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Noise-induced perturbations of dispersion-managed solitons
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We study noise-induced perturbations of dispersion-managed solitons. We do so by first developing soliton
perturbation theory for the dispersion-managed nonlinear Schrodinger (DMNLS) equation, which governs the
long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that
the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solu-
tions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced
parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain
evolution equations for the solution parameters. We then apply these results to guide importance-sampled
Monte Carlo (MC) simulations and reconstruct the probability density functions of the solution parameters
under the effect of noise, and we compare with standard MC simulations of the unaveraged system. The
comparison further validates the use of the DMNLS equation as a model for dispersion-managed systems.
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I. INTRODUCTION

Dispersion management has become an essential compo-
nent not only of modern optical fiber communication sys-
tems [1,2], but also of certain femtosecond lasers [3]. The
performance of both kinds of systems is affected by noise,
which is an essential source of system failures. Because these
systems are designed to operate with extremely high accura-
cies (typical values are one error per 10'? bits in communi-
cations and 1 part in 10'® for lasers used in optical atomic
clocks), calculating failure rates analytically is extremely dif-
ficult since failures result from the occurrence of unusually
large (and therefore atypical) deviations. At the same time,
direct Monte Carlo computations of failure rates are imprac-
tical due to the exceedingly large number of samples that
would be necessary to obtain a reliable estimate.

The effect of noise on optical transmission systems mod-
eled by the nonlinear Schrodinger (NLS) equation has re-
cently been studied [4—8] using a variance reduction tech-
nique called importance sampling (IS). In brief, IS biases the
Monte Carlo simulations in such a way as to artificially in-
crease the probability of achieving the rare events of interest,
while correcting for the bias using appropriate likelihood ra-
tios (e.g., see Refs. [9,10]). Use of IS makes it possible to
efficiently estimate extremely small probabilities.

The key in successfully applying importance sampling
lies in biasing towards the most likely noise realizations that
lead to system failures. In the above-cited works, this was
achieved by taking advantage of well-known results about
the behavior of solutions of the NLS equation linearized
around a soliton. This knowledge is not available, however,
in systems with dispersion management. The aim of this
work is to address this problem. We do so by employing the
dispersion-managed NLS (DMNLS) equation which governs
the long-term dynamics of dispersion-managed optical sys-
tems [11-13].

The layout of this paper is as follows. In Sec. II we de-
velop a perturbation theory for dispersion-managed systems.
First we study the connection between the invariances of
DMNLS equation and solutions of the linearized DMNLS
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equation. We then show how the equation invariances are
connected to the existence of traveling-wave solutions. We
also show that the linearized DMNLS around such traveling-
wave solutions can be expressed in terms of an integro-
differential operator whose eigenmodes and generalized
eigenmodes can also be generated from the invariances. Fi-
nally, we use these linear modes and their adjoints to quan-
tify the perturbation-induced parameter changes, using the
relation between the linear modes and the derivatives of the
solution with respect to the invariance parameters. In Sec. III
we use these theoretical results to guide importance-sampled
Monte Carlo simulations of noise-induced perturbations in
dispersion-managed lightwave systems and reconstruct the
probability density functions of the output solution param-
eters.

II. SYMMETRIES AND PERTURBATIONS OF
DISPERSION-MANAGED SYSTEMS

It is well known that the propagation of coherent optical
pulses in dispersion-managed systems can be described by
the following perturbed NLS equation:

du 1 Fu

i+ Ed(t/ta)@ +g(t/t,)|ul*u=0. (2.1)
Here all quantities are in dimensionless units; ¢ is the propa-
gation distance, x is the retarded time (that is, the time in a
reference frame that moves with the group velocity of the
pulse), and u(x,?) is the slowly varying envelope of the op-
tical field, rescaled (if necessary in communications) to take
into account periodic loss and amplification. The function
d(t/t,) represents the local dispersion, while g(¢/t,) describes
the periodic power variation due to loss and amplification.
[That is, the optical amplitude 1is proportional to
\Veg(t/t,)u(x,r).] Both d(-) and g(-) are taken to be periodic
with unit period. The particular choice of d(¢/1,) is called a
dispersion map, and the quantity 7, is called the dispersion
map period. Systems described by Eq. (2.1) include modern
optical fiber communication systems [1,2] as well as certain
femtosecond lasers [3].
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A. The DMNLS equation, invariances, and soliton solutions

Some of the invariances of the “pure” NLS equation
[namely, Eq. (2.1) with d(-)=g(-)=1] are lost with dispersion
management. (More precisely, time translations, scaling and
Galilean invariance are broken, although a generalized Gal-
ilean invariance exists.) Moreover, Eq. (2.1) is a nonlinear
partial differential equation (PDE) with nonconstant coeffi-
cients which contain large and rapid variations; the
asymptotic behavior of its solutions is therefore not apparent.
As shown in Ref. [11], an appropriate multiple-scale analysis
of Eq. (2.1) shows that, once the periodic compression-
expansion breathing of the pulse is properly factored out, the
core pulse shape obeys a nonlinear, nonlocal equation of
nonlinear-Schrodinger type called the dispersion-managed
NLS (DMNLS) equation [13]. Without repeating the deriva-
tion here, we note that the key is to split the dispersion

d(t/t,) into the sum of two components: A mean value d and

a term describing the large, zero-mean rapid variations cor-
responding to the large local values of dispersion:

-1
d(t/t,) =d + t—AD(t/ta). (2.2)
To leading order, the solution of Eq. (2.1) is then
iw,1,0) = i (w,1)e €O /2, (2.3)
where {=t/t, and
14
Cc()= Co*‘f AD(Z")d¢’, (2.4)
0

with C an arbitrary integration constant. Above and hereaf-
ter, f‘(w):]—'w[f(x)]: [e ™ f(x)dx is the Fourier transform of
f(x). The exponential factor in Eq. (2.3) accounts for the
rapid breathing of the pulse, while the slowly varying enve-
lope #i'(w,?) satisfies the DMNLS equation, which in the
physical and Fourier domains, is respectively (omitting
primes for simplicity)

l@ + l &zu f f M(x+x/)u(x+x//)u " R(x ) dx'dx" = 0,
ot 2 &x (ocx" +x")
(2.5a)
i_ _d(,!) J f M(w+w’)u(w+w” (w+w +a) /wu)dw’dw”
_o, (2.5b)

where the asterisk denotes complex conjugation and where
for brevity we introduced the shorthand notations u
=u(x,1), d,=i(w,1), etc. Throughout this work, integrals
are complete unless limits are explicitly stated. The integra-
tion kernels r(y) and R(x’,x") in Egs. (2.5a) and (2.5b) quan-
tify the average nonlinearity over a dispersion map mitigated
by the dispersion management, and are given respectively by

1
iC(0y
(ZW)zfo g(Qe dg,

r(y) = (2.6a)
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1 U
R(x/,xﬁ) - — J J —l(l) _)L —iw X ( ! ”)dw dw//
27T
(2.6b)

Note that both focusing and defocusing cases can be ob-
tained in Egs. (2.5a) and (2.5b) depending on the sign of the

average dispersion d.

It is crucial to realize that the DMNLS equation and its
solutions depend implicitly on a parameter, called the dimen-
sionless reduced map strength, which quantifies the size of
the zero-mean dispersion fluctuations. The map strength s
can be defined for any dispersion map as

1 1 ("
s=qlanli= [ wo@la e

One can then formally obtain the dependence of the kernels
r(y) and R(x’,x") on the map strength by writing AD({) and
C(¢) in terms of normalized functions which only depend on
the shape of the zero-mean dispersion variations. Namely,
one writes AD({)=4sAD,({) and C(7)=4sC,(7), where
C,() is given by Eq. (2.4) with AD({) replaced by AD;({).
In this way, one can conveniently study cases with different
map strengths entirely within the framework of the DMNLS
equation, without needing to refer to Eq. (2.1). Of course, in
the limit s—0, one obtains r(y)— 1/(27)* and R(x',x")
— 8(x")8(x"). That is, as s — 0 the DMNLS equation (2.5a)
reduces to the pure NLS equation.

The DMNLS equation (2.5a) is a reduced model that re-
tains the essential features of dispersion-managed systems
while bypassing the complicated dynamics that take place
within each dispersion map. As such, it has proved to be a
useful model to investigate the long-time behavior of
dispersion-managed systems [11-28]

In the case where loss and gain are perfectly balanced
(e.g., with distributed Raman amplification in communica-
tion systems [29]) it is g(-)=1, and both kernels can then be
made real by proper choice of the integration constants. Here
we assume that this has been done. Then, in the special but
physically important case of a piecewise constant, two-step

dispersion map, the kernels assume a particularly simple
form [11]:

1 sinsy
@m?® sy

R(x',x") —

r(y) = ci(x'x"/s),

1
27ls|
(2.8)

where ci(x)=[{cos(xy)/y dy. Note that, in this case, both
kernels are independent of the particular shape of the zero-
mean dispersion variations. The same kernels, apart from a
factor 2, also arise for the DMNLS equation as a model of
certain femtosecond lasers [12].
Stationary solutions of the DMNLS equation are obtained
by looking for solutions of the form
ug(x,t;8) = e”‘ztlzf(x;s). (2.9)

The Fourier transform f(w) of f(x) then solves the nonlinear
integral equation [11]
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(\? +dw)f () =2 f f Fioranf e (wea san o orde' da,
(2.10)

which can be efficiently computed numerically (cf. Appendix
2). Note that, like in the NLS equation, the “soliton eigen-
value” A is also the peak amplitude of the pulse, independent
of map strength.

Remarkably, some of the invariances of the standard NLS
equation that are destroyed by dispersion management are
recovered by the DMNLS equation. In particular, the follow-
ing NLS invariances also hold for the DMNLS equation
without modification: phase invariance, position invariance,
time invariance, and Galilean invariance, which are respec-
tively

u— %oy, (2.11a)
X— X=X, (2.11b)
t—t—1,, (2.11¢c)
x—x=Qt u— i Vi02, (2.11d)

On the other hand, unlike the NLS equation, the DMNLS
equation is not scale invariant. Rather, the DMNLS equation
admits a generalized scaling invariance which also involves
the map strength:

t— /A%, s — /A%, u— Au.

(2.11e)

x— x/A,

Starting from Eq. (2.9), a four-parameter family of traveling-
wave solutions can then be generated by using the invari-
ances (2.11a), (2.11b), (2.11¢), (2.11d), and (2.11e):

u(x,t) :Aei[Qx+(1/2)(A2—Q2)t+¢>0]f(A(x -Xx, - Qt) ;AZS)’

(2.12a)
or, equivalently,
u(x,1) = Ae" P+ Pf(A(x - X);A%), (2.12b)
where
X =x,+Qt, ®()=A-Q)2+ ¢, (2.13)

are respectively the mean position and an overall phase. Note
that for the stationary solution (2.9), time translations can be
expressed as a composition of phase transformations and po-
sition translations. Hence, even though five invariances exist,
there are only four independent solution parameters for
traveling-wave solutions. When the kernel r(y) is real, f(x)
can be taken to be real and even. Solutions (2.12a) are usu-
ally referred to as dispersion-managed solitons (DMS).

B. Linear modes of the DMNLS equation

We now consider the stability of solutions under pertur-
bations. If u(x,?) is any solution of the DMNLS equation and
u(x,r)+ev(x,r) is also a solution, v(x, ) solves the linearized
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DMNLS equation around u(x,?); namely, L{v,u]=0, where
[21,25]
i~

Llv,u] o d
SJUlj=—_——-—-d 5
U= T 2% 2

—-2i f f u(x+x")u(x+x’+x”)v(X+x’)R(x’,x”)dx,d-x,’

—iffu(x+xr)u(xﬂn)v(Hx,H,,)R(x,’xn)dx'dx"
(2.14)

is the linearized DMNLS operator. Since the DMNLS equa-
tion is not integrable [15,20], its linear modes cannot be
derived from the inverse scattering method as for the NLS
equation [30]. The linear modes, however, can be generated
using the invariances (2.11a), (2.11b), (2.11¢), (2.11d), and
(2.11e). Suppose that u(x,t) solves some PDE, and consider
a generic infinitesimal transformation u(x,r) — u(x, ), with

u(x,1) = u(x,n) + ev(x,r) + 0(), (2.15a)
and
v(x1) = ‘?”f(x’t)lfzo . (2.15b)
Jde

If the PDE is invariant under the above transformation, one
verifies that v(x,7) is in the nullspace of L[-,u]; namely,
v(x,7) is a solution of the linearized PDE about the given
solution. When applied to the DMNLS equation, this con-
struction yields four solutions of the linearized DMNLS
equation around any solution u(x,r). More precisely, these
solutions of the linearized DMNLS equation, which are as-
sociated with the phase, distance translation, Galilean invari-
ance, and scale invariance, are, respectively,

ou

v =iu, Uvy=——, (2.16a)
dx
. u du du u
U3=iXU—t—, U4=U+X—+2t—+25—.
ox ax Jat as
(2.16b)

Note that v; and v, are not bounded in time. Using the fact
that L[v,u]=w implies L[rv,u]=tw+v, however, one can
convert v3 and v, into bounded elements of the generalized
null space of L. Note also that a further solution of the lin-
earized DMNLS equation, namely vs=—u,, can be generated
from invariance with respect to time translations. This fifth
solution of the linearized equation, however, is not linearly
independent from the other four if u(x,7) is the traveling-
wave solution (2.12a), since then

1
v5=5(A2+Qz)v1 +Qu,. (2.17)
For traveling-wave solutions, it is possible to express the
linearized DMNLS equation in terms of an ordinary differ-
ential operator by performing a change of coordinates to the
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u+xu +2su

Yy, =

FIG. 1. (Color online) The shape of the neu-
tral eigenmodes and generalized eigenmodes of
the DMNLS equation for s=2 (solid lines), com-
pared to the corresponding modes for the NLS

equation (s=0, dashed lines), with d=1 and A
=2 in both cases. Top left: phase mode; top right:

amplitude mode; bottom left: frequency mode;
bottom right: position mode. Blue lines (top right
and bottom right plots) show components in
phase with the pulse; red lines (top left and bot-
tom left plots) show components 90° out of

comoving frame (&,7"), with £&=x—X(¢) and ¢’ =1, and writing
u(x,r) and v(x,r) respectively as

u(x,t) = ei(")U(g), v(x,0) = ei(“)y(f,t’), (2.18)

where O(x,5)=Qx+®(r) is the local phase and U(&)
=Af(A¢) the pulse envelope. Substituting Eq. (2.18) into Eq.
(2.14) yields

e ®OL[v;u] = »

= - Aly; U],
o [y:U]

(2.19)

where

i-Py i
Ay, Ul = —d— — =A?
[y,U] 2 07§2 5 Yy

+2l.ffU(g_,_g//)U(§+§/+§n)y(§+§/)R(§r,g//)dgldgﬁ

+lJ J U(§+§r)U(§+§u)y(§+§,+§n)R(§,’gn)d§'d§”.
(2.20)

Since a zero eigenvalue implies neutral stability, we will call
y a neutral eigenmode if Aly,U]=0 and a generalized eigen-
mode if Aly,U] is a neutral eigenmode [25]. Using Egs.
(2.18) and (2.19), one can associate each solution of the lin-
earized DMNLS in Egs. (2.16a) and (2.16b) to a neutral
eigenmode or generalized eigenmode of Aly, U]. After rear-
ranging terms, one can obtain the following set of modes and
generalized modes:

=iU = ij (2.21a)
Yo=1tU, Yx= (75’ 21a
[EU 1(U EaU 2 aU) (2.21b)
= R =—\U+&—C+25s— .
yo=1 ya n Py S&s

(where the subscript associates each mode to the solution
parameters changed by the transformation), which satisfy the
following relations:

phase.
5
Alye,U]=0, Alyy,U]=0, (2.22a)
A[yﬂ’ U] =Vx A[yA’ U] :Aylb' (222b)

Note the explicit dependence on s of the amplitude mode y,,
as well as, of course, of the corresponding solution of the
linearized DMNLS equation, v,. Note also that, as for the
NLS equation, some freedom exists in the definition of the
generalized modes, as well as in the normalization of all
modes. Importantly, for Q=A,X,® it is

du .
i0
E:e Yo (2.23a)
while
du .
i®
— = +Xye). 2.23b
20 (g Vo) ( )

Of course, different parametrization of the traveling-wave
solution will also result in different combinations of modes.
The shape of the modes in Egs. (2.21a) and (2.21b) is shown
in Fig. 1 for s=0 (NLS) and s=2.

In order to quantify the effect of perturbations, it is nec-
essary to also employ the adjoint modes. Introducing the
inner product as

(y,w)=Re f v (x)w(x)dx = f (YReWRe + YimWim)dX,

(2.24)
the adjoint of A[y,U] is found to be

P&y i
Ay, Ul=-=d— + —A?
[y, U] 5 a§2+2 y

_ZiJJU(‘f"‘g”)U(§+§’+§”)y(§+§’)R(gr‘gn)dgrdg"

+ ZJ f U(g_,_é!)U(§+§rr)y(§+§;+§u)R(§rygu)dg,dfﬂ.

(2.25)
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Note that ATy, U]=—iA[iy,U]. Using this property, one can
immediately obtain the adjoint modes of Egs. (2.21a) and
(2.21b), i.e., the eigenmodes of A"y, U]:

——(U g—U+z£]) Ly o6
Yo =y PRREFRY AR S

i oU
Ya=—7

P =U, 2.26b
A o€ YA ( )

satisfying relations analogous to Egs. (2.22a) and (2.22b)
(Note, however, that YoF £iyps and the adjoint of a neutral
eigenmode is a generalized eigenmode, and vice versa.) Due
to the real and even nature of f(x), the modes (2.21a) and
(2.21b) and their adjoints (2.26a) and (2.26b) form a bior-
thogonal set which provides a basis of the generalized null
space of A. Explicitly,

(Yo:Yor) =00 %0’ » (2.27)

where

1 J
Yasya) = Yo Yo) = (5 + 2S£)E/A, (2.28a)

1
<)_)X’yX> = <XQ,YQ> = EE/Aa (228b)

and where E=|u|?*=f|u(x,?)|*dx is the pulse energy. Note
that, unlike the case of the NLS equation, these adjoint
modes are not normalized, and in general the norms [y,
=(y0,Yo) depend on both s and \, as shown in Fig. 2. Note
how the inner products become progressively larger with in-
creasing map strength. Of course the orthonormality could be
achieved by properly redefining the adjoint modes, but the
present choice is convenient for our purposes. For the NLS
equation it is simply s=0 and E=2A, so in that case the
modes are indeed biorthonormal. As we show next, these
linear modes and adjoint modes can be used to quantify
perturbation-induced solution parameter changes.

C. Perturbation-induced parameter changes

We now consider perturbations which manifest as an ad-
ditional term in the NLS equation (2.1):

%+ d(t/t)&z +g(t/t)|ulPu=ien(x,r), (2.29)

with 0 <e<1. In Sec. III we will explicitly discuss the case
in which Z(x,7) is a noise process. The above formulation,
however, is of course very general, and it includes most
physically interesting situations such as damping, amplifica-
tion, third-order dispersion, shock and Raman effects (e.g.,
see Refs. [1,31]). Using the same multiple scale analysis as
for Eq. (2.1), from Eq. (2.29) one obtains a perturbed
DMNLS equation in which an inhomogeneous term is added
to the right-hand side (RHS):
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35 T T T T T
dashed: || ya|I? s=8
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solid: (ya, Ya) /
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201
15F
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solid: (Y, Yo!
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FIG. 2. (Color online) Top: L, norm of of the amplitude mode
ya and the inner product (y,,y,) as a function of the amplitude
parameter A for different values of map strength. Bottom: L, norm
of yg and the inner product (ye,ye) as a function of the amplitude
parzlmeter A. -

(9% 1 07214 "
ZE + E P + u(x+xl)u(x+x”)u(x+x +x) R(x X")dx dx
=ieh(x,1). (2.30)

Now suppose u.=u+ev solves Eq. (2.30), where u is a
traveling-wave solution of the unperturbed DMNLS equation
given by Eq. (2.12a), and ev is the perturbation-induced so-
lution change. Then the perturbation v(x,7) satisfies the per-
turbed linearized DMNLS equation,

Llv,u]=h. (2.31)

Of course, in order for the perturbation expansion to remain
well-ordered, the solutions of Eq. (2.31) must remain
bounded. If, however, the right-hand side of Eq. (2.31) has a
nonzero component along the null space of L, secular terms
will arise. As usual, such terms are removed by requiring that
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the parameters of the unperturbed solution become slowly
varying functions of time [32]. Namely, introducing the fast
and slow time scales ¢,=¢ and t,=e€t, one obtains

u Jdu

+
ar ot

ﬁu 07Q

2.32
aQ o’ 232)
where now 0=A,Q,X,®. The perturbed linearized DMNLS
equation (2.31) therefore becomes

u 9Q

L[v, u]+28Q(9t

, (2.33)

where L[v,u] is given by Eq. (2.14) with d/r replaced by
d/ dt,. Recalling Egs. (2.19) and (2.23a) and (2.23b), one can
rewrite Eq. (2.33) as

w_ Aw, U]+ qu,a— + 2 yQ@ =eOn, (2.34)
(9t1 ot t

where w(x,1)=e"©®y(x,r) and where A,[w,U] is given by

Eq. (2.20) with t'=¢; and é=x-X(¢,). [The extra term pro-

portional to yq comes from Eq. (2.23b).] We now decompose

the right-hand side of Eq. (2.34a) as

<e’.yQ,h>
=2 ey + e, (2.35a)
so that
(€Y, lres) = 0 (2.35b)

for 0=A,Q,X,®. The solvability condition (namely the re-
quirement that the resulting PDE for w contain no secular
terms) then provides evolution equations for the solution pa-
rameters:

% _ <€i®XAah>

—e , (2.36a)
dt <XA,)’A>
@_ (e®yq.h)y (2.36b)
dt (yg ya) .
dx e®yy.h
“Z_0+ e—< 2 >, (2.36¢)
dt <XX,)’X>
ad 1 ey, h e®yo.h
—=—(A2—Q2)+e< Yoy (ya >.
dt 2 Yo yo) Yaya)
(2.36d)

In the special case h(x,1)=Au(x)8(t-1t,), Eq. (2.30) describes
changes in the initial condition. [Integrating from r=r,— At to
t=t,+At and letting Ar—O0 one has u(x,r))=u(x,r,)
+€Au(x).] In this case, Egs. (2.36a), (2.36b), (2.36¢), and
(2.36d) yield the parameter changes as Q(t))=0(r,)+€AQ,
where
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(e"®yo.Au)

2.37
(XQ’}’Q> ( 2

AQ=

for Q=A,Q, X, while

e©ya. Au 9y, Au
apo e edn) (e dn
Yoy (ya.ya)

All of these results reduce to the standard perturbation theory
for the NLS equation (e.g., see Refs. [5,31,33]) when s=0.
The connection between invariances, conservation laws, and
linear modes of the DMNLS equation is further explored in
Ref. [18]. In Sec. IIT we will use the linear modes and Egs.
(2.37a) and (2.37b) to guide the simulations of noise-
perturbed lightwave systems.

II1. RARE EVENTS IN DISPERSION-MANAGED
LIGHTWAVE SYSTEMS

As mentioned in the Introduction, the performance of
both optical communication systems and certain femtosec-
ond lasers is limited by noise. As a special but physically
important example, we therefore now use the results of Sec.
IT to quantify the effects of noise on dispersion-managed
solitons. Specifically, we take h(x,r) in Egs. (2.29) and (2.30)
to be

Ng

h(x,t) =D v, (x) 8t —nt,), (3.1)
n=1

where ¢, is the dispersion map period, as before, and §(r) is
the Dirac delta distribution. In other words, u(x,?) evolves
according to the unperturbed DMNLS equation (2.5a) at all
times except at t=nt,, for n=1,...,N,, when

u(x,nt)) = u(x,nt)) + ev,(x), (3.2)

where v,(x) is taken to be normalized white Gaussian noise,
satisfying

E[Vn(x)] :Os ]E[Vn(.x)V;,(x,)] = 5(-x_x,)5nn’s (33)
where Ii[-] denotes ensemble average, and where in this case
the small parameter € is the dimensionless noise variance.
Starting from a soliton input pulse, namely u(x,0) given by
Eq. (2.12), we are then interested in computing the probabil-
ity density function (PDF) of the soliton parameters at the
output time N,f,,.

Even if the statistics of the noise sources are Gaussian, the
resulting statistics at the output is not, in general, because
propagation is nonlinear. Indeed, as mentioned earlier, the
combination of noise and nonlinearity presents a formidable
challenge if one is interested in calculating the probabilities
of errors when performance standards dictate that errors be
rare events. It has recently been shown that variance reduc-
tion methods such as importance sampling can be used to
calculate PDFs in such systems accurate to very small prob-
abilities [4-9]. Here we use the results of Sec. II to imple-
ment IS methods for the DMNLS equation in the presence of
noise.
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A. Importance sampling for the DMNLS equation

The idea behind importance sampling is straightforward:
In order to calculate the probability of a desired rare event,
sample the noise from a biased distribution that makes the
rare events occur more frequently than would naturally be
the case, while simultaneously correcting for the biasing.

Consider a set of random variables X=(x,,...,xy) dis-
tributed according to a joint probability distribution p(X).
The probability P that a function y(X) falls into a desired
range Y, can be expressed via the multidimensional integral

P=Ply € Y, ] =E[I(y(X))]= f I(y(x))p(x)dx,

(3.4a)

where the indicator function I(y) equals 1 when y € Y,; and 0
otherwise. When exact evaluation of the integral is impos-
sible (as it is in many practical cases due to the large dimen-
sionality of sample space and the complicated form of the
map from X to y), one needs to resort to numerical methods.
An unbiased estimator for P can be constructed via Monte
Carlo (MC) quadrature as

M
A 1
PMC= ]712 I(y(Xm))’

m=1

(3.4b)

where the M samples X,, are drawn from the distribution
p(X). If P is very small, however, an unreasonable number
of samples are necessary to produce events for which y is in
Y, let alone enough to accurately approximate the integral.
However, one can rewrite Egs. (3.4a) and (3.4b) as follows:

Ply e Y,]= f 1(y(X))L(X)p+(x)dx, (3.5a)
1 M
Pismc = — 2 16(Xe,))L(Xx,,), (3.5b)

m=1

where the samples X, are now drawn from the biasing
distribution  p«(X), and where the quantity L(X)
=p(X)/p«(X) is the likelihood ratio. When an appropriate
biasing distribution is selected, importance-sampled Monte
Carlo (ISMC) simulations can accurately estimate the prob-
ability of the sought-after rare events with a small fraction of
the number of samples that would be necessary with straight-
forward MC methods. The challenge is, of course, to prop-
erly choose the biasing distribution. Indeed, in order for im-
portance sampling to work, p«(X) should preferentially
concentrate the MC samples around the most likely system
realizations that lead to the rare events of interest. In our case
the random variables X are the noise components added at
the end of each dispersion map period. Thus, in order to
successfully apply IS we must find the most likely noise
realizations that lead to a desired value of the soliton param-
eters at the output.

By substituting v,(x) into Egs. (2.37a) and (2.37b) of Sec.
II C, we immediately obtain the noise-induced parameter
change at the nth map period as
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Re f e‘i@)(x)X*Q(x)vn(x)dx
Aan P
f Yo(X)yo(x)dx

(3.6)

where O=A,(,X as before, with a slightly more compli-
cated expression for A®,. Moreover, for white Gaussian
noise, maximizing the probability of a specific noise realiza-
tion is equivalent to minimizing the negative of the argument
of the exponential in the PDF, that is, minimizing the quan-
tity

f |v,(x)|*dx. (3.7)
Hence, in our case, the problem of determining the optimal
biasing amounts to finding the noise realization that mini-
mizes the integral in Eq. (3.7) subject to the constraint of
achieving a desired parameter change, that is, subject to the
constraint AQ,=AQ e, With AQ, given by Eq. (3.6). This
optimization problem can be solved by formulating Eqgs.
(3.7) and (3.6) as a Lagrange multiplier problem, as in Refs.
[4,7]. Solving the resulting problem then yields v,(x)
=V, opt(X), Where

Re f X*Q(x')yQ(x')dx’

J |XQ(X/)|2dxl

Vn,opt(x) = AQtargeteiQ(X)XQ(x) .

(3.8)

To induce a larger than normal parameter change, we then
concentrate the MC samples around this optimal path. We do
so by biasing the noise adding v, ,(x) as a deterministic
component; that is, we take

V*,n('x) = n,opl(x) + Un(x), (39)

where v, ,(x) is given by Eq. (3.8), and where v,(x) is also
a white noise process satisfying Eqgs. (3.3). [Recall that v,(x)
and v,(x) are normalized noise processes, and the actual
noise variance is €.]

Note that the optimal path v, ,,(x) depends on both the
eigenmodes and the adjoint eigenmodes of the linearized
DMNLS equation found in Sec. II. In particular, Eq. (3.8)
implies that the optimal biasing is proportional to the adjoint
eigenmode of the quantity that one desires to change, a result
that might not be obvious a priori.

Once the most likely noise realization that produces a
given parameter change AQ, at each map period is known,
one must also find the most likely way to distribute a total
parameter change AQ,, at the output among all map periods
[5,7,18]. This further optimization problem can also be
solved [18]. When targeting large amplitude or frequency
changes, however, it suffices to simply distribute equally this
total change among all map periods. That is, in the numerical
simulations described in Sec. IIB we set AQq
=AQ,/N, for n=1,...,N,. This is a good approximation as
long as the variances of the noise-induced parameter change
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at each amplifier are not too dissimilar. Such is indeed the
case for amplitude and frequency in the ranges of values
considered.

B. Importance-sampled Monte Carlo simulations

We now apply the ideas presented above to concrete nu-
merical experiments of dispersion-managed systems under
the effect of noise. We perform importance-sampled Monte
Carlo (ISMC) simulations of the DMNLS equations (2.5a)
and (2.5b) perturbed by noise, and we compare the results to
standard Monte Carlo simulations of the original NLS equa-
tion with dispersion management (2.1), also subject to noise.

Let us discuss the approach we used for the numerical
simulations of the noise-perturbed DMNLS equation. We
simulate the evolution of a dispersion-managed optical signal
by solving Eq. (2.5b) numerically and adding noise to the
signal at periodically spaced time intervals. The initial con-
dition, i.e., the input DMS shape at r=0, is generated by
solving the nonlinear integral equation Eq. (2.10) as ex-
plained in Appendix 2, and time evolution is performed with
a fast numerical method, as described in Appendix 1. White
noise, which is added to the signal at t=nt, for n
=1,...,N, is numerically discretized as a collection of in-
dependent, identically distributed zero-mean normal random
variables, one each for the real and imaginary parts of the
signal at each spatial grid point. Propagation and the addition
of noise continue in this way until the signal reaches the
output at 7., =Nt,.

In standard Monte Carlo simulations, one repeats the
above process for several different noise realizations while
monitoring the output value of the quantities of interest (e.g.,
energy and/or frequency), and then computes their statistics.

For importance-sampled Monte Carlo simulations, one
also uses the basic framework described above. If one wants
to obtain larger-than-normal deviations of a quantity Q, how-
ever, one also performs the following steps at each map pe-
riod before adding the noise.

(1) Recover the underlying DMS from the noisy signal.
We do this by filtering the noisy pulse and using the resulting
output, together with the numerically computed pulse param-
eters, as the initial condition in the iteration scheme for the
nonlinear integral equation (A5). Further details are provided
in Appendix 3.

(2) Obtain the linear modes and adjoint modes of the lin-
earized DMNLS equation around the given DMS. We do this
by numerically calculating the x and s derivatives of the
underlying DMS, and then using Egs. (2.21a), (2.21b),
(2.26a), and (2.26b). The x derivative is calculated using
pseudospectral methods [34], while the derivative with re-
spect to s is calculated by performing step (1) twice, once at
the given value of s and once at s+ds.

(3) Generate an unbiased noise realization, shift its mean
with the appropriately scaled adjoint mode associated with O
according to Egs. (3.9) and (3.8), and update the likelihood
ratio.

One then adds the noise to the pulse, propagates the noisy
signal to the next map period, and repeats this process until
the signal reaches the output. For a given simulation, several

PHYSICAL REVIEW A 75, 053818 (2007)

16

1.4 ~
> =" 5
2 :
g 1.2 T
(o) o
© o
o 1 -« c
N S
® =%
Eos o
2 o

0.6 J <

04 L L L \:7

0 1000 2000 3000 4000

distance [km]

FIG. 3. (Color online) Samples from ISMC simulations of the
DMNLS equation. Here, the pulse energy (normalized to input en-
ergy) is plotted as a function of time (i.e., distance in physical
units). The arrows represent the different targeted output energies:
A larger than normal output energy (blue), a smaller than normal
output energy (red), and unbiased energy (black). Also plotted are
deterministic paths (thick, smooth curves, with color corresponding
to the target) predicted by our perturbation theory. These are the
preferential paths around which we attempt to sample by biasing the
noise with the adjoint linear modes. For each of three different
targeted output energies, a few dozen ISMC samples are also shown
(also colored correspondingly), demonstrating that the actual trajec-
tories indeed follow the predictions of the theory. See text for a
detailed discussion of system parameters.

thousand ISMC samples, generated with a few different bi-
asing targets, are collected, and their contributions are com-
bined using multiple importance sampling [9,35] in order to
numerically generate the PDF of the quantity of interest.

Even though at each map period the noise induces only a
small change in the solution parameters, these small changes
can accumulate into large parameter changes at the output,
resulting in a significantly distorted signal. This gradual
build up of noise-induced distortions is evident in Fig. 3,
where we plot the energy as a function of time for several
different noise realizations biased around the optimal energy
path predicted by the theory. For each sample path in this
figure, the noise added at each map period is biased by add-
ing a proper multiple of the adjoint amplitude mode in order
to change the pulse amplitude and hence its energy. Note
how the random samples are concentrated near the trajecto-
ries predicted by the theory. One can think of these trajecto-
ries as a low-dimensional projection of a near-optimal path
through state space to reach a targeted rare event.

Note also that the linearized DMNLS equation is only
used to guide the biasing, while, for each individual sample
in the ISMC simulations, the full DMNLS equation is solved
to propagate the signal. That is, no approximations are used
for propagating the signal, and no assumptions are made
about its shape to predict or calculate the pulse parameters at
output. In other words, the only approximation in the simu-
lations (beyond roundoff and truncation due to discretiza-
tion) lies in using the information based on the linearized
DMNLS equation in order to bias the noise. Thus, use of
importance sampling enables full nonlinear simulation of
large, noise-induced parameter changes.
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C. Results and discussion

As a test of the method, we performed numerical simula-
tions of two noise-perturbed dispersion-managed systems
with different choices of system parameters. For both sys-
tems we compared ISMC simulations of the DMNLS equa-
tions (2.5a) and (2.5b) to standard MC simulations of the
original NLS equation with dispersion management (2.1),
numerically integrated with a standard second-order split-
step Fourier method.

For both systems we chose the system parameters based
on realistic values for optical fiber communication systems.
Typical values of system parameters for the DMNLS as a
model of femtosecond lasers can be obtained from Ref. [26].
In both cases we used a piecewise constant dispersion map.
(That is, we considered the transmission link to be comprised
of alternating sections of fiber with opposite signs of disper-
sion.) We used an average dispersion of 0.15 ps?>/km a non-
linear coefficient of 1.7 (Wkm)~™!, and a fiber loss of
0.21 dB/km. We set a unit time of 17 ps to define the nor-
malized spacelike variable x in Eq. (2.1), and we used the
resulting dispersion length of 1923 km to define the normal-

ized time ¢, resulting in d=1 in Eq. (2.1). We considered
amplifiers spaced every 100 km (resulting in ¢,=0.052), tak-
ing the dispersion map period to be aligned with the ampli-
fication period. The corresponding power needed to have g
=1 in Eq. (2.1) is 2.96 mW, and we used this value as a unit
to normalize pulse powers.

For the first system, which we will refer to as system (a),
we considered a map strength of s=2 and a propagation dis-
tance of 2000 km (resulting in N,=20). For the second sys-
tem, referred to hereafter as system (b), we considered a map
strength of s=4 and a propagation distance of 4000 km (re-
sulting in N,=40). Thus, in both systems the average disper-
sion is small, while the local dispersion is large in magni-
tude. [Recall that the map strength parameter s quantifies the
difference in magnitude between local and average values of
dispersion, cf. Eq. (2.7).] For system (a) we used a DM soli-
ton with A=1.5 as initial condition (corresponding to an ini-
tial pulse with 6.66 mW peak power) and for system (b) we
took A=2 (corresponding to 11.8 mW). Assuming a sponta-
neous emission factor of 1.5, system (a) has an optical
signal-to-noise ratio of 16.7 (resulting in a dimensionless
noise variance €>=2.372% 107*) and system (b) of 13.8 (re-
sulting in €2=9.486 X 1074).

In system (a) we looked for large changes in frequency at
the output. In system (b) we looked for large changes in
amplitude and hence in output energy. The output distribu-
tions of both frequency and energy are of course of practical
interest in communications, since large deviations of each
quantity will result in transmission errors. Frequency
changes translate in group velocity changes, and hence in the
pulse walking off its assigned bit slot. Similarly, a pulse that
loses a significant fraction of its energy will be incorrectly
detected in an amplitude-shift-keyed system.

In Fig. 4 we plot the PDF of the output frequency of
pulses from the dispersion-managed system (a) described
above. We performed standard MC simulations of the noise-
perturbed NLS equation with DM (2.29), with 100 000
samples to estimate the PDF of output frequency (red dots).
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FIG. 4. (Color online) PDF of output frequency in a dispersion-
managed system. The solid (cyan) curve shows results from ISMC
simulations of the DMNLS Eq. (2.5) with 75000 samples. The
(red) dots are the results from standard MC simulations of the NLS
equation with DM, Eq. (2.1) with 100000 samples. The (black)
dashed curve is a Gaussian PDF obtained from Gordon-Haus theory
of the NLS equation with DM. Note how unbiased MC simulations
of the NLS equation with DM agree with the ISMC simulation of
the DMNLS and the Gaussian distribution to that simulation as far
down in probability as the unbiased simulations can reach.

We also plot a Gaussian PDF (black dashed line) whose vari-
ance is consistent with a theoretical model of Gordon-Haus
effect for a DM system governed by the noise-perturbed
NLS equation in the presence of dispersion management
(2.29) [37,38,36], assuming a Gaussian ansatz for the pulse
shape at the chirp-free point. Finally, we performed ISMC
simulations of the noise-perturbed DMNLS equation (2.30)
with 75 000 samples, and we plot the corresponding results
for the PDF of output frequency (cyan solid line). The results
of ISMC simulations of the DMNLS equation, of standard
MC simulations of the NLS equation with DM, and the
Gaussian fit to that simulation all match exactly to very small
probabilities. This comparison demonstrates the effective-
ness of using the modes of the linearized DMNLS equation
to find rare events in dispersion-managed optical systems.

In Fig. 5 we plot the PDF of the output energy of pulses in
dispersion-managed system (b) described above. Here, as in
Fig. 3, energy is normalized by the energy of the input sig-
nal, i.e., by the “back-to-back” signal energy. Again, the red
dots show results of standard MC numerical simulations of
the noise-perturbed NLS equation with DM, with 1 000 000
samples; the black dashed line shows a Gaussian fit to the
results of these simulations, and the cyan solid line shows the
results of ISMC simulations of the noise-perturbed DMNLS
equation, with 42 000 samples. It is worth noting that the
PDF generated from standard MC simulations of the NLS
equation with DM clearly deviates from the Gaussian fit, but
it agrees very well with the ISMC simulations of the
DMNLS equation, as far down in probability as the unbiased
MC simulations can reach. These comparison provides a
strong validation of the DMNLS equation as a model of
dispersion-managed lightwave systems.
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FIG. 5. (Color online) PDF of normalized output energy. The
solid (cyan) curve shows results from ISMC simulations of the
DMNLS with 42 000 samples. The (red) dots are the results from
standard MC simulations of the NLS equation with DM with
1000 000 samples. The (black) dashed curve is a Gaussian fit to
that simulation. Note how unbiased MC simulations of the NLS
equation with DM clearly deviate from Gaussian, but agree well
with ISMC simulations of the DMNLS as far down in probability as
the unbiased simulations can accurately reach.

IV. CONCLUSIONS

We have described a perturbation theory for soliton-based
dispersion-managed lightwave systems, whose dynamics is
governed by the dispersion-managed NLS (DMNLS) equa-
tion, and we used the results of the theory to guide
importance-sampled Monte Carlo simulations to quantify the
effects of noise in these systems. The present theory differs
from the soliton perturbation theory that applies to the NLS
equation in several important respects. First, due to the loss
of integrability, the eigenmodes of the linearized DMNLS
equation are derived from the invariances of the equation
rather than from the inverse scattering method. Second, the
DMNLS equation is not scale-invariant, but is invariant un-
der a generalized scaling transformation; as a consequence
the amplitude mode depends explicitly on the map strength.
Third, unlike for the NLS equation, the linear modes of the
DMNLS equation are not automatically normalized, and in
particular their norms and inner products depend on both the
map strength and the pulse energy.

The results of importance-sampled numerical simulations
of the noise-perturbed DMNLS equations agree very well
with the results of Gordon-Haus theory for dispersion-
managed systems (which are based on the original NLS
equation) as well with the results of standard Monte Carlo
simulations of the original NLS equation with dispersion
management as far down as those can go in probability. This
is true even when those results deviate from Gaussian distri-
butions. Both of these results provide a further important test
of the validity of the DMNLS equation as a model of
dispersion-managed lightwave systems.

It should be noted that, in some parameter regimes, the
DMNLS equation also admits internal modes [21] (see also
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Refs. [19,25]). In principle, the accumulation of noise into
such internal modes could also contribute to system failures.
If no generalized modes are associated with these modes,
however, the variance of the resulting noise-induced pulse
fluctuations will grow linearly in time, as opposed to cubi-
cally (as is the case for phase and timing fluctuations).
Therefore, over long distances (that is, for systems in which
the total propagation distance is much larger than the average
dispersion length), one would expect these modes not to be
the dominant source of errors. Such is the case for transmis-
sion links over transoceanic distances and for femtosecond
lasers. The situation might be different over shorter dis-
tances. In that case, one should be able to estimate the con-
tribution of the internal modes using a suitably generalized
version of the perturbation theory described here. Of course,
these arguments must be validated by more precise calcula-
tions and/or careful numerical experiments.
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APPENDIX: NUMERICAL METHODS FOR THE DMNLS
EQUATION

Here we discuss numerical methods for the DMNLS
equation (2.5a), which were used in our numerical simula-
tions. We address three issues: (i) Numerical methods for
time integration; (ii) numerical methods to find traveling-
wave solutions; and (iii) numerical methods to extract a
dispersion-managed soliton from the noisy signal.

1. Time integration of the DMNLS equation

We first discuss time integration methods for the DMNLS
equation. Equation (2.5a) differs from a PDE because of the
double integral, and it should be obvious that the most com-
putationally expensive task when trying to integrate it nu-
merically is the evaluation of the double integral in either of
Egs. (2.5a) and (2.5b). If N, is the number of grid points in x
(or w), a straightforward quadrature scheme requires O(N-)
operations (since one needs to evaluate a different double
integral for each value of x or ). As we now show, however,
it is possible to evaluate the integral with only O(JN, log N,)
operations, where J is an integer parameter whose meaning
will become clear shortly.

Let us denote the double integral in Eq. (2.5b) as

K(w,t)=ffﬁ(w+w,)ﬁ(w+w/,)l2’(w+w,+wu)r(wrw//)dw'dw"
(A1)

(where we reinstated the primes to distinguish the solution of
the DMNLS equation from that of the original NLS prob-

lem). Recall from Eq. (2.3) that Ww,1,0) =it (w,1)e COw12
is the leading-order solution of the original NLS equation
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with dispersion management, namely Eq. (2.1). Also recall
from Eq. (2.6a) that the kernel r(x) is an average over a
dispersion map period, and R(z,1")=7F, tl,[r(ww’)]. Indeed,
retracing backwards the steps of the multiple scale expansion
used to obtained the DMNLS equation [11], one can express

the whole quantity K(w,?) as an average:
1
~ . 2
K(w,1)= f WO QF[(uPu)(x.,0)ldg,  (A2)
0

where u(x,t,§)=f:1[ﬁ(w,t,§)]. Note that ¢ is a constant in
the integral on the RHS of Eq. (A2), and this is precisely the

key for the fast numerical computation of K(w,z).

Divide the interval [0,1] into J equally spaced points
Los - -+ &y with {=0 and {;=1. For each fixed value of r we
can calculate IA((w,t) as follows.

(1) Fix ; and construct ﬁ(w,t,§j)=ﬁ’(w,t)e‘ic(§/)“’2/2.

(2) Take the inverse Fourier transform to obtain u(x,?, ;)
and construct the product |u|?u.

(3) Take the direct Fourier transform to obtain [ |u|?u].

(4) Multiply the result by g(¢£ j)e"c(gf)“’zl2 to obtain the in-
tegrand in Eq. (A2).

(5) Repeat steps (1)—(4) for all grid points {; and evaluate
the integral in Eq. (A2) to obtain K(w,1).

The DMNLS equation can now be integrated in time us-
ing any desired numerical scheme. For example, one can use
an exact integrating factor on the linear part of Egs. (2.5a)
and (2.5b) and an explicit fourth-order Runge—Kutta method
for the nonlinear part. A few remarks are now in order.

The above procedure, which can be carried out for any
choice of dispersion map and nonlinear coefficient, is a gen-
eralization of an algorithm originally introduced in Ref. [23]
and it is essentially the same as that described in Ref. [24]
for the NLS equation, except that no approximations are nec-
essary here. Indeed, the method of Ref. [24] parallelizes the
numerical solution of the NLS equation precisely by ap-
proximating it with the DMNLS equation.

Steps (2) and (3) each cost O(N, log N,) operations. Since
they must be repeated for each of the grid points ¢y, ...,
the overall complexity of the algorithm is O(JN, log N,).

In essence, the algorithm reduces the calculation of

K(w,1) to that of the effective nonlinearity in the original
NLS equation, averaged over one period of the dispersion
map.

In practice, the value of J is dictated by the value of the
map strength and the need to adequately resolve the changes
in the integrated dispersion function C(¢). The same require-
ments however also dictates the integration step size in the
original NLS problem. The computational complexity of the
DMNLS equation (2.5a) is thus the same as that of the origi-
nal NLS problem (2.1).

It appears more advantageous to integrate Eq. (2.5b)
rather than Eq. (2.5a), since this allows one to treat the linear
(stiff) portion of the PDE exactly. Also, the use of a split-step
method does not seem as desirable here (unlike the case of
the NLS equation), since it is not possible to integrate the
nonlinear portion exactly.
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2. Traveling-wave solutions of the DMNLS equation

We now discuss a numerical method to find stationary
solutions of the DMNLS equation, i.e., dispersion-managed
solitons (DMS). That is, we look for solutions of Eq. (2.5a)
in the form

ul(x,1) = f(x)eN", (A3a)
or, equivalently, solutions of Eq. (2.5b) in the form
i’ (w,1) = flw)e™"2. (A3b)

Once such a stationary solution is available, a three-
parameter family of traveling waves can be generated using
the translation, phase, and Galilean invariance of the
DMNLS equation. That is, if u/(x,?) is any solution of Eq.
(2.5a), so is

. =2 —
ub’xo’ ¢a(x,t) = il a2 2+¢0]u;l(x -x,—dQt1), (A4)

where (), x,, and ¢ are arbitrary real parameters.

Inserting Eq. (A3b) into the DMNLS equation yields the
nonlinear integral equation (2.10), which we rewrite here for
convenience:

. 2 L
f(w)z—)\2+£1w2 f f Jiwrosf(wrarf (i vo (0 and @' de”.
(AS)

For each fixed value of N, Eq. (A5) yields the shape of the
corresponding dispersion-managed soliton. (Or, rather, its
Fourier transform.) Thus, for each value of s, \ plays the role
of a nonlinear eigenvalue, which is in one-to-one correspon-
dence with the dispersion-managed soliton’s energy. For the
NLS equation, one simply has u(x,f)=A sech[Ax]e[AZ”z; thus
A=A is exactly half of the pulse energy: [|u,(x,?)|*dx=2A.
This is related to the existence of a simple scaling invari-
ance: If u,(x,r) is any solution of NLS, so is u(x,r)
=)\u0()\x,)\2t). When the map strength is nonzero, however,
this invariance is lost, and the scaling invariance of the
DMNLS equation is more complicated than that of the NLS
equation, as discussed in Sec. II. As a consequence, a differ-
ent integral equation (A5) must be solved to obtain the soli-
ton shape for each given value of A\, unlike the NLS equa-
tion.

A first approach to solving Eq. (A5) is to apply a Neu-

mann iteration scheme: f{('(gl)=R A(Z)] [39], where R[f(w)] de-
notes the right-hand side of Eq. (AS5). Such an iteration

scheme is divergent, however. The key is to apply a modified
iteration scheme:

fly! = TR, (A6)
where the convergence factor C[f] is
C[]?] = |SL[]?]/SR[}AC] ) (ATa)

with
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SL[JAC]=f If(w)|2dw’ SR[?]:ff?w)R[f(w)]dw' (A7b)

Again, a few remarks.

The method discussed in Appendix 1 for the computation
of the double integral in the DMNLS equation also applies,
of course, for the calculation of the double integral in Eq.
(A5).

Since C[f]=1 for all solutions f‘(w) of Eq. (A5), any solu-
tion of Eq. (A5) is also a solution of the modified integral
equation f(w)=C“[f]R[f<w>], for which Eq. (A6) is a standard
Neumann iteration scheme.

Since C[f]:l when f(w) is a solution of Eq. (A5), the
value of C[f] can be used as a monitor of convergence, for

example by requiring that |1—C[f]| drop below a predefined
threshold (e.g., 1072 or 107'%) as a termination condition.

This iteration scheme, which was first used in Ref. [11] to
find the shape of dispersion-managed solitons, is based on a
method introduced in Ref. [40]. A proof of the convergence
of this method for evolution equations with power-law non-
linearity was recently given in Ref. [41].

As might be expected, the choice of « is crucial. Indeed,
it can be shown that the method converges for 1 <@ <2, and
optimal convergence is obtained for a=%. Note, however,

that d=0 is required for convergence. When d<0, the de-
nominator of the RHS of Eq. (A5) has two simple poles at

w==\/|d|'?, and even the modified iteration diverges. A

method to obtain solutions with d<<0 was used in [25]; that
method, however, was later shown to be divergent [23].

3. Extraction of a DM soliton from a noisy signal

Finally, we now describe the algorithm we used to extract
the underlying DM soliton from a noisy signal. This section
expands on the brief comments given in Sec. III B.

To perform soliton extraction, one first needs to identify
the relationship between the energy E and pulse amplitude \.
Unlike the case of the NLS equation, no closed-form relation
is known between these two parameters. This relationship,
however, can be numerically “precomputed” and recorded
for later use as follows. First one chooses a fine, uniform grid
of values of A over a sufficiently large range of values (in our
case, [0.5,3]). Then, for each fixed value of map strength s,
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one solves Eq. (A5) for each value of \ to find the Fourier

transform f(w) of the corresponding pulse shape f(x). The
energy E of each computed pulse shape is simply given by
E=[|f(x)|?dx. Note that, since y,=iu up to a phase, this is
exactly the method that was used to produce the curves of

|4l as a function of X in Fig. 2.

" Now, suppose we have a noisy pulse that has propagated
to the nth amplifier. The extraction of the DM soliton at ¢
=nt, from u(x,nt,) proceeds as follows.

(1) Obtain a first approximation to the soliton frequency
) by computing the mean frequency of the noisy pulse

Q(,:Jw|ﬁ(w,nt;)|2dw/j |12(w,nt;)|2dw, (A8)

where as before ii(w,?) is the Fourier transform of u(x,?).
(2) Filter the noisy pulse. We do so using a low-pass
Gaussian filter centered at (). That is, we define

i) = i(w,texp[- (o - Q,)/2A07], (A9)

where the subscript f denotes the filtered pulse and where
AQ; is some appropriate low-pass filter width.

(3) Refine the approximation on the frequency parameter
Q by replacing i(w,nt;) with the filtered pulse ii{w) in Eq.
(A8).

(4) Approximate the DM soliton parameter \ by calculat-
ing the energy of the filtered pulse, E=[|u(x)|*dx, and find-
ing the value of A that corresponds to this energy in the
precomputed table (interpolating between values if needed).

(5) Plug the estimated values for the parameters A and ()
into Eq. (A5) and use the filtered pulse i/{w,nt,) as initial
condition to find the underlying DM soliton using the
method described in Appendix 2. Note that when () is non-

zero we replace the denominator in Eq. (A5) with A2 +d(w
—-Q)?, so as to automatically obtain a DMS shape with the
correct carrier frequency.

Note that, unless one wants to calculate phase or position
parameters for the purpose of collecting statistics, there is no
need to estimate those parameters, because the linear modes
are found by taking (numerical) derivatives of the DM soli-
ton found in step (5).

We also emphasize that the above approximations only
affect how the noise is biased, and do not have any effect on
pulse propagation. That is, no approximations are made
when computing the signal evolution.
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