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Summary. The behavior of solutions of the finite-genus Whitham equations for the
weak dispersion limit of the defocusing nonlinear Schrödinger equation is investigated
analytically and numerically for piecewise-constant initial data. In particular, the dy-
namics of constant-amplitude initial conditions with one or more frequency jumps (i.e.,
piecewise linear phase) are considered. It is shown analytically and numerically that,
for finite times, regions of arbitrarily high genus can be produced; asymptotically with
time, however, the solution can be divided into expanding regions which are either of
genus-zero, genus-one, or genus-two type, their precise arrangement depending on the
specifics of the initial datum given. This behavior should be compared to that of the
Korteweg-de Vries equation, where the solution is divided into regions which are either
genus-zero or genus-one asymptotically. Finally, the potential application of these re-
sults to the generation of short optical pulses is discussed: The method proposed takes
advantage of nonlinear compression via appropriate frequency modulation, and allows
control of both the pulse amplitude and its width, as well as the distance along the fiber
at which the pulse is produced.
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The weak dispersion limit of the defocusing nonlinear Schrödinger (NLS) equation has
been extensively studied in recent years (see, e.g., [15], [24], [29], [31], [33]), and in some
sense it is well-characterized mathematically. Not as much is known, however, about the
detailed behavior of the solutions for specific choices of initial datum [11], [12], [16],
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[27]. The purpose of this work is to present analytical and numerical results regarding the
behavior of a special class of solutions of the NLS equation in the weak dispersion limit.
More precisely, we consider the initial value problem for the NLS equation in the weak
dispersion limit with the initial data having a constant-amplitude and piecewise-constant
frequency. We believe that, on the one hand, this behavior is interesting mathematically,
and, on the other hand, it could have potential applications in the generation of intense,
ultra-short optical pulses. As such, it is worthy of further study.

The structure of this document is as follows: In Section 1 we introduce the problem,
and in Section 2 we review some well-known results regarding the weak dispersion limit
of the NLS equation. In Section 3 we discuss the behavior of solutions corresponding to
“single-jump” initial conditions, which are the starting point for our investigation. Then,
in Sections 4 and 5 we present the analytical calculations which are the main results
of this work. In Section 6 we demonstrate these results through numerical simulations
of the NLS equation and obtain further information about the solution behavior, and in
Section 7 we discuss the application of our results to the generation of intense, ultra-short
optical pulses. Appendix A.1 describes our nondimensionalizations and our choice of
units, Appendices A.2 and A.3 review some known results regarding genus-one (i.e.,
periodic) solutions of the NLS equation, the Whitham averaging method, and the NLS-
Whitham equations, and Appendix A.4 gives the details of some calculations whose
results are presented in Sections 3 and 4.

1. The NLS Equation with Small Dispersion

In this section we recall some basic results regarding the behavior of solutions of the
nonlinear Schrödinger (NLS) equation with small dispersion. This will establish the
background and the notation necessary to extend these results in the following sections.

The semiclassical limit of the NLS equation. We start from the defocusing NLS equa-
tion (that is, the NLS in the normal dispersion regime in optical fibers) in dimensionless
form:

iε
∂q

∂t
− 1

2
ε2 ∂

2q

∂x2
+ |q|2q = 0, (1.1)

where we assume 0 < ε � 1. In the context of optical fibers, t represents the dimension-
less propagation distance and x is the dimensionless retarded time (cf. Appendix A.1).
To study the weak dispersion limit of the NLS eq. (1.1), we first express the field q(x, t)
in a WKB form as

q(x, t) =
√
ρ(x, t) exp[i ϕ(x, t)/ε], (1.2)

where ρ(x, t) = |q(x, t)|2 and ϕ(x, t) = ε arg q(x, t) = (iε/2) ln[q∗(x, t)/q(x, t)]
represent respectively the local intensity and the normalized local phase of q(x, t). We
then introduce the normalized phase gradient

u(x, t) = ∂ϕ(x, t)/∂x, (1.3)

that is, u(x, t) = (iε/2) (q∗x (x, t)q(x, t) − q∗(x, t)qx (x, t))/|q(x, t)|2. Throughout this
work we refer to x and t as the space and time variables, respectively. By analogy with
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the fiber optics context, however, we will refer to u(x, t) as the local frequency of the
solution. With this decomposition, the NLS eq. (1.1) can be written in the form of a
conservation law:

∂ρ

∂t
= ∂ (ρu)

∂x
, (1.4a)

∂ (ρu)

∂t
= ∂

∂x

(
ρu2 + 1

2
ρ2 − 1

4
ε2ρ

∂2

∂x2
ln ρ

)
. (1.4b)

The weak dispersion limit of the defocusing NLS equation is defined as the problem of
studying the solutions of (1.1) as ε → 0+ with initial condition expressed in terms of
(1.2). The limit is singular, and it should be considered in the weak sense.

There are two main situations where the weak dispersion limit of the NLS equation is
relevant: nonlinear fiber optics and Bose-Einstein condensation (BEC). In the context of
nonlinear fiber optics, the weak dispersion limit is relevant for the long-distance trans-
mission of non-return-to-zero (NRZ) pulses, as discussed in [27], or for the generation
of intense short optical pulses, as proposed in this work. In the context of BEC, the
semiclassical limit applies due to the very small value of Planck’s constant h̄ relative to
quantities associated with macroscopic objects, i.e., h̄ = ε. Normalizations appropriate
for long-distance optical fiber communications were discussed in [16], whereas in Ap-
pendix A.1, we discuss scalings and nondimensionalizations relevant for the generation
of intense short optical pulses. We emphasize, however, that the results presented in
this work apply equally well to Bose-Einstein condensates and to other physical con-
texts where the NLS equation is relevant, such as for example ferromagnetics and water
waves.

Hydrodynamic analogy and dam-breaking problem. If both ρ and u are smooth and
ρ > 0, and if ε � 1, (1.4) are approximated to leading order by the following reduced
hydrodynamical system [28], [36]:

∂

∂t

(
ρ

u

)
=
(

u ρ

1 u

)
∂

∂x

(
ρ

u

)
. (1.5)

Equation (1.5) is called the dispersionless NLS equaton, and is used to describe a surface
wave motion in shallow water. In the hydrodynamical setting, ρ and −u represent re-
spectively the depth and velocity of water, and x and t are dimensionless space and time.
For ρ > 0, the eigenvalues u±√ρ of the coefficient matrix are real, and the system (1.5)
is strictly hyperbolic. This system, which is known as the shallow water wave equation
and has been intensively studied (see e.g. [36]), can be rewritten in Riemann invariant
(i.e., diagonal) form as

∂rk

∂t
= sk

∂rk

∂x
, k = 1, 2, (1.6)

where the Riemann invariants r1,2(x, t) are given by

r1 = u − 2
√
ρ, r2 = u + 2

√
ρ, (1.7)

and the characteristic speeds s1,2(x, t) are

s1 = 1

4
(3r1 + r2) = u −√ρ, s2 = 1

4
(r1 + 3r2) = u +√ρ.
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Note that sk > 0 implies a left-moving wave (i.e., dx /dt = −sk), and that (1.7) are
equivalent to

ρ = 1

16
(r2 − r1)

2, u = 1

2
(r1 + r2). (1.8)

Since the system of PDEs described by (1.6) is strictly hyperbolic, it is possible to
show that, for “rarefaction” initial data, namely, when r1,2(x, 0) are both monotonically
decreasing functions of x , a global solution exists for all t > 0. In many cases of interest,
however, the initial data do not satisfy this property and as a consequence they develop
a shock, as we shall see in the following.

Square-wave initial conditions. Consider first the initial datum given by the following
rectangular pulse of width 2L:

ρ(x, 0) =
{

q2
0 |x | < L

0 |x | > L ,
(1.9a)

u(x, 0) = 0, (1.9b)

with q0 > 0, corresponding in the optics framework to an NRZ pulse. The system
of equations (1.5) with initial conditions (1.9) is known in the literature as the “dam-
breaking” problem. (In the hydrodynamic analogy, the problem describes the behavior
of a mass of water which is initially confined in a uniform, spatially localized state by
two dams located at x = ±L and both of which are removed at t = 0.) The Riemann
invariants for this situation are shown as the dashed lines in Figure 2. Note that the initial
data for the Riemann invariants r1, r2 corresponding to the initial condition (1.9a) is not
of rarefaction type. It is possible, however, to obtain initial data of rarefaction type by
properly redefining the initial value of the invariants r1 and r2 for |x | > L , as shown in
Figure 2 later. (This procedure is a special case of the process known as regularization;
see next section.) Then the system has the following solution up to the time t0 = L/q0:
For 0 < x < L + 2q0 t , it is

ρ(x, t) = min

{
q2

0 ,
1

9
[2q0 − (x − L)/t]2

}
, (1.10a)

u(x, t) = min

{
0,−2

3
[q0 + (x − L)/t]

}
, (1.10b)

while for x > L + 2q0 t , ρ(x, t) = u(x, t) = 0, with ρ(−x, t) = ρ(x, t) and
u(−x, t) = −u(x, t) (cf. [27]). The full solution of the NLS equation (1.1) with ini-
tial condition (1.9a), as obtained from numerical simulations (described in Section 6)
is depicted in Figure 1a. (This kind of solution is usually called a fan in the context of
hydrodynamics.) The speeds of the boundaries of the top (ρ(x, t) = q2

0 ) and bottom
(ρ(x, t) = 0) regions are easily obtained from (1.10) (see also Figure 2b later); these
two speeds are respectively s−2 = q0 and s+2 = −2q0.

Equations (1.10) cease to be valid beyond the time t0 = L/q0 when the boundaries
of the top region meet at x = 0 (i.e., the time at which the left-moving characteristic
emanating from x = L meets with the right-moving characteristic from x = −L). An
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Fig. 1. Deformation of an NRZ pulse (i.e., the “dam-breaking” problem) defined by the initial
conditions in (1.9a), with q0 = 1, L = 20, and ε2 = 0.1: (a) t ′ = 10; (b) t ′ = 40, where t ′ = t /ε.
The critical time here is t0 = L/q0 = 20; hence (a) and (b) show the solution respectively before
and after the time t0. The dotted lines show the initial condition, while the solid lines show the
result of numerical simulations of the NLS equation (1.1), which are performed in terms of the
fast time scale t ′, as discussed in Section 6.

analytical expression for q(x, t) when t > L/q0, however, can be obtained using the
dispersionless limit of the scattering transform for the NLS equation [33]. The corre-
sponding behavior of the full solution of the NLS equation is shown in Figure 1b. The
appearance of small oscillations in the numerical solution in Figure 1 was discussed in
[16], and is the consequence of approximating the discontinuous initial data (1.9a) with
a continuous initial datum in the numerical simulations (as described in Section 6). It
should also be noted that some care must be taken regarding the regularization of the
discontinuous initial datum (1.9a) for (1.5), since a weak solution with a discontinuity
is not unique. In fact, one can construct a different solution of (1.4) with a discontinuity.
In our case, however, the regularization described in Section 2 enforces the continuity
of ρ(x, t), thus removing the ambiguity and producing a unique solution.

Frequency jumps and high-frequency oscillations. In terms of optical pulses, the above
results imply that the initial condition in (1.9a) rapidly spreads out, as shown in Figure 1.
This behavior can be partly prevented (or, alternatively, reinforced) by employing initial
conditions with nontrivial phase. For example, consider the following:

u(x, 0) =
{−u0 x < 0,

u0 x > 0,
(1.9b′)

with ρ(x, 0) still given by (1.9a). Hereafter, we will use r0
1 (x) and r0

2 (x) to refer to the
value of the Riemann invariants (1.7) at t = 0. If ρ(x, 0) is given by (1.9a) and u(x, 0)
by (1.9b′), for |x | < L we have

r0
1 (x) =

{−u0 − 2q0 x < 0,

u0 − 2q0 x > 0,
(1.11a)
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r0
2 (x) =

{
−u0 + 2q0 x < 0,

u0 + 2q0 x > 0,
(1.11b)

as shown by dashed lines in Figure 4. Note that the value of the invariants can be redefined
for |x | > L , since ρ(x, 0) = 0 there.

In terms of optical pulses, (1.9b′) amounts to imposing a frequency jump at the center
of the pulse (x = 0). If u0 > 0, the right half of the pulse acquires a positive frequency and
the left half a negative frequency. Thus, owing to the normal dispersion, the two halves
of the pulse will tend to move towards each other [28]. In terms of the hydrodynamical
problem, this corresponds to assigning an inward initial velocity to the mass of water, as
if two pistons were acting on each side of it. (For this reason, this case is often referred to
as the “piston” problem.) Note that if u0 > 0, the initial data r0

1,2(x) are increasing. Thus,
another consequence of the initial frequency jump is that if u0 > 0, a shock develops
at x = 0, and the solution develops high-frequency oscillations, as shown in Figure 3.
(This type of shock is called collisionless, or dispersive, to distinguish it from the usual
type of shock, which is dissipative; e.g., see [36].) The characteristic frequency of these
oscillations is O(1/ε) (i.e., one period of the oscillation shown in Figure 3 is of order
ε). If u0 < 0 instead, the two halves of the pulse will move away from each other, and
no shocks develop in this case. (In hydrodynamics, solutions such as this one are called
of rarefaction type.) When the solution develops a shock, the hyperbolic system (1.5)
ceases to be valid, and the solution of the NLS equation in the weak dispersion limit
must be obtained by properly regularizing the hyperbolic system, as we briefly discuss
next.

2. Regularization and the NLS-Whitham equations

The semiclassical limit of the NLS equation has been studied extensively in the last fifteen
years; e.g., see [15], [24], [25], [26], [27], [29], [31], [33] for different approaches, such
as the connection with the integrable character and the multi-phase solutions of the NLS
equation and with Whitham’s averaging method. A self-contained description of the
regularization process can be found in [27], together with a detailed treatment of the
situation in which the initial condition contains only one frequency jump. Here we will
limit ourselves to presenting a brief general overview and recalling some results that are
relevant for the remainder of this work. Some additional details (which are necessary to
perform the calculations described in Sections 3 and 4) are contained in Appendices A.2
and A.3.

As we will see throughout this work, for certain kinds of initial conditions the solution
of the NLS equation (1.1) with small dispersion develops high-frequency oscillations.
When this happens, the approximate hyperbolic system (1.5) is inadequate to describe
the dynamics of the solution, because strong dispersive effects appear due to the presence
of high-frequency oscillations. An effective way to describe the behavior of the solu-
tion of the NLS equation in these situations is obtained by taking an average over these
high-frequency oscillations via the Whitham technique, which consists in locally approx-
imating the solution by finite-genus solutions of the NLS equation, then describing the
global behavior as a slow modulation of this local periodic or quasi-periodic structure.
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The evolution of these modulations is then governed by the Whitham equations, which
are obtained by averaging the conservation laws of the NLS equation over one period of
the fast oscillations, and which express the local average of the quasi-periodic solutions
with respect to these fast oscillations (cf. [14], [35], [36] for the Korteweg–de Vries
equation).

Recall that the hyperbolic system (1.6) is a dispersionless limit of the NLS equation.
The presence of high-frequency oscillations in the solution of the NLS equation corre-
sponds to the formation of a shock singularity in (1.6) generating strong dispersion, and
the Whitham averaging technique then provides an appropriate dispersive regularization
of this singularity. This regularization turns out to consist of enlarging the system (1.6)
to include more than two Riemann invariants (as given by (2.3) below) in such a way
that the initial data for the enlarged system becomes of rarefaction type, which in turn
implies that the system possesses a global solution for all values of time. The solution
of the original problem is then described in terms of the solution of an NLS-Whitham
equation of finite genus. The dispersionless equation (1.6) corresponds to the genus-zero
NLS-Whitham equation. The value of the genus is determined by the specifics of the
initial condition considered, since these determine the number of Riemann invariants
that are needed to regularize the hyperbolic system.

Let us briefly review some features of the regularization and introduce the NLS-
Whitham equations (see Appendices A.2 and A.3 and [15], [24], [27], [29] for more
details). It is well-known that the NLS equation is integrable via the inverse scattering
transform. The scattering problem associated with the defocusing NLS equation (1.1) is
given by the eigenvalue problem [2], [37] Lv = zv, where v is a two-component vector,
z ∈ C is the spectral parameter of the scattering problem, and the Lax operator L is
defined by

Lv =
(−iε∂x iq

−iq∗ iε∂x

)
v. (2.1)

A genus-g solution of the NLS equation is associated with a genus-g hyperelliptic
Riemann surface R : w2 = µg(z), with

µg(z) =
2g+2∏
k=1

(z − rk). (2.2)

The solution of the NLS equation (1.1) corresponding to (2.2) is described in terms
of a Baker-Akhiezer function constructed from Riemann theta functions with g phases
(see [6], [18] for details). The branch points r1, . . . , r2g+2 of R determine the spectrum
of L. Since the Lax operator L is self-adjoint, these branch points are all real, and
we label them so that r1 < r2 < · · · < r2g+2. The spectrum of L is then given by
(−∞, r1]∪[r2, r3]∪· · ·∪[r2g, r2g+1]∪[r2g+2,∞); the bounded intervals of the spectrum
(that is, [r2k, r2k+1] for k = 1, . . . , g) are called the gaps.

For an exact genus-g solution of the NLS equation, the branch points r1, . . . , r2g+2

are obviously constant, independent of space and time, owing to the isospectrality of
the inverse scattering transform of the NLS equation. The solution then gives a quasi-
periodic solution with g phases of the NLS equation, and with a small dispersion of order
ε2 implies that each period of the phase is of order ε (i.e., high-frequency oscillations of
order 1/ε).
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Suppose now that the g-phase solution is slowly modulated in space. Then the spec-
tral parameters rk are expected to shift slightly, (Moreover, additional openings in the
spectrum, or gaps, can also form in general; see for example Sections 3 and 4.) We can
treat the modulation problem using a singular perturbation method as follows: If we
consider modulations on the scale of (x, t) in the NLS equation (1.1), the modulations
are of order one, and the oscillations are of order 1/ε. This implies that one can treat the
modulation problem as a small perturbation of the g-phase solution, which is the key
of the Whitham averaging method. This method is based on an adiabatic assumption
that the leading-order solution of the NLS equation (i.e., the g-phase solution) is pre-
served under the modulation, but with slowly changing parameters. That is, the shifted
parameters are constant as the eigenvalues of the Lax operator L. Employing a standard
averaging perturbation method, one then introduces the fast and slow time and space
scales respectively as (x ′ = x /ε, t ′ = t /ε) and (x, t). The first-order correction to the
g-phase solution in the perturbation method compensates the motion of the parameters
so that the parameters appear to be constant over regions of order one in (x, t), but at
the same time acquire small constant shifts due to the modulations in general. The cor-
responding equations for the spectral parameters with respect to the slow scales (x, t)
are called the NLS-Whitham equations, or simply the Whitham equations, and are ob-
tained by averaging the conservation laws of the NLS equation with respect to the fast
oscillations at order ε (see Appendix A.3 for more details).

It was shown in [15], [29] that the genus-g Whitham equations for the NLS equation
can be written in the Riemann invariants form, in which the spectral parameters rk give
the Riemann invariants,

∂rk

∂t
= sk(r1, . . . , r2g+2)

∂rk

∂x
, (2.3)

for k = 1, . . . , 2g + 2. It then follows that for each ε �= 0 the solution of the NLS-
Whitham equations describes the slow modulation of finite-genus solutions of the NLS
equation. The following was also shown (cf. Lemma 4.1 in [27]), and is the most important
property of the NLS-Whitham equations:

Proposition 2.1. The characteristic velocities sk possess a double sorting property, i.e.,
∀k, l = 1, . . . , 2g + 2. They satisfy the two conditions,

∂ sk

∂rk
> 0, (2.4a)

rk < rl ⇒ sk < sl , (2.4b)

Then, as a consequence of (2.1), we have (Corollary 4.2 in [27]):

Corollary 2.2. If the initial values of the rk are each nonincreasing, and if they satisfy
the separability condition

max
x∈R

r0
k (x) < min

x∈R
r0

k+1(x), (2.5)

∀k = 1, . . . , 2g + 1 at t = 0, the initial data is of rarefaction type, and therefore the
hyperbolic system of equations (2.3) has a global solution for t > 0, i.e., it is regular.
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In general, the initial conditions for the two Riemann invariants obtained from the dis-
persionless system (1.4) do not satisfy monotonicity and the separability condition (2.5).
In other words, (1.6) (that is, the system (2.3) with g = 0) in general do not have a
global solution. The regularization process then consists of enlarging the set of Riemann
invariants so that the resulting NLS-Whitham equations have a global solution. This is
done by representing the initial data for the NLS eq. (1.1) in such a way that all the
Riemann invariants r1, . . . , r2g+2 are monotonically decreasing functions of x at t = 0.
Note that it is always possible to do so for piecewise-constant initial data, since in this
case there is some ambiguity in how the spectrum of the Lax operator is represented
in terms of the Riemann invariants. This ambiguity can then be exploited to redefine
the initial datum for the Whitham eqs. (2.3) by adding degenerate gaps (i.e., degenerate
openings between the invariants; e.g., see Figures 4 and 6). All of the solutions discussed
in Sections 3, 4, and 5 fall within the framework of piecewise-constant initial conditions.
In this case the data at t = 0 are always genus-0, but they can be described in terms of
highly degenerate higher-genus data, namely, higher-genus data with degenerate gaps.

It should be noted that the adiabatic approximation (the use of the Whitham equations
for the slow evolution) implies that the local genus of the solution is preserved. A separate
issue is how the genus of the solution changes from one region to the next. This is a
bifurcation problem through a critical point, and can be approached by regularization,
i.e., by trying to patch two Whitham systems with different genus at this point. Our
regularization acts as a “globalization,” in the sense that the Whitham equations with a
proper (in general larger) genus now describes a global behavior beyond the perturbation
range. For fixed x , a regular scheme must solve a connection problem in t because of the
change of genus, and for fixed t one also needs to solve a connection problem to match
regions with different genus.

It is also important to realize that for piecewise-constant initial data there is more
than one way to regularize the initial datum (e.g., see Figure 2). The minimum number
of Riemann invariants that are necessary so that the system becomes regular is related
to the genus of the solution of the NLS-Whitham equations. That is, 2g + 2 invariants
correspond to a genus-g solution of (2.3). The local genus of the solution of the NLS
equation is roughly speaking the number of distinct frequencies that are locally present
in the solution over regions of order one in (x, t). Since the Riemann invariants are the
branch points of the spectrum of the finite-genus solution of the NLS equation that locally
approximates the full solution, it is then clear that the local genus is equal to the number
of gaps (i.e., bounded intervals of the spectrum of the Lax operator L) corresponding
to the local value of the Riemann invariants (e.g., see Figures 8 and 9). The opening or
closing of one of the gaps for some values of (x, t) corresponds to a local change of
genus in the solution of the NLS equation. Note however that all finite-genus solutions
of the NLS equation with nonzero genus become singular in the limit ε → 0+. In
this sense, the solution of the Whitham equations represents a weak limit, since when
g �= 0 the solutions of the NLS equation only converge in an average sense (i.e., weak
convergence).

Finally, with regards to Figure 2, we should note that genus-1 data is necessary in
order to preserve the value of u(x, 0). With step initial data, however, no gap opens during
propagation, which means that the data is degenerate, resulting in a genus-0 solution.
The situation would be different in the case of nonstep initial data (e.g., if the transition
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Fig. 2. Evolution of the Riemann invariants in two equivalent cases. Dashed lines: the Riemann
invariants at t = 0; solid lines: the invariants at t �= 0. (a) corresponds to the square-wave initial
datum in (1.9a) and Figure 1, regularized by genus-1 data; (b) shows an equivalent diagram of
the left one, and it is given by genus-0 data. Hereafter, the subscripts “−” and “+” refer to the
value of the invariants respectively to the left and to the right of their initial discontinuity. The
ellipses in (a) indicate “locking” points, i.e., points x∗ for which r1(x∗, t) = r2(x∗, t) = r3(x∗, t)
(on the left) and r2(x∗, t) = r3(x∗, t) = r4(x∗, t) (on the right) for all t . This implies that the
regularization at those points is trivial. Finally, note that the initial conditions r 0

1,2(x) in (b) have
been redefined whenever ρ(x, 0) = 0 (i.e., u(x) itself is not defined in the NLS-Whitham equation
when ρ(x) = 0, see (A.9)).

from ρ(x, 0) = 0 to ρ(x, 0) = q2
0 were continuous); in that case, oscillations would

appear, as described in [16].

3. Single-Jump Initial Conditions

We now briefly summarize some results from [27] relative to a single-jump initial datum,
since they provide the basis for the framework that will be used to analyze the more
complicated scenarios discussed in the remainder of this work. We will consider the
constant-amplitude wave given by the (single-jump) initial condition in (1.9a) and (1.9b′),
where we take L → ∞. The value of the original Riemann invariants in the genus-0
system (1.6) at t = 0 is again given by (1.11), which are now valid ∀x ∈ R. Four
different situations arise depending on the size of the frequency jump 2u0, as shown in
Figure 3:

(i) u0 > 2q0 > 0 (Lemma 4.3 and Theorem 4.4 in [27]).
Since u0 > 0, the original Riemann invariants r0

1,2(x) are increasing functions
of x , and therefore the genus-0 system (1.6) does not have a global solution. In
this case the problem is regularized by considering the genus-1 NLS-Whitham
equations. (That is, four invariants are necessary so that the resulting system has
a global solution.) The Riemann invariants are related to the solution at t = 0 as
follows:

r1 = −u0 − 2q0, ∀x, r3 = u0 ± 2q0, for x <> 0,

r2 = −u0 ± 2q0, for x <> 0, r4 = u0 + 2q0, ∀x,
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Fig. 3. Deformation of an NRZ pulse in the presence of an initial frequency jump: (a) u0 = 2.01;
(b) u0 = 1; (c) u0 = −1; (d) u0 = −2.5. The dotted line shows the initial condition; the solid
line shows the result of numerical simulations of the NLS equation, performed as discussed in
Section 6. In all four cases, it is q0 = 1, L = 35, and ε2 = 0.1, and the solution is shown at
t ′ = 20, where t ′ = t /ε.

with the upper/lower signs corresponding to the upper/lower inequality for x , respec-
tively. The qualitative evolution of these Riemann invariants is shown in Figure 4a.
The solution develops a region of genus-1 high-frequency oscillations in the central
portion of the pulse, surrounded by a genus-0 region, as illustrated in Figure 3a
and Figure 5a. As shown in Figure 3a, the genus-1 portion of the solution describes
slow modulations of high-frequency oscillations, as would be the case in a wave
packet. The genus-1 portion of the solution is located in the region |x | < s−3 t . The
characteristic velocities are s−3 = −s+2 , s+3 = −s−2 , with s−3 > s+3 > 0, and

s−3 = (u0 + q0)[1+ u0q0/(u0 + q0)
2],

s+3 = u0[1− 3a(1− a)K1 − 2a2 K2]/(1− aK1) (3.1)
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Fig. 4. Qualitative diagrams illustrating the evolution of the Riemann invariants: (a) u0 > 2q0,
with a single, expanding genus-1 region; (b) 0 < u0 < 2q0, with an expanding genus-0 region
surrounded by expanding genus-1 regions on either side. Dashed lines: the original invariants
r 0

1,2(x) at t = 0; solid lines: the regularized invariants at t �= 0; dot-dashed vertical lines: boundaries
between regions of different genus. Note that the connecting segments between r±2 in Figure 4a,b,
r±3 in Figure 4a, and r±5 in Figure 4b are actually curved, and are represented here only by straight
lines for simplicity (e.g., see [8]).

(cf. (4.16) and (4.17) in [27]), where a = 2q0/u0 < 1, and

1− Kn =
∫ π /2

0
sin2n+2 θ√

(1+a sin2 θ)(1+a cos2 θ)
dθ∫ π /2

0
sin2 θ√

(1+a2 sin2 θ)(1+a2 cos2 θ)
dθ
.
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Fig. 5. The boundaries between regions of genus-0 and genus-1 in the (x, t)-plane corresponding
to the cases shown in Figure 4: (a) u0 = 5/2, corresponding to case (i), and Figures 3a and 4a;
(b) u0 = 1, corresponding to case (ii) and Figures 3b and 4b. Dashed lines: the same boundaries
after adding a constant frequency offset uavg = 3 to both sides of the jump, as discussed in
Section 4.
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Hereafter, the superscripts “−” and “+” refer to the value of the Riemann invariants
respectively to the left and to the right of the discontinuities at t = 0 (cf. Fig-
ure 4). Note that, owing to (2.3), positive values of s correspond to left-moving Rie-
mann invariants, and that for regularized, nonincreasing invariants r−(x) ≥ r+(x)
∀x ∈ R.

(ii) 0 < u0 < 2q0 (Lemma 4.5 and Theorem 4.6 in [27]).
Again, since u0 > 0, the genus-0 Whitham equations do not have a global solution.
This case is regularized by the genus-2 NLS-Whitham equations. The six Riemann
invariants are related to the solution at t = 0 as follows:

r1 = −u0 − 2q0, ∀x, r4 = −u0 + 2q0, ∀x,
r2 = ±u0 − 2q0, for x <> 0, r5 = ±u0 + 2q0, for x <> 0,

r3 = u0 − 2q0, ∀x, r6 = u0 + 2q0, ∀x .
The qualitative evolution of these Riemann invariants is shown in Figure 4b. Even
though g = 2 is necessary to regularize the initial data, no genus-2 region appears.
The solution develops a genus-0 flat region (a degenerate genus-2 region) in the
central portion of the pulse, surrounded by genus-1 high-frequency oscillations,
as illustrated in Figure 3b. The genus-0 and genus-1 portions of the solution are
respectively located in the regions |x | < s+5 t and s+5 t < |x | < s−5 t , with s+5 = −s−2 ,
s−5 = −s+2 , and where s−5 > s+5 > 0. The characteristic velocities are (eqs. (4.28)
in [27])

s+5 = q0 − 1
2 u0, s−5 = (u0 + q0)[1+ u0q0/(u0 + q0)

2]. (3.2)

Furthermore, in the genus-0 region, the solution takes the value ρ = 1
16 (r

0
2 − r0

1 )
2,

i.e.,

ρ = q2
0 [ 1+ u0/2q0 ]2. (3.3)

Note that the amplitude of the genus-0 (nonoscillatory) region at the center increases
with increasing modulation strength u0. At the same time, however, the dependence
of s+5 on u0 implies that the width of the genus-0 region decreases with increasing
modulation strength, and the region ceases to exist when u0 > 2q0. The maximum
possible amplitude that can be obtained in this way is thus ρmax = 4q2

0 , obtained
for u0 = 2q0.

This case, 0 < u0 < 2q0, is the most interesting case for applications because,
unlike the high-frequency oscillations in the genus-1 portion, the high-amplitude
genus-0 region can survive an appropriate filtering and produce short, high-intensity
optical pulses. As mentioned above, however, the maximum amplitude that can be
obtained with this arrangement is limited, i.e., q = (1 + u0/q0)q0 < 2q0. In the
next section we will see how this limit on the maximum pulse amplitude can be
overcome by employing more than one frequency jump.

(iii) −2q0 < u0 < 0 (Theorem 4.7 in [27]).
Since u0 < 0, the Riemann invariants r0

1,2(x) are nonincreasing functions of x , and
they satisfy the separability condition (2.5). Therefore the genus-0 NLS-Whitham
equations (1.5) with the Riemann invariants defined as in (1.7) has a global solution,
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and no regularization is necessary. The solution develops a depression zone in the
center, as illustrated in Figure 3c. More precisely (eqs. (4.31) and (4.33) in [27]),

ρ(x, t) =




q2
0 [1+ u0/(2q0)]2, |x | < s+2 t,

[x + (u0 + 2q0)t]2/9t2, s+2 t < |x | < s−2 t,

q2
0 , |x | > s−2 t,

where

s+2 = 1
2 (u0 + 2q0), s−2 = q0 − u0. (3.4)

(iv) u0 < −2q0 (Lemma 4.8 and Theorem 4.9 in [27]).
Even though the invariants are nonincreasing, they do not satisfy the separabil-
ity condition (2.5). This case is regularized by the genus-1 NLS-Whitham equa-
tions (1.5). The Riemann invariants at t = 0 are defined by

r1 = u0 ± 2q0, for x <> 0, r3 = −u0 − 2q0, ∀x
r2 = u0 + 2q0, ∀x, r4 = −u0 ± 2q0, for x <> 0,

The corresponding solution is shown in Figure 3d. Even though g = 1 is necessary
to regularize the initial data, no gap opens among the invariants, and therefore this
case results in a degenerate, genus-0 solution. In other words, no genus-1 regions
develop. (The high-frequency oscillations visible in Figure 3d disappear in the
limit ε → 0+ in the case of step initial data.) The solution is similar to the one in
case (iii), except that q(x, t) tends to zero at x = 0. (The nonzero value of q(0, t) in
Figure 3d is due to the finiteness of ε in the numerical simulations.) More precisely,
ρ(x, t) = q2

0 for |x | > s−4 t and ρ(x, t) = 0 in the limit ε → 0+ in the region
|x | < s+4 t , where (eqs. (4.36) in [27])

s+4 = −u0 − 2q0, s−4 = −u0 + q0. (3.5)

The calculation of the characteristic speeds for the Riemann invariants is based on
the formulation of the NLS-Whitham equations. We refer the reader to Appendices A.3
and A.4 and to [7], [8], [27] for further details. Note that the outer boundaries of the
genus-1 region are given by x = ±soutert , where souter is the same in case (i) and case (ii):
souter = (u0 + q0)[1 + u0q0/(u0 + q0)

2] (cf. s−3 in (3.1) and s−5 in (3.2)). Note also that
the location of the boundaries between regions of genus-0 and genus-1 in the numerical
simulations shown in Figures 3a–d agrees very well with the analytical results just
presented, even though the value of ε used is not very small.

Case (ii) is the most interesting for applications because of the high-amplitude genus-
0 region. Also, in cases (iii) and (iv) (i.e., when u0 < 0), the solution is only of genus-0,
but lower amplitude. For this reason we will mainly focus our attention on the case of
positive frequency jumps. Hereafter, we refer to case (ii) as a “subcritical” frequency
jump and to case (i) as a “supercritical” frequency jump. More precisely:

Definition 3.1. We say that a single frequency jump located at x = x0 is super-
critical if r0

1 (x
+
0 ) > r0

2 (x
−
0 ), subcritical if r0

1 (x
+
0 ) < r0

2 (x
−
0 ), where as usual r0

k (x
±) =

lim�x→0± r0
k (x +�x).
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In the following sections we generalize the above solutions and discuss the behavior
of solutions of the finite-genus NLS-Whitham equations in the presence of an arbitrary
number of jumps in the initial data.

4. Behavior of Finite-Genus Solutions: Two Frequency Jumps

More complicated situations than those described in the previous section arise when
the initial conditions contain more than one frequency jump. The main purpose of this
and the following section is to study the interaction among finite-genus solutions of the
NLS-Whitham equations generated by those frequency jumps. First of all, however, let
us briefly discuss the effect of adding a nonzero average frequency across the jump. The
Galilean invariance of the NLS equation implies that it is possible to redefine the local
frequency u(x, 0) up to an arbitrary additive constant. The effect of such a constant,
representing a global frequency translation, is just a change in the overall group velocity
of the solution. More precisely, if qo(x, t) is a solution of (1.1), so is

qc(x, t) = exp[i(cx − c2t /2)/ε] qo(x + ct, t), (4.1)

for any constant c. Corresponding to (4.1) there exists a Galilean symmetry of the NLS-
Whitham equations (2.3) for the Riemann invariants: namely, if rj (x, t) is a solution
of the Whitham equations (2.3), then so is the translated solution rj (x + ct, t) + c.
Note from (4.1) that a positive frequency c/ε corresponds to a negative shift −c in the
group velocity dx /dt . Also, as an effect of the Galilean transformation (4.1), the rescaled
frequency of the transformed solution is shifted by c, i.e., uc(x, t) = ε ∂x [arg qc(x, t)] =
c+ ε∂x [arg qo(x + ct, t)]. In terms of the decomposition of the (x, t)-plane into regions
of different genus, we have the following:

Lemma 4.1. The boundaries between genus-0 and genus-1 regions for a single fre-
quency jump upon adding a nonzero average frequency uavg to the initial condition are
given by x = s±t , where s± = ±sold + uavg, and where sold is still given by (3.1), (3.2),
(3.4), and (3.5) in cases (i)–(iv), respectively.

Thus, adding a nonzero frequency offset to both sides of a single frequency jump has
the effect of tilting the corresponding boundaries between regions of different genus, as
shown in Figure 5a. If only one jump is present, it is obviously possible to choose the
average frequency so that both of the boundaries of the outermost genus-0 region move
in the same direction. In the presence of several frequency jumps, however, it is not
always possible to do so, as will be discussed later. Because of the Galilean invariance,
we will sometimes describe the initial condition for u(x, 0) in terms of the frequency
jumps, defined as Cj = u(X+j , 0)− u(X−j , 0) for all j = 1, . . . , N , where N is the total
number of jumps and X1, . . . , X N are the jump locations.

We now turn to initial conditions with two frequency jumps. We will consider constant-
amplitude initial conditions with |q(x, 0)| = q0 ∀x ∈ R. For simplicity we will take
symmetric jumps of size C1 = C2 =: 2u0 located at X2 = −X1 = �X /2 > 0, so that
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2u0 is the size of each frequency jump, as in the single-jump case. That is, let

u(x, 0) =



−2u0, x < −�X /2,

0, |x | < �X /2,

2u0, x > �X /2,

(4.2)

again with |q(x, 0)| = q0 > 0 ∀x ∈ R. In the absence of either one of the two jumps,
the solution would behave according to the theory described in Section 3, with the
only exception being that the average frequency across the jump is now nonzero. More
precisely, since the average frequency at x = ±�X /2 is ±u0, the solutions described in
the previous section would move with velocity ∓u0. In other words, the central portion
of the solutions described in Section 3 will tend to move towards each other if u0 > 0
and away from each other if u0 < 0. As we will see, this description provides an accurate
picture of the overall solution at sufficiently small propagation times. After this initial
stage, however, significant interaction effects appear.

In analogy with the calculations described in Section 3, let us now proceed to ana-
lyze the solution by looking at the Riemann invariants. The initial values r0

1,2(x) of the
nonregularized Riemann invariants for the genus-0 NLS-Whitham equations (1.6) are

r0
1 (x) =



−2q0 − 2u0, x < −�X /2,

−2q0, |x | < �X /2,

−2q0,+2u0 x > �X /2,

r0
2 (x) =




2q0 − 2u0, x < −�X /2,

2q0, |x | < �X /2,

2q0 + 2u0, x > �X /2.

(4.3)

These invariants are shown as dashed lines in Figure 6. Since expressing the values of
all the regularized Riemann invariants at t = 0 in terms of the initial datum would be
rather tedious, and since all the values can be easily inferred from Figure 6, we omit the
formulae for brevity.

Based on Proposition 2.1 and Corollary 2.2, the following four scenarios arise, de-
pending on the size of the frequency jumps:

(i) u0 > 2q0 > 0:
This case is regularized by the genus-2 NLS-Whitham equations (i.e., with six
invariants), as illustrated in Figure 6a, where the (two) original and (six) regularized
Riemann invariants are shown respectively by dashed and solid lines.

The regions of genus-0, 1, and 2 for the solution of the NLS equation are shown
in the bifurcation diagram in Figure 7a. Both jumps are supercritical individually,
so two genus-1 regions open up, one at the location of each frequency jump. These
two regions interact and they create a genus-2 region at the center of the solution.
The genus-2 region then expands forever (cf. Propositions 4.4 and 4.7). In terms
of the numerical simulations described in the next section, this case corresponds to
Figure 11a.
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Fig. 6. Qualitative diagrams illustrating the evolution of the Riemann invariants: (a) u0 > 2q0,
corresponding to case (i) and showing expanding genus-1 and genus-2 regions; (b) 0 < u0 < q0,
corresponding to case (iii) and showing an expanding genus-0 central region; (c) q0 < u0 < 2q0,
corresponding to the intermediate case (ii), and showing the invariants at small time t and a
temporary genus-0 region in the center; (d) the same intermediate case (i.e., q0 < u0 < 2q0 as in
(c)), but now showing the solution at large time t and an expanding genus-2 region in the center.
Dashed lines: the original invariants r 0

1,2(x) at t = 0; solid lines: the regularized invariants at
t �= 0; dot-dashed vertical lines: boundaries between regions of different genus. As in Section 2,
the ellipses in (c) and (d) indicate “locking points,” i.e., locations corresponding to the same value
of x ∀t (cf. Remark 4.5.5). Finally, note that, as in Figure 4, those portions of the invariants that
coincide in the limit ε → 0+ can be omitted when calculating the local genus.

(ii) q0 < u0 < 2q0:
This case is regularized by the genus-4 NLS-Whitham equations (i.e., with ten
invariants), as illustrated in Figure 6c,d, where the original and regularized Riemann
invariants are shown at two different values of t .
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Fig. 7. Bifurcation diagrams illustrating the regions of genus-0, genus-1, and genus-2 in the (x, t)-
plane for the cases shown in Figure 6, namely: (a) u0 = 2001/1000 (u0 > 2q0), corresponding to
case (i) and Figure 6a; (b) u0 = 5/4 (2q0 > u0 > q0), corresponding to case (ii) and Figure 6c,d;
(c) the critical case u0 = 1, which is the separatrix between cases (ii) and (iii); and (d) u0 =
5/8 (q0 > u0 > 0), corresponding to case (iii) and Figure 6b. The horizontal axis is position, x ,
and the vertical axis is time, t . In all cases, q0 = 1. The thick lines indicate the boundaries
between regions of genus-0 and genus-1 (cf. Propositions 4.4, 4.7, and 4.8). The thin lines indicate
boundaries between genus-1 and genus-2 regions, and were computed by approximating them with
circular arcs of given starting point and given initial and final slopes. (These conditions determine
the circular arc uniquely.) The thin dashed lines indicate boundaries between genus-1 and genus-2
regions in those cases when the final slope is unknown. The dot-dashed horizontal lines indicate
the values of t corresponding to the diagrams of the Riemann invariants in Figure 6a–d.

The regions of genus-0, 1, and 2 for the solution of the NLS equation are shown
in the bifurcation diagram in Figure 7b. Both jumps are subcritical individually, so
two genus-0 regions open up initially at the location of each frequency jump (each
surrounded by genus-1 regions, as in case (ii) of Section 3). As these two portions
of the solution interact, a genus-0 region forms temporarily in the central portion
of the solution. This region disappears after a while, however, and a genus-2 region
forms which expands forever as in the previous case (cf. Propositions 4.4, 4.7, and
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4.8). In terms of the numerical simulations, this case corresponds to Figure 11b and
Figure 13c,d.

(iii) 0 < u0 < q0:
This case is also regularized by the genus-4 NLS-Whitham equations. The original
and regularized Riemann invariants are shown in Figure 6b, and the regions of
genus-0, 1, and 2 for the solution of the NLS equation are shown in the bifurcation
diagram in Figure 7d.

As in the previous case, the individual jumps are subcritical, so two genus-0
regions open up initially at the location of each frequency jump. Also similarly to
the previous case, a genus-0 region forms in the central portion of the solution as
the two genus-0 portions of the solution interact. Contrary to the previous case,
however, the genus-0 portion of the solution now persists and expands forever (cf.
Propositions 4.4, 4.7, and 4.8). Numerical simulations corresponding to this case
are shown in Figure 11c and Figure 13a,b.

(iv) u0 < 0:
As in the single-jump case, two expanding depression regions form at the location of
each frequency jump. Eventually, these regions merge to form a unique depression
zone. As in the single-jump case, the details of the regularization process vary
depending on the value of u0. Because the solution is always genus-0, however, this
case is not as interesting as the previous ones in terms of applications, and therefore
it will not be investigated further.

Let us now discuss more quantitatively the behavior of the solutions in each of the
above scenarios. When u0 > 0 as in cases (i)–(iii), the initial values of the nonregularized
Riemann invariants r0

1,2(x) are increasing functions of x , and one has

max
x∈R

r0
1 (x) = r0

1 (∞) = lim
x→∞ r0

1 (x) = 2(u0 − q0), (4.4a)

min
x∈R

r0
2 (x) = r0

2 (−∞) = lim
x→−∞ r0

2 (x) = −2(u0 − q0). (4.4b)

As we will see in Section 6, cases (ii) and (iii) offer the most useful behavior for practical
applications. In particular, the case u0 = q0, which is the separatrix between cases (ii)
and (iii), is especially interesting since it produces a high-amplitude genus-0 region of
constant width at the center of the pulse, as shown in Figure 7c. This case is regularized
by the genus-3 NLS-Whitham equations, corresponding to Figure 6b with r5 and r6

deleted and where now r0
1 (∞) = r2(−∞), since u0 = q0. Hereafter, we will call the

case u0 = q0 the “critical” two-jump case, and we will refer to cases (ii) and (iii) as the
supercritical and subcritical two-jump cases, respectively. More precisely,

Definition 4.2. We say that an arbitrary collection of positive frequency jumps C1, . . . ,

CN located at positions X1, . . . , X N is collectively supercritical if r0
1 (∞) > r0

2 (−∞),
collectively subcritical if r0

1 (∞) < r0
2 (−∞), and collectively critical if r0

1 (∞) =
r0

2 (−∞), where as usual r0
k (±∞) = limx→±∞ r0

k (x).

Note the difference between the above and Definition 3.1, which distinguishes whether
a single jump is individually subcritical or supercritical.
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It should be noted that, even though the NLS-Whitham equations with g = 3, 4
are necessary to regularize the data in some cases, only the genus g ≤ 2 appears in the
solution with two frequency jumps (similar to the scenario with a single frequency jump).
Note also that, unlike the case when a single phase is present, calculating analytically
the precise location of the boundaries between different multiphase regions after the
individual portions of the solutions have come into contact is a highly nontrivial task,
and we have not attempted to do so. However, it is possible to calculate the velocity of
all boundaries between genus-0 and genus-1 regions. The main reason for the difference
between the two types of boundaries is that, upon removal of degenerate gaps, the
calculation of characteristic speeds in regions of genus-1 is expressed in terms of elliptic
integrals and the boundary with genus-0 turns out to be a straight line (see Lemma 4.3
below), whereas the characteristic speeds in regions of genus-2 require the evaluation of
hyperelliptic integrals (e.g., see [19]).

The explicit calculation of a few characteristic speeds is reported in Appendix A.4.
Since such calculations are rather lengthy, however, and since the methods used are
described in [7], [8], [27], here we omit the details relative to all the different cases, and
we limit ourselves to summarizing the main results.

Lemma 4.3. All boundaries between genus-0 and genus-1 regions are given by straight
lines.

Proof. The result follows from (2.3) and by noting that the characteristic speeds are
constant since all the invariants are constant in the genus-0 portion.

This result is obviously independent of the number of frequency jumps present, and
is just a special case of a generic feature of hyperbolic systems: If one side of the
initial condition is constant, there is a solution in terms of simple waves, for which the
characteristics are straight lines [36].

Proposition 4.4. The boundaries between genus-0 and genus-1 regions before the in-
teraction are given by straight lines with the same velocities as in (3.1) and (3.2) upon
application of the appropriate Galilean shifts. That is, si,± = ±si + u0 for the regions
relative to the frequency jump to the left and si,± = ±si − u0 for those relative to the
frequency jump to the right.

Proof. The result follows by direct computation of the characteristic speeds in the NLS-
Whitham equations (2.3), but is consistent with Lemma 4.1 regarding the application of
a constant offset to a single frequency jump, showing that before interaction the behavior
of the solution in each region is unaffected by the presence of the other jump.

Remark 4.5. In case (ii) (cf. Figure 6c,d and Figure 7b), it is r5(x∗, t) = r6(x∗, t) =
r7(x∗, t) for all t , where x∗(t) = max{x ∈ R: r5(x, t) = 2(u0 − q0)}. That is, the three
invariants are “locked” together at that point. Similarly, if one defines x∗∗(t) = min{x ∈
R: r6(x, t) = −2(u0 − q0)}, it is r4(x∗∗, t) = r5(x∗∗, t) = r6(x∗∗, t) for all t . This
locking phenomenon is identified by the two ellipses in Figure 6c,d (see also Figure 2a).
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Moreover, since two of the three invariants always coincide in a neighborhood of x∗
or x∗∗, in each case we obtain a trivial regularization locally. That is, near x = x∗, the
three Riemann invariants r5, r6, and r7 are reduced to a single invariant r̂(x, t) given
by r̂(x, t) = r7(x, t) for x < x∗(t) and r̂(x, t) = r5(x, t) for x > x∗(t), and a similar
situation arises for r4, r5, and r6 near x = x∗∗. Those trivial regularizations are, however,
necessary in order for all the Riemann invariants to be nonincreasing functions in x
(unlike the case in Figure 2a, where trivial ones can be removed).

Conjecture 4.6. The width of the outermost genus-2 regions present in cases (ii) and (iii)
after interaction tends asymptotically to zero.

In both case (ii) and case (iii), the speeds of the left- and right-boundaries of the genus-2
region in question are respectively given by s+9 and s−7 (cf. Figures 4 and 7), where
as before the superscripts “−” and “+” refer to the values of the Riemann invariants
respectively to the left and to the right of their discontinuities at t = 0. The fact that
the width decreases monotonically and tends asymptotically to a constant follows from
the double sorting property of the characteristic velocities. It is not possible, however, to
prove whether the asymptotic width is zero without explicitly calculating the speeds of
the boundaries between genus-1 and genus-2 regions, which is beyond the scope of this
work. (The appearance of this phenomenon was first noted by F.-R. Tian for the case of
the KdV-Whitham equations with two jumps [32].)

Proposition 4.7. After interaction, the boundary between the outermost genus-1 regions
and the surrounding genus-0 regions is given by x = ±(x0 + soutert), where souter = s−5
in case (i) and souter = s−9 in cases (ii) and (iii). In all these cases, the resulting velocity
is

souter = (2u0 + q0)[1+ 2u0q0/(2u0 + q0)
2]. (4.5)

The characteristic speed can be obtained from degenerate g = 2 calculations (cf. Ap-
pendix A.4). Note, however, that the appropriate values of s−5 and s−9 can also be obtained
from s+3 in (3.1) and s+5 in (3.2) upon u0 → 2u0. (Cf. Figures 4 and 6, and discard the
Riemann invariants corresponding to degenerate gaps.)

Proposition 4.8. After interaction, the boundary between the innermost genus-0 region
and the surrouding genus-1 regions in cases (ii) and (iii) can be written as

x = ±(x1 + s(1)innert), x = ±(x2 + s(2)innert), (4.6)

respectively for the initial portion and for the final portion, where the characteristic
speeds are: s(1)inner = s+9 both in case (ii) and case (iii); s(2)inner = s+5 in case (ii), and
s(2)inner = s+7 in case (iii). Furthermore, in both case (ii) and case (iii), the values of these
speeds are

s(1)inner = q0, s(2)inner = q0 − u0. (4.7)
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As before, the characteristic speeds can be obtained via degenerate g = 2 calculations
(see Appendix A.4 for more details). As before, however, the appropriate values of s+5 , s+7 ,
and s+9 can also be obtained from s+5 in case (ii) of Section 3 upon rescaling q0 → q0+ 1

2 u0

and u0 → 2u0. More precisely, neglecting degenerate gaps, the Riemann invariants that
determine the value of s(1)inner = s+5 in case (ii) and s(1)inner = s+7 in case (iii) are obtained
from those that determine s+5 in Figure 4b upon rescaling u0 → 2u0. (Cf. Figures 4b
and 6b,c.) Similarly, the Riemann invariants that determine the value of s(1)inner = s+9 both
in case (ii) and in case (iii) are obtained from those that determine s+5 in Figure 4b
(case (ii) in Section 3) upon rescaling q0 → q0 + 1

2 u0. (Again, cf. Figures 4b and 6b,c.)

Remark 4.9. Equations (4.5) and (4.7) also describe the motion of the boundaries of
the genus-0 regions in the critical case u0 = q0, upon proper relabeling of the Riemann
invariants. In particular, they predict that in the critical case the width of the inner genus-0
region is constant (i.e., s(2)inner = 0).

The above results, and in particular (4.5) and (4.7), show that the speed of the bound-
aries between regions of genus-0 and genus-1 after the individual perturbations have
come into contact is significantly altered as a result of the interaction. In other words,
the interaction between different genus-1 regions results in significant bending. This can
perhaps be best appreciated in the critical case (i.e., u0 = q0, cf. Figure 7c).

Finally, we note that, as in the case of a one-frequency jump, all of the above values for
the speeds of the boundaries between genus-0 and genus-1 regions agree very well with
the results of numerical simulations of the NLS equation, to be discussed in Section 6.

5. Behavior of Finite-Genus Solutions: Arbitrary Number of Jumps

Similar calculations to the ones described in Section 4 can be repeated for jumps of
arbitrary size and/or when more than two frequency jumps are present. In particular,
from the generalization of the above calculations to an arbitrary number of jumps, it is
possible to extract some general features. Thus, we consider an initial condition with
constant-amplitude and with initial frequency expressed in terms of N frequency jumps
each of size Cj and located at x = X j , j = 1, . . . , N :

u(x, 0) = −Ctot/2+
k∑

j=1

Cj , for Xk < x < Xk+1, (5.1)

where X0 = −∞ and X N+1 = ∞, and where Ctot =
∑N

j=1 Cj = u(∞, 0)− u(−∞, 0)
is the total jump size. The constant frequency offset Ctot/2 in u(x, 0) does not affect the
qualitative behavior of solution, and is chosen so that the mean frequency of the solution
is zero, i.e., so that the mean position of the solution is constant.

For simplicity, hereafter we will limit ourselves to considering a symmetric collection
of positive frequency jumps. That is, we will assume that Cj > 0 ∀ j = 1, . . . , N and
that if a given jump of amplitude C = C∗ exists at x = X∗, another jump with the
same amplitude exists at x = −X∗. (Or, in other words, the initial condition u(x, 0) for
the frequency possesses reflection symmetry with respect to the origin.) Since Cj > 0,
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∀ j = 1, . . . , N , the analogue of (4.4) holds:

max
x∈R

r0
1 (x) = r0

1 (∞) = lim
x→∞ r0

1 (x) = −2q0 − Ctot/2, (5.2a)

min
x∈R

r0
2 (x) = r0

2 (−∞) = lim
x→−∞ r0

2 (x) = 2q0 + Ctot/2. (5.2b)

Note that, again, r0
1 (x) and r0

2 (x) are the Riemann invariants before regularization. Owing
to (5.2) and Definition 4.2, a collection of jumps will be supercritical if Ctot > 2q0, sub-
critical if Ctot < 2q0, and critical if Ctot = 2q0.

Proposition 5.1. In the case of N equal frequency jumps each of size C = 2u0,
no individual genus-0 regions develop if the jumps are individually supercritical, i.e.,
u0 > 2q0.

Recall that the size of each of the jumps is 2u0 and that the jumps are individually
supercritical according to Definition 3.1 when the original Riemann invariants overlap
at a single location in space, that is, if r0

2 (X
−
j ) < r0

1 (X
+
j ) for j = 1, . . . , N . The result

applies independently of the number of jumps. More in general, however, for an arbitrary
collection of frequency jumps we have the following:

Theorem 5.2. It is possible to obtain arbitrarily large genera for finite times by consid-
ering appropriate collections of frequency jumps. However, asymptotically as t → ∞,
the only expanding regions in the solution are of genus-0, genus-1, and genus-2.

Proof. The result follows directly from Proposition 2.1 (double sorting property of the
characteristic speeds). Let us first note that the nonregularized system has two Riemann
invariants, and therefore, independently of the behavior at intermediate values of x ,
the regularized system will have only two nondegenerate branches as x → ±∞, i.e.,
r0

1 (x) < r0
2 (x). The only topologically distinct ways to connect these two branches are

shown in Figure 8 (some of these possibilities were also studied in [12], but not for
genus-2 cases), where we have neglected the possible presence of one or more shrinking
regions such as the outermost genus-2 regions in Figure 6d (see Remark 5.4, later). The
distinction between the different cases in Figure 8 is based on the size of the frequency
jumps across the pulse. More precisely:

(i) Figure 8a is obtained when r0
1 (∞) < r0

2 (−∞), i.e., when the jumps are collectively
subcritical (as in Figures 4b and 6b).

(ii) Figure 8b is obtained when r0
1 (∞) > r0

2 (−∞) but r0
1 (x
+) < r0

2 (x
−) ∀x ∈ R; that

is, when the jumps are collectively supercritical, but every jump is individually
subcritical (as in Figure 4d).

(iii) Figure 8c is obtained when there is only one jump, but that jump is supercritical;
that is, a single jump at x = t∗, such that r0

1 (x
+
∗ ) > r0

2 (x
−
∗ ) (as in Figure 4a).

(iv) Figure 8d is obtained when there is one supercritical jump at the center, surrounded
by other jumps which are all subcritical. That is, when there is one jump at x = 0
such that r0

1 (0
+) > r0

2 (0
−), surrounded by other jumps at x = tj such that r0

1 (x
+
j ) <

r0
2 (x
−
j ) ∀xj �= 0.
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Fig. 8. Qualitative diagrams illustrating topologically distinct cases for the asymptotic values of
the Riemann invariants after removal of the degenerate portions, together with the corresponding
separation between regions of genus-0, genus-1, and genus-2: (a) genus-0 region at the center,
corresponding to Figures 4b and 6b; (b) genus-2 region at the center, corresponding to Figure 6d;
(c) genus-1 region at the center, corresponding to Figure 4a; and (d) originated by a supercritical
jump surrounded by subcritical ones. In each case, the wavy lines show, for some values of x , the
branch cuts in the Riemann surface y2 =∏2g+2

j=1 (z − rj (x, t)), that is, the regions (r2k−1, r2k) for
k = 1, . . . , g + 1. The gaps in the local spectrum of the Lax operator L of the NLS equation are
the bounded intervals [r2k, r2k+1] for k = 1, . . . , g (cf. Section 2).

Of course, many variations of these basic configurations are possible depending on
the details of the arrangement of the frequency jumps. In addition, cases (iii) and (iv)
(corresponding to Figure 8c,d), admit a variant in which one or more localized “islands”
exist between the two outer portions, as shown in Figure 9a,b (cf. Figure 6a). One of
these islands is obtained whenever two additional frequency jumps are inserted that are
both individually supercritical, that is, when r0

1 (x
+
∗ ) > r0

2 (x
−
∗ ) for more than one value

of x∗ ∈ R. For example, Figure 9a is produced when there are four supercritical jumps
(cf. Proposition 5.1); Figure 9b is produced when there are two supercritical jumps
surrounded by two subcritical ones. From these examples it should be clear that the
above situations can easily be generalized to cases where an arbitrary number of islands
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Fig. 9. Additional diagrams of asymptotic configurations of Riemann invariants, illustrating the
possible presence of separate “islands,” each of which produces one additional region of genus-2.
(a) A variant of Figure 8c corresponding to four supercritical jumps. (b) A variant of Figure 8d
corresponding to two supercritical jumps surrounded by two subcritical ones.

is present by adding a proper number of supercritical frequency jumps. Note that the
range of values for the Riemann invariants covered by each of these islands is disjoint
from that of all of the other islands. (That is, the islands are not lying side by side. Rather,
they are arranged by increasing values of the invariants.) Thanks to the double sorting
property possessed by the Riemann invariants (namely, (2.4) in Proposition 2.1), islands
characterized by larger values of the invariants propagate faster to the left, and therefore,
if several islands exist, different islands will temporarily end up stacked on top of each
other upon propagation. It is then clear that by properly choosing the number and size
of frequency jumps, it is possible to produce regions of arbitrarily high genus for finite
values of t . However, the sorting property of the Riemann invariants also implies that,
eventually, each of the islands will separate from the others. Thus, asymptotically in t ,
at most one island will be present for each value of x , and correspondingly there will be
at most two gaps (i.e., bounded intervals of the spectrum).

Remark 5.3. The above decomposition of the solution of the NLS equation (1.1) into
regions of genus-0, 1, and 2 asymptotically with time should be compared to the corre-
sponding result for the Korteweg–de Vries (KdV) equation ut + 6uux + uxxx = 0, for
which it was shown that the solution decomposes into expanding regions of genus-0 and
genus-1 asymptotically in time [19].

Remark 5.4. It is important to note that regions of genus-3 may also exist in the solution
of NLS for all finite values of time. For example, Figure 10a shows the invariants produced
by a configuration with two collectively subcritical jumps surrounded by two individually
supercritical ones, while Figure 10b shows the invariants produced by a collection of three
jumps that are individually subcritical but collectively supercritical. Due to the double
sorting property of the Riemann invariants, however, the width of these regions decreases
monotonically, and tends to a constant value asymptotically with time. Therefore, the
presence of these regions does not invalidate the statement of Theorem 5.2. Moreover,
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Fig. 10. Additional diagrams of asymptotic configurations of Riemann invariants showing explic-
itly the presence of shrinking genus-3 regions; (a) is the analogue of Figure 9b; (b) is the analogue
of Figure 8b (see text for details).

we expect the width of these genus-3 regions to tend asymptotically to zero with time
(cf. Conjecture 4.6). The situation is similar to the case of the KdV equation, where, in
addition to expanding regions of genus-0 and genus-1, shrinking regions of genus-2 may
also exist asymptotically.

From the proof of Theorem 5.2 we also have:

Corollary 5.5. Whenever an overall genus-0 region develops at the center of the pulse
as a result of the interaction among all frequency jumps, its amplitude is always given
by the analogue of (1.8), namely ρmax = 1

16 (r
0
2 (∞)− r0

1 (−∞))2, in a similar way as for
the single-jump case.

In other words, the above value is the largest amplitude of a genus-0 region that can be
achieved with any number N of frequency jumps (cf. Figures 4b and 6b,c). In the case
of equal frequency jumps of size C = 2u0, it is ρmax = q2

0 (1+ Nu0/2q0)
2.

Corollary 5.6. Asymptotically as t → ∞, the solution in the central portion of the
pulse will be a region of genus-0 iff the jumps are collectively subcritical, i.e., iff
r0

1 (∞) < r0
2 (−∞).

In the case of equal-size frequency jumps, this condition is satisfied iff u0 ≤ 2q0/N .
Thus, the maximum amplitude of a stable genus-0 region is always ρmax = 4q2

0 , again
as in the single-jump case, and independently of the number of frequency jumps.

All of the results in this work are relative to initial conditions with constant am-
plitude and piecewise-constant frequency. If the initial amplitude and frequency vary
continuously, some differences can obviously be expected in the solution. Because the
quasi-linear system of PDEs for the regularized Riemann invariants is always strictly
hyperbolic, it is stable with respect to small changes in the initial conditions. Thus,
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even though the previous results are relative to the case of discontinuous amplitude and
frequency jumps, they describe generic features of the solution. Consider, for example,
the dam-breaking problem. If the amplitude varies continuously from 0 to its maximum
value, oscillations appear near the edges of the pulse. (Indeed, these oscillations are
visible in the numerical simulations.) In the absence of frequency jumps, this scenario
was studied by Forest and McLaughlin using the Lax-Levermore theory [16]. As long
as the transition region is narrow, however, the amplitude of these oscillations is small,
and therefore the solution will bear a close resemblance to the solutions described here.
Similar considerations apply if the frequency transitions are not discontinuous, as will
be discussed in Section 6.

The above results are derived assuming a symmetric collection of positive frequency
jumps. The presence of negative frequency jumps at the edges or in between other
jumps would obviously affect the quantitative details of the picture. We expect that the
qualitative features, however, and in particular the asymptotic decomposition into regions
of genus-0, 1, and 2, to remain valid.

6. Behavior of Finite-Genus Solutions: Numerical Simulations

Even though the analytical calculations described in the previous sections provide a
general picture of the behavior of finite genus solutions of the NLS-Whitham equations,
there are obviously limits to what can be done analytically. In this section and the
following one, we therefore complement those analytical results by presenting numerical
simulations of the defocusing NLS equation with small dispersion.

All the numerical results presented are obtained by numerically integrating the NLS
equation (1.1) with ε2 = 0.1 using a fourth-order Fourier split-step method. We consider
an initial condition q(x, 0) = |q(x, 0)| exp[iϕ(x, 0)/ε], where the initial phase ϕ(x, 0)
is obtained by integrating (5.1):

ϕ(x, 0) =
N∑

j=1

[−x /2+ (x − X j )H(x − X j )] Cj , (6.1)

where the function H(x) = 1, if x ≥ 0, and H(x) = 0, if x < 0, represents the
Heaviside unit step. The initial pulse amplitude was taken to be a super-Gaussian, namely
|q(x, 0)| = q0 e−(x /�X0)

2M
with M = 40. The integration step size and the width �X0

of the pulse were chosen to be respectively sufficiently small and sufficiently large that
none of the numerical results described in this work are affected by them. In order to
remove the factor ε in front of the time derivative in (1.1), the numerical simulations
were set up in terms of the fast scale t ′ = t /ε. Accordingly, all the numerical results will
be described in terms of this time variable. In what follows, we describe the behavior
of the solutions for varying values of the parameters X j and Cj and for varying number
of frequency jumps. We first consider the case of two frequency jumps, to numerically
identify regions of different genus (Figure 11) and show a few snapshots of the time
evolution (Figure 12). We then proceed to describe three sets of simulations: The first set
(Figure 13) shows the effect of gradually increasing the size of the frequency jump. The
second set (Figure 14) describes the effect of increasing the number of jumps. Finally,
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(a) (b)

(c) (d)

Fig. 11. Contour plots of numerical simulations of the NLS equation (1.1) for a two-jump initial
condition and for different values of the jump size parameter C : (a) C = 5, corresponding to
Figure 6a and Figure 7a, showing two jumps that are both individually supercritical; (b) C = 3
corresponding to Figure 6c,d and Figure 7b, showing two jumps which are individually subcritical
but supercritical in combination; (c) the case C = 2, corresponding to Figure 7c in which the two
jumps are collectively critical; (d) C = 1, corresponding to Figure 6b and Figure 7d and showing
a case in which the jumps are collectively subcritical. In each case, the dashed lines demarcate
the recognizable regions of different genus. In particular, the speeds of the boundaries between
genus-0 and genus-1 regions are in very good agreement with the analytical results described in
the previous sections.

the third set (Figure 15) shows the effect of changing the initial separation between
these jumps. Although numerical experiments were performed with various values of
amplitude, all the figures in this work except Figure 18a are relative to the case q0 = 1.

Two frequency jumps. Figure 11 shows contour lines of |q(x, t)| in the (x, t)-plane for
different values of the jump size C1 = C2 = 2u0 =: C . Because of the finite, nonzero
value of ε, not all of the features presented in the previous section are immediately
apparent. In other words, because of the finite value of ε, the solution of the NLS
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Fig. 12. Numerical simulations of the NLS equation illustrating the evolution with time of a critical
two-jump initial condition. The frequency jumps, located at X2 = −X1 = 5/2, have amplitude
C1 = C2 = 2, so that their interaction produces a genus-0 region of constant width in the center
(as shown in Figure 11c). The solution is shown at (a) t ′ = 2, (b) t ′ = 3.5, (c) t ′ = 5, (d) t ′ = 10.
This case corresponds to the contour plot in Figure 11c and the bifurcation diagram in Figure 7c.

equation is only approximately described by a finite-genus solution in each region.
Moreover, numerically reconstructing the genus of the solution is a highly nontrivial
problem, which is outside the scope of this work. Nonetheless, some regions of genus-
0 and genus-1 (whose boundaries have been delimited by dashed lines in Figure 11)
are recognizable (e.g., regions of genus-0 are often flat, and therefore appear white in
the contour plots in Figure 11), and their location displays a very good qualitative and
quantitative agreement with the analytical calculations presented in Section 4. Note in
particular that, even though the value of ε is not particularly small, the value of C which
corresponds to the critical case is exactly that which was predicted analytically, namely
C = 2. Figure 12 shows four snapshots illustrating the evolution with time of the critical
case shown in Figure 11c.
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Fig. 13. Numerical simulations of a two-jump initial condition with�X = 5, for different values
of the jump size C1 = C2 = C : (a) C = 1; (b) C = 7/2. The critical case C = 2 is also shown in
Figure 12d. In (a) the solution is subcritical (the genus-0 region expands forever; see Figure 7d),
and the solution is shown at t ′ = 10, whereas in (b) the solution is supercritical (see Figure 7b),
and it is shown at the time when the genus-0 portion has maximum width, t ′ = 5.2. The horizontal
dashed line at |q| = 1 represents the amplitude of the initial condition, and the other horizontal
dashed line identifies the amplitude of the genus-0 region. Note that (i) the amplitude of the genus-
0 portion of the solution increases linearly with increasing value of C , (ii) for increasingly large
values of C , the genus-0 solution tends to close more rapidly, and, above a certain threshold, does
not open at all.
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Fig. 14. Numerical simulations for different numbers N of frequency jumps, with the size of each
frequency jump fixed at Ci = 2, i = 1, . . . , N : (a) N = 3; (b) N = 5. In both cases the solution
is shown at t ′ = 10. See also Figure 3b, illustrating the case N = 1, and Figure 12d, illustrating
the (critical) case N = 2. Note that for N = 1 the central genus-0 region expands and for N = 2
it has a steady width, whereas for N > 2 it exists only for limited times. In all cases the amplitude
of this central genus-0 portion increases linearly with the number of jumps. However, for larger
number of jumps, this genus-0 portion tends to close more rapidly, and above a certain number N
it does not open at all, at least for a fixed value of �X .
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Fig. 15. Numerical simulations for different separations between jumps, here with a critical ar-
rangement of two frequency jumps of amplitude C1 = C2 = 2: (a) �X = 2, (b) �X = 16. See
also Figure 12d, which shows the case �X = 5. In (a) the solution is shown at t ′ = 10, in (b) at
t ′ = 32. Increasing the value of �X has two main effects: It increases the maximum width of the
genus-0 portion, and it simultaneously lengthens the time scales over which the evolution occurs.
See also Figure 7c.

It is also interesting to note that the hexagonal patterns visible in Figure 11 (in
particular, near the center x = 0 in Figures 11a and 11b) show the interaction of two
counterpropagating genus-1 (periodic) waves, which produce, as a result, a genus-2
solution of the NLS equation. Note that in the absence of nonlinearity, a superposition of
two simple waves would produce just a parallelogrammic pattern. Thus, the hexagonal
pattern is the result of nonlinear phase shifts in the interaction. (Note that the hexagonal
pattern can also be found in genus-2 solutions of the Kadomtsev-Petviashvili equation
describing two-dimensional shallow water waves [20].)

Size of the frequency jumps. This set of simulations, some results of which are shown
in Figure 13, is relative to a two-jump initial condition. We take the two jumps to be of
equal size, C1 = C2 = 2u0 = C , and to be initially positioned at X1 = X2 = ±2.5.
Looking at the behavior of the solution as C varies, one can clearly observe that the
amplitude of the genus-0 portion of the solution increases linearly with increasing value
of C . More precisely, |q|max = q0 + C /2, in agreement with the analytical calculations
presented in the previous section (cf. Corollary 5.5). See also Figure 17a later. Moreover,
in a similar way as in the single-jump case, one can see that the maximum amplitude
of a stable genus-0 region is |q|max = 2q0. When u0 is larger than the threshold value
q0, the genus-0 region eventually disappears, as explained in Section 4 and as described
in Figure 7b. Unlike the single-jump case, however, one can obtain larger values of ρ
for limited times, as shown in Figure 13c,d. Note how, over these shorter times, the
amplitude of the genus-0 region is still given by |q|max = q0+C /2. Note also, however,
that the genus-0 solution closes more rapidly for increasingly large values of C , and
above the threshold C = 4 (i.e., C = q0) does not open at all, at least for a fixed value of
�X . These results are in very good agreement with the analytical calculations described
in the previous sections (e.g., see Proposition 5.1 and Corollaries 5.5 and 5.6).
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Number of frequency jumps. In this set of simulations, some of which are shown in
Figure 14, the number N of frequency jumps was varied, while the size of each jump and
their initial spatial separation are kept fixed respectivaly at C = 2 and �X = 5. From
Figure 14, it is apparent that the amplitude of the genus-0 part also increases linearly
with the number of jumps. More precisely, |q|max = q0 + NC /4, in agreement with the
analytical calculations presented in the previous sections (cf. Corollary 5.5). See also
Figure 17b later. The genus-0 region, however, will eventually close up if the total jump
exceeds the same threshold as in the previous case: Ctot = NC = 4q0 (cf. Corollary 5.6).
For increasingly larger numbers of jumps, the amplitude of the genus-0 region follows
the same law as above, namely |q|max = q0 + NC /4, and can temporarily achieve very
large values. The genus-0 region also tends to close up more rapidly, however, and, above
a certain number of jumps, does not open at all (at least for a fixed value of �X ).

Spatial separation between frequency jumps. In this set of simulations we look at the
effect of increasing the spatial separation �X between the frequency jumps. Figure 15
is relative to a two-jump initial condition with C = 2. The consequences of changes
in �X are not as obvious as those of changes in the number of jumps or the jump
size. One can see, however, that increasing �X has two main effects: on one hand, it
lengthens the time scales over which the evolution occurs, since the various regions need
to travel for longer distances to come into contact and to interact; at the same time, it
determines the width of the stable genus-0 region in the critical case. In fact, numerical
results show a remarkable fact, namely that the width X∞ of the stable genus-0 region
depends linearly on the initial spatial separation �X between the jumps. In the case of
two frequency jumps, one simply has X∞ = �X /2. (Cf. Figures 11c, 12, and 15.) A
similar relation, however, holds independently of the number of jumps. For a critical
arrangement of an arbitrary number N of equal size, equally spaced positive jumps, it is
X∞ = (N − 1)�X /2, where �X is the initial separation between consecutive jumps.
(Cf. Figure 16, and note that (N − 1)�X is just the distance among the farthest two
frequency jumps.) These relations are verified in Figure 18a,b.

Summary. Let us recapitulate for convenience the main results of the numerical ex-
periments discussed in the above paragraphs. Given N positive frequency jumps with
individual sizes Cj and separations �X j , we can observe that

(i) The value of the asymptotic genus in the central portion of the pulse is determined
only by the total jump Ctot = C1+ · · · +CN (or, equivalently, by the size per jump
C = Ctot/N in the case of N jumps of equal size). More precisely, the solution
will be genus-0 iff Ctot < q0, in very good agreement with the analytical results
(see Corollary 5.6). Of course, the detailed behavior of the solution for finite times
depends on the precise values of all the Cj and �X j .

(ii) If a genus-0 region is desired that expands forever at the center of the pulse, its
height is limited by the critical value of the cumulative jump Ctot. More precisely,
|q|max = 2q0, independently of the number of jumps. For equally sized jumps, this
value is obtained for C = 4q0/N , in very good agreement with the analytical results
(see Corollary 5.5).
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(a) (b)

Fig. 16. Critical arrangements of more than two jumps: (a) N = 3 and C = 4/3; (b) N = 4 and
C = 1. In both cases, q0 = 1 and �X = 4.

(iii) It is possible to achieve genus-0 regions of much larger amplitudes over limited
times by employing a sufficiently large number of jumps. More precisely, |q|max =
q0+Ctot/4 (i.e., |q|max = q0+NC /4 for equally sized jumps), as shown in Figure 17,
and again in very good agreement with the analytical results (see Corollary 5.5).

(iv) For a critical arrangement of an arbitrary number of equally sized, equally spaced
positive frequency jumps, the width of the stable genus-0 region is half of the ini-
tial separation between the farthest two frequency jumps. This fact has not been
demonstrated analytically, but is nonetheless very solidly supported by the numer-
ical results, as shown in Figure 18.

In the next section we discuss how these results—and in particular items (iii) and (iv)—
can be used to generate intense, ultra-short optical pulses.
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Fig. 17. (a) The numerically calculated amplitude of the genus-0 region produced by an arrange-
ment of N equally sized frequency jumps as a function of the individual jump size C . Triangles:
N = 1; squares: N = 2; circles: N = 3. For comparison, the solid, dashed, and dot-dashed lines
show the straight lines y = (N − 1)C /4. (b) The amplitude of the genus-0 region produced by
an arrangement of frequency jumps each of size C = 2, as a function of the number N of jumps.
Squares: numerical simulations; dashed line: the line y = 1+ N /2.
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Fig. 18. Width of the genus-0 region resulting from the interaction of a critical set of frequency
jumps as a function of the spatial separation between them: (a) N = 2; solid line: the straight
line y = �X /2; squares: simulations with q0 = 1 and C = 2; triangles: simulations with q0 = 2
and C = 4; stars: simulations with q0 = 3 and C = 6. (b) N = 3 (squares) and N = 4 (triangles),
with q0 = 1 in both cases; solid line: the straight line y = (N − 1)�X /2. Note that, since the
characteristic periodi of the rapid oscillations is O(ε), it is only possible to measure the width of
the genus-0 region with precision �x = ±ε.

7. Applications: Generation of Intense Short Optical Pulses

The analytical and numerical results described in the previous sections can be used to
design an initial condition that results in a genus-0 region of arbitrarily high amplitude
at any desired distance down the fiber by employing a sufficiently long continuous wave
(CW) pulse at the outset, as we now describe. (Recall that for fiber optics x is the
retarded time and t is the propagation distance along the fiber.) Of course, the same
techniques can also be applied in any physical context where the dispersionless limit of
the NLS equation is relevant. The basic building block consists of two frequency jumps of
critical size, which generate a genus-0 region of constant width, as shown in Figure 11c.
By including additional frequency jumps to both sides of this basic pair, one can then
temporarily produce an overall genus-0 region of higher amplitude. This basic process is
illustrated in Figure 19, which shows the time evolution of a four-jump initial condition.
A contour plot of this solution is shown in Figure 20a. We now discuss some practical
issues related to the generation of these high-intensity pulses: namely, how to control
their amplitude, the distance along the fiber at which they are produced, their temporal
width, and post-processing through filtering in order to eliminate the high-frequency
oscillations.

Amplitude, location, and width. By appropriately choosing the number, amplitude and
location of the additional frequency jumps, it is possible to precisely specify the amplitude
of the overall genus-0 region as well as to prescribe its width and the distance along the
fiber at which it is generated. This is illustrated in Figure 20, which contains contours of
four different initial conditions. Figure 20a corresponds to the four-jump solution shown
in Figure 19: the two central frequency jumps are critical (C2 = C3 = 2), while the
single, subcritical frequency jumps on either side of them (C1 = C4 = 3) provide two
expanding genus-0 regions that go to interact with the main one, resulting in an overall
genus-0 region of amplitude |q|max = q0+Ctot/4 = 7/2, once more in perfect agreement
with the analytical prediction.
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Fig. 19. Numerical simulations of the NLS equation with a supercritical four-jump initial con-
dition. The frequency jumps, located at X4 = −X1 = 24 and X3 = −X2 = 2, have amplitude
C2 = C3 = 2 (so that the interaction of the two center jumps produces a critical genus-0 region
in the center) and C1 = C4 = 3, so that the two individual subcritical jumps open up a genus-0
region that moves towards the center of the pulse. The solution is shown at (a) t ′ = 2, (b) t ′ = 6,
(c) t ′ = 16, (d) t ′ = 24. A contour plot of this solution is shown in Figure 20a.

With similar arrangements of four jumps, one can obtain any value of amplitude
|q|max < 4, at which point the two side jumps become critical and do not generate
a genus-0 region anymore. This limitation on the pulse amplitude can be overcome,
however, by considering a larger number of frequency jumps. Figures 20b,c are both
relative to a six-jump initial condition with all jumps having amplitude Cj = 2, so that
each pair of adjacent jumps generates a genus-0 region of constant width. These regions
then interact to create an overall genus-0 region of amplitude 4. In Figure 20b, the jump
locations −X3 = X4 = 2, −X2 = X5 = 15, −X1 = X6 = 20 were chosen so that
the overall genus-0 region arises near t ′ = 15. In Figure 20c, instead, the side jumps
−X2 = X5 = 20, −X1 = X6 = 35 were positioned further away, so that the genus-0
region emerges near t ′ = 25 and is maintained for a longer interval. Finally, Figure 20d
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(a) (b)

(c) (d)

Fig. 20. Contour plots of the numerical solution of the NLS equation with various choices of
frequency jumps: (a) four jumps, with parameters corresponding to the solution shown in Figure 19;
(b) six jumps, positioned at −X3 = X4 = 2, −X2 = X5 = 15, −X1 = X6 = 20 and all with
amplitude C = 2; (c) six jumps, with the same parameters as before except −X2 = X5 = 20 and
−X1 = X6 = 35; (d) eight jumps, each with amplitude C = 2 and positioned at −X4 = X5 = 4,
−X3 = X6 = 20, −X2 = X7 = 35, −X1 = X8 = 50.

shows an eight-jump initial condition, with equally sized jumps Cj = 2, generating
an overall amplitude |q|max = 5. Once more, the jump locations were chosen so that
this region emerges near t ′ = 25. A convenient way to choose the jump locations is to
remember that each frequency jump moves with velocity corresponding to the average
frequency across the jump.

Finally, we note that the width of the central genus-0 region can easily be adjusted by
changing the temporal separation between the two critical frequency jumps, by virtue of
the linear relation between these two quantities, which was discussed in Section 6.

Smooth frequency transitions. The remarks at the end of Section 5 about the general
stability of the analytical results with respect to small changes in the initial conditions
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(a) (b) (c)

Fig. 21. Numerical simulations of NLS with smooth frequency transitions, with two frequency
jumps located at X2 = −X1 = 2: (a) C = 3; (b) C = 2, (c) C = 1. These figures should be
compared to Figure 11b–d.

also apply with regard to the discontinuity in the frequency jumps. That is, we expect
that the general picture described here will be an approximate description of the pulse
behavior even if the frequency transitions were continuous, as would be the case in
any experimental setup. To test this prediction, we performed numerical simulations in
which, instead of (5.1), the initial frequency was chosen according to

u(x, 0) = 1

2

N∑
j=1

Cj tanh(x − X j ), (7.1)

which implies ϕ(x, 0) = (1/2)
∑N

j=1 Cj log(cosh(x − X j )). The comparison of the
numerical results for discontinuous and smooth frequency transitions shows remarkable
agreement between the two cases, with regard to both the bifurcation diagrams and
the amplitude of the genus-0 regions. As an example, in Figure 21 we show numerical
simulations of two frequency jumps with the same parameter values as in Figure 11b–d.
Note also that the hexagonal pattern near the center x = 0 in Figure 21a shows a genus-
2 solution of the NLS equation (see also Figure 11). The evolution of the Riemann
invariants corresponding to Figure 21a is given by a smooth version of Figure 8.

Filtering. The high-frequency oscillations that appear on each side of the genus-0 region
may be undesirable for practical purposes. These oscillations can effectively be removed
by appropriately filtering the pulse at the fiber output, resulting in a smooth, high-
amplitude short optical pulse. For example, post-processing with a Lorentzian filter with
frequency response F(ω) = (√R/π)/(1 + Rω2), with R � 1, effectively “wipes out”
the genus-1 and genus-2 oscillations. A drawback of this method, however, is that, in
the case of a narrow pulse, the conversion efficiency (i.e., the amount of energy in the
initial CW pulse that is preserved in the final high-amplitude pulse) is rather low after
filtering. A higher conversion efficiency can be obtained either by employing an Erbium-
doped fiber amplifier or by increasing the temporal separation between the two central
frequency jumps, so as to obtain a wider genus-0 region.

Parameter scaling. As a concluding remark we note that, even though almost all the
figures in this work describe solutions produced by initial conditions with amplitude
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q0 = 1, all of these numerical results can easily be related to different values of initial
amplitude thanks to the scaling symmetry of the NLS equation. Namely, if q(x, t) →
a q(x, t), the results in this work still apply upon rescaling x → x ′ = x /a, t →
t ′ = t /a2, implying ρ(x, t) → ρ ′(x ′, t ′) = a2ρ(ax ′, a2t ′) and u(t, x) → u′(x ′, t ′) =
a u(ax ′, a2t ′). Importantly, the same scalings can also be used to relate the results to
choices of spatial or temporal units different from those discussed in Appendix A.1.

Appendix A.1 Nondimensionalizations and Scalings

It has been known for more than thirty years that the propagation of a coherent light
pulse in optical fibers is governed by the NLS equation, which, in physical units,
is [4], [23]

i
∂ E

∂z
− 1

2
k ′′
∂2 E

∂t2
+ γ |E |2 E = 0, (A.1)

where E(t, z) is the slowly varying amplitude of the complex envelope of the electric
field of the pulse, t = tlab − z/cg is the retarded time, and z is the propagation distance.
Here, cg = 1/k ′ is the group velocity, k(ω) the propagation constant, k ′′ = d2k/dω2 the
dispersion coefficient, and γ the nonlinear coefficient. In the following, we will use the
typical value γ = 3 W−1km−1.

Introducing the dimensionless variables q = E /
√

P∗, T = t /t∗, and Z = z/znl, where
P∗ and t∗ are some characteristic power and temporal duration, and where z∗ = znl =
1/(γ P∗) is the nonlinear length (the characteristic distance over which nonlinear effects
take place), (A.1) becomes

i
∂q

∂Z
− 1

2
d̄
∂2q

∂T 2
+ |q|2q = 0. (A.2)

The dimensionless dispersion coefficient d̄ = k ′′/k ′′∗ = znl/zdisp (with k ′′∗ = t2
∗ /znl)

quantifies the relative importance of nonlinear and dispersive effects in (A.1). In this
work we are interested in particular in situations where 0 < d̄ � 1. This can be
achieved in two different ways: constant dispersion or dispersion management. Note that
the dimensionless dispersion coefficient d̄ in (A.2) is obtained equivalently as d̄ = k ′′/k∗
or as d̄ = D/D∗, with D = −(2πc/λ2) k ′′, with D∗ = −(2πc/λ2) k ′′∗ , and where D is the
dispersion coefficient in ps/(nm·km). Note 2πc/λ2 = 0.78 (nm·ps)−1 at λ = 1.55µm.

Typical units. We first consider the case of fibers with constant dispersion. A unit
power P∗ = 2 W (which can be obtained using commercially available high-power
Erbium-Doped-Fiber-Amplifier lasers) implies znl = 0.16 km. A characteristic time unit
of t∗ = 50 fs (which is appropriate in order to describe short optical pulses) yields
k ′′∗ = 1.5 ps2/km. Then the dimensionless dispersion coefficient d̄ in (A.2) is d̄ =
D/D∗, with D∗ = −1.2 ps/(nm·km). A value of d̄ = 0.1 (such as the one used in
all the simulations presented in this work) can then be obtained by employing a fiber
with dispersion coefficient D = −0.12 ps/(nm·km). Alternatively, the same effects can
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be observed for lower-amplitude, longer pulses over longer propagation distances: for
example, with a unit power P∗ = 20 mW, and a unit time t∗ = 0.5 ps, the unit distance
would be z∗ = 16 km.

Fibers with a larger nonlinear coefficient (such as a dispersion-shifted fiber or a
photonic-crystal fiber) would have a correspondingly smaller nonlinear length znl, which
would make it possible to observe the same nonlinear effects over shorter distances. Also,
for comparable values of t∗ and P∗, a higher nonlinearity would result in a larger value
of k ′′∗ , which means that fibers with correspondingly larger dispersion coefficients may
be used. Alternatively, a higher nonlinearity would make it possible to achieve the same
value of k ′′∗ (and hence d̄) with shorter temporal scales t∗ and/or with smaller peak
powers P∗.

It should be noted that (A.1) neglects the effect of fiber loss, and therefore the peak
powers listed above should be taken as the average of the pulse powers over the whole
transmission span. This is not a serious issue if the total propagation distance is much
shorter than the characteristic distances for fiber absorption, as with the sample param-
eters chosen earlier (for standard telecommunication fibers, a power loss coefficient of
0.2 dB/km is typical), or if the effects of damping can be minimized by placing one or
more (Erbium-doped and/or Raman) fiber amplifiers inside the transmission span, since
it is well known that the average dynamics in systems with loss and periodic amplifica-
tion are still governed by the NLS (1.1) with constant coefficients [21]. We should also
note that quasi-lossless propagation of optical pulses over several hundred kilometers
has recently been achieved by making use of two bidirectional Raman pumps plus fiber
Bragg gratings [13], [5]. Finally, note that (A.1) also neglects higher-order dispersion.
As shown in [27], third-order dispersion can affect pulse behavior. In order for the re-
sults described in this work to apply, therefore, it is necessary that the fiber dispersion
be approximately constant throughout the bandwidth of the pulse, which means that
third-order dispersion should be small.

Dispersion management. If realizing small values of d̄ in a stable way should require
an unpractical level of control over fiber dispersion, the problem might be circumvented
by making use of dispersion management. With dispersion management, a very small
value of ε can be achieved as an average between the opposite dispersion coefficients of
fibers with alternating signs of dispersion, even if the local values of dispersion are not
individually small.

The propagation of optical pulses in systems with dispersion management is still
described by the NLS eq. (A.2); however, the dimensionless dispersion coefficient d̄
in (A.2) is replaced by a periodic function d(z). The specific choice of d(z) is called a
dispersion map. The relative effect of the periodic dispersion variations can be quantified
by the reduced map strength parameter s, which is defined as [1] 4s = 〈| d( · )− d̄ |〉 za ,
where now d̄ = 〈d( · )〉 and the average is taken over the period of the dispersion
map, za . As long as the strength s of the dispersion map is small, it is possible to
average over the rapid variations of the pulse profile originating in the NLS equation
with periodic coefficients. Indeed, it is well known that, just as with loss/amplification,
the NLS eq. (A.2) describes the evolution of the leading-order portion of the pulse
envelope [22] in a system with a moderate amount of dispersion management. That is,



474 G. Biondini and Y. Kodama

the leading order part of the pulse again satisfies the NLS equation (A.2), except that
the parameter d̄ now represents the average dispersion. Therefore, the use of dispersion
management might be desirable because it allows one to more easily obtain small values
of effective dispersion than for a system with constant dispersion. Because on average
the system is still governed by the NLS equation, the results presented in this work will
be preserved as long as the dispersion map strength s is small. If the map strength s
becomes large, however, the leading order dynamics are described not by the NLS, but
rather by a nonlocal evolution equation of NLS-type [1], [17]. Determining the behavior
of the solutions with small d̄ for this type of system is a highly nontrivial task, which is
beyond the scope of this work.

Appendix A.2 Genus-1 Solutions of NLS and Whitham’s Averaging Method

Here we briefly review the construction of genus-1 solutions of the NLS equation and
the derivation of the genus-1 NLS-Whitham equations, with the aim of clarifying the
connection between the Riemann invariants and the spectrum of the Lax operator. For a
detailed construction of higher-genus solutions involving theta functions, see [6], [18].

In order to construct traveling wave solutions of the NLS equation (1.1), it is conve-
nient to introduce the fast space and time scales x ′ = x /ε and t ′ = t /ε, and write (1.1)
as iqt ′ − 1

2 qx ′x ′ + |q|2q = 0. We then look for solutions of the form

q(x ′, t ′) = ei[cx ′+ 1
2 (c

2+�2)t ′] f (x ′ + ct ′), (A.3)

with c, � ∈ R and f ( · ) a real function of its argument. Substituting (A.3) into the NLS
equation and integrating once, one obtains

(d f /dx)2 = f 4 − σ1 f 3 + σ2 f 2 − σ3 f + σ4 =: µ( f ), (A.4)

where σ1 = σ3 = 0, σ2 = −�2, σ4 = C , and where C is the integration constant. It is
convenient to represent the right-hand side of (A.4) as

µ( f ) = ( f − r1)( f − r2)( f − r3)( f − r4), (A.5)

where the roots r1, . . . , r4 are related to the coefficients in (A.4) by

σ1 = r1 + r2 + r3 + r4, σ2 = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4, (A.6a)

σ3 = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4, σ4 = r1r2r3r4. (A.6b)

Integrating (A.4) formally one has
∫

d f /
√
µ( f ) = ±(x ′ − x ′0). The integral then defines

the solution of NLS in terms of elliptic functions. Note, however, that real solutions are
confined to those values of f such thatµ( f ) > 0. It is then clear that the values of the four
roots r1, . . . , r4 (which will be the Riemann invariants when performing the Whitham
averaging described in the next subsection) determine the edges of the forbidden regions,
which are the values of f for whichµ( f ) < 0. Several situations can occur depending on
the values of the parameters in (A.4). It is relatively easy, however, to see that bounded
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solutions only exist when all four roots of µ( f ) are real. In this case the solution of
(A.4) is given by the elliptic sine [9]: f (x ′) = k sn(x ′, k), where the elliptic modulus
k ∈ [0, 1] is given by k2 = �2 − 1 = C . (The elliptic parameter [3] is m = k2.) If we
label the roots of µ( f ) as r1 < r2 < r3 < r4, it is r4 = −r1 = 1 and r3 = −r2 = k. The
value of f oscillates between r2 and r3, and the spatial period of the solution is given
by 4K (k), where K (k) is the elliptic integral of the first kind [3]. In the limiting case
r4 = r3 = −r1 = −r2, one has k = 1, the period of the solution tends to infinity, and
one obtains the dark soliton solutions of the NLS equation: f (x ′) = tanh x ′. Note that
the solution of the NLS equation is specified in terms of the four roots r1, . . . , r4. For a
more detailed discussion of single-phase solutions of the NLS equation in the focusing
as well as defocusing regimes, as well as their stability, see [10], [26].

It is important to note that, for any finite value of the small parameter ε, the presence
of ε in (1.1) can be taken into account by simply replacing (x, t) with the fast variables
(x ′ = x /ε, t ′ = t /ε). This phenomenon is the origin of the high-frequency oscillations in
the solution of NLS with small dispersion coefficient, discussed throughout this work.
The nontrivial issue, however, is to understand the qualitative behavior of the solution
in the weak dispersion limit, as formulated in Section 1.

Let us then briefly outline how to obtain the genus-1 NLS-Whitham equations. It is
well known that the NLS equation admits an infinite number of conservation laws:

∂ Fn

∂t ′
= ∂Gn

∂x ′
, (A.7)

n = 1, . . . ,∞. For example, the first four conserved densities are

F1 = |q|2, (A.8a)

F2 = i(q∗qx ′ − qq∗x ′), (A.8b)

F3 = |qx ′ |2 + |q|4, (A.8c)

F4 = i(q∗qx ′x ′x ′ − qq∗x ′x ′x ′)− 3i |q|2(q∗qx ′ − qq∗x ′). (A.8d)

Then we consider small modulations of the genus-1 solution given by the elliptic function,
in the sense that the deformation due to the modulation is of order ε over one period of
the wave. Following the standard perturbation method of multiple scales, we introduce
the slow time and space scales x = εx ′ and t = εt ′. We now have two sets of scales,
consisting of a set of fast scales for the oscillations and a set of slow scales for the
modulations. With those variables, we have

∂

∂x ′
→ ∂

∂x ′
+ ε ∂

∂x
,

∂

∂t ′
→ ∂

∂t ′
+ ε ∂

∂t
.

Then, expanding the conserved quantities as Fn = F0
n + εF1

n + · · · and Gn = G0
n +

εG1
n + · · · and taking the average of the conservation laws (A.7) over the fast scale x ′,

at order ε we obtain the NLS-Whitham equations in conservation form:

∂ 〈F0
n 〉

∂t
= ∂ 〈G0

n〉
∂x

. (A.9)
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Here 〈F0
n 〉 and 〈G0

n〉 are the average of the leading-order conserved densities and fluxes
associated with the solution of the NLS equation, and the average of a periodic function
f (x ′, t ′) = f̂ (θ) is given by

〈 f 〉 = 1

L

∫ L/2

−L/2
f (x ′, t ′) dx ′ =

∫ 1

0
f̂ (θ) dθ, (A.10)

where L is the spatial period and θ = (x ′ + ct ′)/L . For the genus-1 solutions described
above, L = 4K (k). Note that the averaged quantities 〈F0

n 〉 and 〈G0
n〉 are functions of the

spectral parameters r1, . . . , r4, Thus the modulations are expressed in terms of the slow
motion of the spectral parameters r1, . . . , r4. This also means that we need the first four
equations from (A.9). By computing the averages, one finds that the variables r1, . . . , r4

are precisely the Riemann invariants for the system. Then, by writing (A.9) in diagonal
form, one finally obtains the genus-1 NLS-Whitham equations (2.3) with g = 1. (That
(A.9) are diagonalizabile is not obvious, but always true for all values of genus; see
Section A.3 for further details.)

Appendix A.3 The NLS-Whitham Equations

Here we briefly review some well-known results for the NLS-Whitham equations. For
more details on the finite-genus solutions of the NLS equation, the averaging process,
and the NLS-Whitham equations, we refer the reader to [6], [27], and references therein.

The genus-g NLS-Whitham equations can be obtained by extending the approach
described in Section A.2 to hyperelliptic solutions of NLS and 2g+ 2 conservation laws
[15]. It is more convenient, however, to take advantage of the integrable structure of the
NLS equation, as described in [27]. Recall that genus-g solutions of NLS are associated
with the Riemann surface R: w2 = µg(z), where µg(z) =

∏2g+2
k=1 (z − rk) (cf. (2.2)).

It was shown in [14], [15], [29], [31] that the NLS-Whitham equations (A.9) can be
elegantly written as

∂ω1

∂t
= ∂ω2

∂x
, (A.11)

where ω1 and ω2 are the meromorphic (Abelian) differentials of the second kind associ-
ated with the Riemann surface R:

ω1 = 1

2

[
1+ zg+1 − 1

2σ1zg + α1zg−1 + · · · + αg−1z + αg√
µg(z)

]
dz

= (1+ O(1/z)) dz, (A.12a)

ω2 = 1

2

[
z + zg+2 − 1

2σ1zg+1 + 1
2 (σ2 − 1

4σ
2
1 )z

g + γ1zg−1 + · · · + γg−1z + γg√
µg(z)

]
dz

= (z + O(1/z)) dz, (A.12b)

where σ1, . . . , σ3 are the generalization of (A.6),

σ1 =
∑

1≤ j≤2g+2

rj , σ2 =
∑

1≤ j<k≤2g+2

rjrk, σ3 =
∑

1≤i< j<k≤2g+2

rirjrk (A.13)
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(σ3 will appear later on), and where the coefficients αj and γj are given by the solution
of two g × g linear systems of equations

I g+1
j − 1

2
σ1 I g

j + α1 I g−1
j + · · · + αg−1 I 1

j + αg I 0
j = 0, (A.14a)

I g+2
j − 1

2
σ1 I g+1

j + 1

2

(
σ2 − 1

4
σ 2

1

)
I g

j + γ1 I g−1
j + · · · + γg−1 I 1

j + γg I 0
j = 0, (A.14b)

j = 1, . . . , g, with the real-valued functions I k
j given by

I k
j =

1

2

r2 j+2∫
r2 j+1

zk√−µg(z)
dz. (A.15)

Equations (A.15) express the requirement that the A-periods of ω1, ω2 be zero: that is,∮
aj
ω1 =

∮
aj
ω2 = 0, where the aj are the A-cycles on the Riemann surface R.

Evaluating the residue of ω1,2 at z = rk in (A.11), one obtains the genus-g NLS-
Whitham equations in Riemann invariant form:

∂rk

∂t ′
= sk(r1, . . . , r2g+2)

∂rk

∂x
, (A.16)

k = 1, . . . , 2g + 2. The characteristic speeds are given by sk(r1, . . . , r2g+2) = s(rk),
with

s(r) = r g+2 − 1
2σ1r g+1 + 1

2 (σ2 − 1
4σ

2
1 )r

g + γ1r g−1 + · · · + γg−1r + γg

r g+1 − 1
2σ1r g + α1r g−1 + · · · + αg−1r + αg

. (A.17)

Since the NLS-Whitham equations (A.16) describe the evolution of the Riemann in-
variants r1, . . . , r2g+2 with respect to the slow time and space variables, and since the
Riemann invariants are also the branch points of the Riemann surface corresponding to
finite-genus solutions of the NLS equation, it follows that the NLS-Whitham equations
describe the slow modulation of finite-genus solutions of the NLS equation.

Note that the Abelian differentials in (A.12) can also be expanded in terms of the
conservation laws of the NLS equation:

ω1 ∼
(

1+
∞∑

n=1

n〈F0
n 〉

zn+1

)
dz, ω2 ∼

(
z +

∞∑
n=1

n〈G0
n〉

zn+1

)
dz, (A.18)

where 〈F0
n 〉 and 〈G0

n〉 are the conserved densities and fluxes of the NLS equation, averaged
over the fast phases. The average of a quasi-periodic function of g phases f (x ′, t ′) =
f̂ (θ1, . . . , θg), with θk = (x ′ +ckt ′)/Lk and Lk being the period for the phase θk , is given
by

〈 f 〉 = lim
L→∞

1

L

∫ L/2

−L/2
f (x ′, t ′) dx ′ =

∫ 1

0
· · ·
∫ 1

0
f̂ (θ1, . . . , θg) dθ1 · · · dθg,

where we have used the ergodic assumption, i.e., that the g phases produce a dense orbit
on the Jacobian variety of the Riemann surface [14]. In this framework (A.11) then yield
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(A.9) for n = 1, . . . , 2g + 2. For example, the first few densities and fluxes are

〈F0
1 〉 = 〈ρ〉 = − 1

4σ2 + 1
16σ

2
1 + 1

2α1,

〈F0
2 〉 = 〈ρu〉 = − 1

4σ3 − 1
8σ1σ2 + 1

32σ
3
1 + 1

8σ1α1 + 1
4α2,

〈G0
1〉 = 〈F0

2 〉 = − 1
4σ3 − 1

8σ1σ2 + 1
32σ

3
1 + 1

2γ1,

〈G0
2〉 = 〈ρu2 + 1

2ρ
2〉 = − 1

8σ4 + 1
8σ1σ3 + 1

32σ
2
2 − 5

64σ
2
1 σ2 + 9

512σ
4
1 + 1

8σ1γ1 + 1
4γ2,

and (1.5) is obtained from (A.9) when g = 0.
Upon evaluating the integrals in (A.15) and taking the appropriate limits as ε → 0+,

(A.17) can be used to calculate the value of all the speeds listed in Sections 3 and 4,
as we show in the next subsection. It should be noted that the general solution of the
NLS-Whitham equations (A.16) can be written in terms of the Hodograph transformation

x − sk(r1, . . . , r2g+2) t = wk(r1, . . . , r2g+2), (A.20)

k = 1, . . . , 2g + 2, where the functions wk are expressed in terms of the initial data via
hyperelliptic integrals. When inverting (A.20) to find the solution q(x, t), the locations
where the Jacobian of the transformation vanishes determine the boundary between
regions of different genus [33], [34]. This information was used in [33] to determine
the location between regions of genus-0 and genus-1 in some specific situations, and
the method was used in [19] to determine the generic evolution of an arbitrary initial
datum for the Korteweg-de Vries equation. It should be noted, however, that the method
cannot be easily applied for the situations considered in the present work, since the
transformation x → q(x, 0) is not invertible in the case of piecewise-constant initial
data, which are the ones of interest here.

Appendix A.4 Calculation of Some Characteristic Speeds

We now briefly describe some calculations regarding the characteristic speeds of the
regularized Riemann invariants for the NLS-Whitham equations. The results of these
calculations and similar others were summarized in Sections 3 and 4. Since the calcu-
lations are rather tedious, however, we will limit ourselves to presenting two examples.
For more details on similar types of calculations, we also refer the reader to [8], [27].
When performing these calculations, it is useful to note that the characteristic speed in
(A.17) is the ratio of two meromorphic differentials, which becomes the ratio of two
polynomials (the denominator of the differentials). In the case of step initial data, some
common factors then arise, and the resulting cancellations produce a finite result.

Genus-1 calculations: Equations (3.1) and (4.5). Our first aim is to calculate s−3 in
case (i) of Section 3, as shown in Figure 4a. This is done by evaluating s3(r1, . . . , r4) =
s(r3), with s(r) given by (A.17), with r4 = −r1 = u0 + 2q0, r2 = −u0 + 2q0, and
r3 = r4 − ε, and then taking the limit ε → 0+. In general, (A.15) yield the coefficients
α1 and γ1 for the g = 1 case as

α1 = −
I 2
1 − 1

2σ1 I 1
1

I 0
1

, γ1 = −
I 3
1 − 1

2σ1 I 2
1 + 1

2 (σ2 − 1
4σ

2
1 )I

1
1

I 0
1

. (A.21)
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In our case, (A.13) also give σ1 = r2 + r4 = 4q0 + ε and σ2 = r2r4 − r2
3 = −2u0(u0 +

2q0) + ε(u0 − 2q0). In general, upon making the substitution z = r3 + � sin2 θ with
� = r4 − r3, the integrals I 0

1 , . . . , I 3
1 take the convenient form:

I k
1 =

π /2∫
0

(r3 +� sin2 θ)k√
(r3 − r1 +� sin2 θ)(r3 − r2 −� sin2 θ)

dθ. (A.22)

In our case, expanding the power in the numerator and substituting the explicit value of
the invariants, the integrals can also be written as

I k
1 =

k∑
m=0

(
k

m

)
(u0 + 2q0)

k−m εm
π /2∫
0

sin2m θ√
(2(u0 + 2q0)− ε cos2 θ)(2u0 − ε cos2 θ)

dθ.

(A.23)
Then, evaluating the integrals in (A.23), substituting the results and (A.21) into (A.17)
and taking the limit ε → 0+, one obtains the desired result, namely (3.1). Note that,
even though limε→0+ I 0

1 = ∞, the final result for the characteristic speed is finite.
We should emphasize that, by rescaling u0 → 2u0, the above calculation also provides

the speed souter in (4.5) of Section 4. More precisely, upon neglecting degenerate branches
in Figure 6a–c, the values of the Riemann invariants that determine s−3 in Figure 4a are
exactly those of the Riemann invariants that determine s−5 in case (i) (cf. Figure 6a) and
s−9 in cases (ii) and (iii) (cf. Figure 6b,c) of Section 4 upon replacing u0 → 2u0.

Degenerate genus-2 calculations: Equations (3.2) and (4.8). We now want to cal-
culate s+5 in case (ii) of Section 3, as shown in Figure 4b. This is done by evalu-
ating s5(r1, . . . , r6) = s(r5), with s(r) still given by (A.17) with g = 2 and with
r6 = −r1 = u0 + 2q0, r4 = −r3 = −u0 + 2q0, r5 = −r2 = r4 + ε, and then again
taking the limit ε → 0+. In general, (A.15) yield the coefficients α1 α2, γ1, and γ2 for
the g = 2 case as

αj+1= (−1) j+1 1

[1, 0]

(
[3, j]− 1

2
σ1 [2, j]

)
, (A.24a)

γj+1= (−1) j+1 1

[1, 0]

(
[4, j]− 1

2
σ1 [3, j]+ 1

2

(
σ2 − 1

4
σ 2

1

)
[2, j]

)
, (A.24b)

j = 0, 1, where

[i, j] = det

(
I i
1 I j

1

I i
2 I j

2

)
. (A.24c)

In our case, thanks to the symmetry of the initial datum for the invariants, (A.13) give
σ1 = 0 and σ2 = −r2

4 − r2
5 − r2

6 = (−3u2
0 + 4u0q0 − 12q2

0 )+ 2(u0 − 2q0)ε − ε2. Upon
making the substitutions z = r3 + (r4 − r3) sin2 θ on I k

1 and z = r5 + (r6 − r5) sin2 θ

on I k
2 and using the reflective symmetry of the initial datum, the integrals I 0

1,2, . . . , I 4
1,2

take the form

I k
1 = (−1)kr k

4

π /2∫
0

cos2k 2θ√
(r2

5 − r2
4 cos2 2θ)(r2

6 − r2
4 cos2 2θ)

dθ, (A.25a)
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I k
2 =

π /2∫
0

(r5+� sin2 θ)k√
(r5−r4+� sin2 θ)(r4+r5+� sin2 θ)(2r5+� sin2 θ)(r5+r6+� sin2 θ)

dθ,

(A.25b)

where� = r6− r5. Then, evaluating the above integrals, substituting (A.27) and (A.25)
into (A.17) and taking the limit ε → 0+, one obtains the desired result, namely (3.2).
Again, note that even though some of the integrals are divergent in the limit ε → 0+,
the result for the characteristic speeds is finite.

Again, we emphasize that, by rescaling q0 → q0 + 1
2 u0 and u0 → 2u0, the above

calculation also provides both of the speeds s(1)inner and s(2)inner in (4.7) of Section 4. More
precisely, it is easy to see that, upon neglecting degenerate branches in Figure 6b–d, the
values of the Riemann invariants that determine s+5 in Figure 4b are the same as those
that determine s+9 in Figure 6b–c q0 → q0+ 1

2 u0. Similarly, upon neglecting degenerate
branches Figure 6b–d, one sees that the values that determine s+5 in Figure 4b also
coincide with those that determine s+7 in Figure 6b and s+5 in Figure 6c upon u0 → 2u0.
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