M1
�2��x,z� = M1,�

�2,0��x� + z−1M1,�
�2,1��x� + z−2M1,�

�2,2��x� + ¯ , �A1b�

M1
�3��x,z� = M1,�

�3,0��x� + z−1M1,�
�3,1��x� + z−2M1,�

�3,2��x� + ¯ . �A1c�

ubstituting these expressions into the scattering problem �2.1� with k= �z+q0
2 /z� /2 and matching

he terms with the same order in z−n for n=−1,0 ,1 ,2 , . . . yields M1,�
�1,−1��x�=const, and the integral

quation �2.8a� allows one to fix this constant value to

M1,�
�1,−1��x� = 1. �A2a�

roceeding further gives

M1,�
�2,0��x� = ir�1��x�, M1,�

�3,0��x� = ir�2��x�, �xM1,�
�1,0��x� = i��q�x��2 − q0

2� , �A2b�

hat is,

M1,�
�1,0��x� = i

−�

x

��q�x���2 − q0
2�dx�. �A2c�

imilarly, at higher orders one has

M1,�
�j,m+1��x� = ir�j−1��x�M1,�

�1,m��x� − i�xM1,�
�j,m��x�, m = 0,1,2, . . . �A3a�

or j=2,3, as well as

�xM1,�
�1,m��x� = − iq0

2M1,�
�1,m−1��x� + q�1��x�M1,�

�2,m��x� + q�2��x�M1,�
�3,m��x�, m = 1,2, . . . �A3b�

hich allow one to calculate iteratively all coefficients of the asymptotic expansion, with the
ecurrence relations in Eqs. �A3� anchored by Eqs. �A2�. For instance, from Eq. �A3a� with m

0 we obtain
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M1,�
�1,1��x� = I1�x� − 1

2 �I0�x��2, �A4a�

M1,�
�2,1��x� = rx

�1��x� − r�1��x�I0�x�, M1,�
�3,1��x� = rx

�2��x� − r�2��x�I0�x� , �A4b�

here

I0�x� = 
−�

x

��q�x���2 − q0
2�dx�, I1�x� = 

−�

x

qT�x��rx��x��dx�. �A4c�

urthermore, from Eq. �A3a� with m=1 it follows that

M1,�
�2,2��x� = ir�1��x��I1�x� − 1

2 �I0�x��2� − irxx
�1��x� + i�r�1��x�I0�x��x, �A5�

M1,�
�3,2��x� = ir�2��x��I1�x� − 1

2 �I0�x��2� − irxx
�2��x� + i�r�2��x�I0�x��x �A6�

hich can be substituted into Eq. �A3b� for m=2 to get

M1,�
�1,2��x� = iI0�x�I1�x� −

i

6
�I0�x��3 − iI2�x� , �A7�

here

I2�x� = 
−�

x

�qT�x���x�
2 r�x�� − �q�x���2��q�x���2 − q0

2��dx� �A8�

nd so on and so forth.
Similarly, one can write a Taylor series expansion of the eigenfunction M1�x ,z� as z→0 in the

orm

M1
�1��x,z� = zM1,0

�1,1��x� + z2M1,0
�1,2��x� + z3M1,0

�1,3��x� + ¯ , �A9a�

M1
�2��x,z� = M1,0

�2,0��x� + zM1,0
�2,1��x� + z2M1,0

�2,2��x� + ¯ , �A9b�

M1
�3��x,z� = M1,0

�3,0��x� + zM1,0
�3,1��x� + z2M1,0

�3,2��x� + ¯ . �A9c�

ubstituting this into Eq. �2.1� and matching terms with the same powers of zn yields M1,0
�2,0��x�

const and M1,0
�3,0��x�=const. As before, the value of such constants is fixed by the integral equa-

ion �2.8a� to give

M1,0
�2,0��x� = ir−

�1�, M1,0
�3,0��x� = ir−

�3�. �A10a�

n turn, these allow one to get

q0
2M1,0

�1,1��x� = qT�x�r−. �A10b�

roceeding to higher orders, one obtains the recurrence relations

�xM1,0
�j,m��x� = iM1,0

�j,m−1��x� + r�j−1��x�M1,0
�1,m��x�, m = 1,2, . . . �A11a�

or j=2,3, as well as

q0
2M1,0

�1,m+1��x� = i�xM1,0
�1,m��x� − iq�1��x�M1,0

�2,m��x� − iq�2��x�M1,0
�3,m��x�, m = 0,1, . . . .

�A11b�
or instance, the first terms are
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q0
2M1,0

�2,1��x� = 
−�

x

�r�1��x��qT�x��r− − q0
2r−

�1��dx�,

q0
2M1,0

�3,1��x� = 
−�

x

�r�2��x��qT�x��r− − q0
2r−

�2��dx�,

hich in turn give

q0
4M1,0

�1,2��x� = ir−
Tqx�x� − iqT�x�

−�

x

�r�x��qT�x��r− − q0
2r−�dx�

nd so on and so forth.
In a similar way one can obtain the asymptotic expansions for the remaining analytic eigen-

unctions and adjoint eigenfunctions.
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