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“Frobenius twists” in the representation theory of the
symmetric group

David J. Hemmer

Abstract. For the general linear group GLn(k) over an algebraically closed
field k of characteristic p, there are two types of “twisting” operations that
arise naturally on partitions. These are of the form λ → pλ and λ → λ+ prτ
The first comes from the Frobenius twist, and the second arises in various
tensor product situations, often from tensoring with the Steinberg module.
This paper surveys and adds to an intriguing series of seemingly unrelated
symmetric group results where this partition combinatorics arises, but with
no structural explanation for it. This includes cohomology of simple, Specht
and Young modules, support varieties for Specht modules, homomorphisms
between Specht modules, the Mullineux map, p-Kostka numbers and tensor
products of Young modules.

1. Introduction

Let k be an algebraically closed field of characteristic p. An important con-
struction in the representation theory of the general linear group G := GLn(k) is
the Frobenius twist, which takes a G module M to the module M (1). The action of
G on M (1) is as on M except twisted by the Frobenius endomorphism F : G → G,
which raises each matrix entry to the pth power. Probably the most important G
modules are the Steinberg modules Str = L((pr − 1)ρ). For example the operation
of “twist then tensor with Str” plays a key role in the proof of Kempf’s vanishing
theorem.

In the last decade or so there have been a great variety of results and conjec-
tures on the symmetric group Σd that “look like” they should come from doing a
Frobenius twist or taking a tensor product with a Steinberg module, even though
neither construction has any reasonable analogue in the world of kΣd modules.
Regular twisting results involve partitions λ, pλ, p2λ, etc... Results reminiscent of
twisting then tensor with Str could relate λ with λ+prτ. Both results we informally
think of as twisting type theorems, keeping in mind again that there is no Frobenius
twist for kΣd-modules.

In this paper we survey the known results of this type, and add a couple more
new results together with new examples, conjectures and a variety of open problems
that remain. Particularly striking is the array of techniques that arise in the proofs
of the various results. Twisting behavior seems to arise in many different ways. It
is probably naive to expect some kind of uniform “Frobenius twist” for symmetric
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groups that captures these diverse results. We will assume background information
for kΣd representation theory as found in [22], and use the same notation.

Let λ = (λ1, λ2, . . . , λn) be a partition of d with at most n parts. These
partitions correspond to dominant polynomial weights for G and many natural G
modules are labeled by them; for example, irreducible modules L(λ), Weyl modules
V (λ) and induced modules H0(λ). The interested reader will find Jantzen’s book
[23] a definitive although likely unnecessary reference, as this paper will focus on
the symmetric group.

For a G module M , let M (r) denote the rth Frobenius twist [23, I.9.10] of M .
A special case of the Steinberg Tensor Product Theorem [23, II.3.17] gives that:

(1.1) L(λ)(1) ∼= L(pλ),

where pλ := (pλ1, . . . , pλn) � pd. Equation 1.1 suggests the operation λ → pλ is
quite natural for G, and it is not surprising to encounter theorems involving these
“twisted” partitions. For example the isomorphism

(1.2) H1(G,L(λ)) ∼= H1(G,L(pλ))

is a special case of [4, Thm. 7.1] and is realized explicitly on the level of short exact
sequences by applying the Frobenius twist.

Let ρ = ρn denote the partition (n − 1, n − 2, . . . , 2, 1, 0). Another operation
that arises frequently in the representation theory of G takes a partition λ to λ+prτ
for some other partition τ , where λ often involves the so-called Steinberg weight
(pr − 1)ρ. For example [23, II.3.19]:

(1.3) Hi((pr − 1)ρ)⊗Hi(τ )(r) ∼= Hi((pr − 1)ρ+ prτ ).

These results are also quite natural as Hi((pr−1)ρ) is the ubiquitous Steinberg
module Str, which is simple and both projective and injective as a module for the
Frobenius kernel Gr.

Turning our attention to kΣd, we again find modules labeled by partitions, this
time by all partitions of d, not just those with at most n parts. For example we have
Specht modules Sλ, Young modules Y λ, irreducible modules Dλ for λ p-regular,
etc. However there is no analogue of the Frobenius twist. Moreover pλ is a partition
of pd, and so, for example, Sλ and Spλ are modules for different groups with no
apparent connection. Nevertheless over the last ten years or so there have been
numerous symmetric group results involving this kind of “twisting” of partitions,
and the proofs use an impressive variety of different techniques. Other results are
reminiscent of (1.3), even though there is no natural analogue of the Steinberg
module for Σd.

2. Schur subalgebras and the original “twist”.

We believe the first appearance of “twisting” type results for the symmetric
group arose in the thesis of Henke, published in part in the paper [20]. (Although
James’ computation of decomposition numbers for two-part partitions [21, 24.15]
can be put in similar form). For example Henke proved:

Theorem 2.1. Fix d and let λ = (d − k, k) be a p-regular partition. Then
there is an a ≥ 1 such that there exists a strong submodule lattice isomorphism
between S(d−k,k) and S(d−k+cpa,k) for any c ≥ 1 such that cpa is even. Similar
lattice isomorphisms exist for Young modules and permutation modules.
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More general results along the same line were obtain in [19], involving adding
a large power of p to the first part of a partition and obtaining equality of decom-
position numbers and p-Kostka numbers. We should warn though that Section 4
of [19] has a gap. 1 The problem is that the set of weights considered, for example
in Cor. 4.1 and following, is not an ideal or coideal.

The proofs of these results involve constructing explicit isomorphisms between
generalized Schur algebras in different degrees. The numerical equalities obtained
are then translated to the symmetric group setting.

3. Generic cohomology

Only more recently have symmetric group results relating λ and pλ appeared.
Many of these results are motivated by or suggestive of the famous generic coho-
mology theorem from [4], which we describe briefly now. For G modules M1 and
M2, there is a natural map

(3.1) ExtiG(M1,M2) → ExtiG(M
(r)
1 ,M

(r)
2 )

induced by applying the Frobenius twist to the corresponding exact sequences of G
modules. The map (3.1) is always an injection [23, II.10.14]. Thus, for fixed i, we
have a sequence of injective maps

(3.2) Hi(G,M) → Hi(G,M (1)) → Hi(G,M (2)) → · · · .

When M is finite-dimensional, the sequence (3.2) is known [4] to stabilize, and

the limit is called the generic cohomology Hi
gen(G,M) of M . Since G = GLn(k),

the sequence (3.2) is known to stabilize immediately for i = 1, [4, Thm. 7.1] i.e.

(3.3) H1
gen(G,M) ∼= H1(G,M).

Note that (1.2) is a special case. We call theorems relating cohomology of symmetric
group modules Uλ and Upλ “generic cohomology” or “stability” type theorems,
where U can be S,M,D, Y . For example, a cohomology result relating Spλ and

Sp2λ would be called a generic cohomology type theorem, although we should warn
that (1.1) does not hold for other natural G modules. For example H0(λ)(1) is
always a proper submodule of H0(pλ).

4. Young modules

For a partition λ � d there is a corresponding Young subgroup Σλ ≤ Σd and
the permutation module on the cosets is denoted Mλ. The isomorphism classes
of indecomposable summands of these permutation modules are also indexed by
partitions of d and are called Young modules, denoted Y λ. These are important
and well-studied modules. For example the set {Y λ | λ is p-restricted} is a complete
set of projective indecomposable kΣd modules. Each Y λ is self-dual. Section 4.6 of
[31] is a good basic reference for Young modules.

1For example p = 2, λ = (4, 3, 1), μ = (8), pd = 4 gives a counterexample to Cor. 4.5.
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4.1. p-Kostka numbers and tensor products. We have:

(4.1) Mλ ∼= Y λ ⊕
⊕
μ>λ

[Mλ : Y μ]Y μ

where > is the lexicographic order on partitions. The multiplicities [Mλ : Y μ] in
(4.1) are known as p-Kostka numbers. As we will see there are results for Young
modules of both types, relating Y λ with Y pλ and with Y λ+prτ .

In fact just considering p-Kostka numbers, both types of results arise. In [18],
Henke determines completely the p-Kostka numbers when λ has two parts. She
also obtains:

Theorem 4.1. [18, Theorem 6.1] Let λ � d and suppose λ1 ≥ d/2 and λ2 < pr.
Then:

[Mλ+(apr) : Y μ+(apr)] = [Mλ : Y μ]

for every a ≥ 1 and μ � d.

Her proof uses the well-known multiplicity formula of Klyachko which gives
a kind of recursion for p-Kostka numbers in terms of those for smaller partitions,
where the assumptions in Theorem 4.1 ensures those decompositions are closely
related.

More recently in his 2011 thesis Gill proved a strengthened result:

Theorem 4.2. [15, Theorem 2.24] Let λ, μ � d and a ≥ 1. Suppose μ has
p-adic expansion μ =

∑s
i=0 μ(i)p

i. If pr > max(ps, λ2), then:

[Mλ+(apr) : Y μ+(apr)] = [Mλ : Y μ].

Gill’s techniques include an extensive analysis of Young vertices and the Broué
correspondence for p-permutation modules. This approach to studying Young mod-
ules was pioneered by Erdmann in [10]. The twisting λ → pλ behaves very well
with respect to the Young vertices, which Gill used to prove the following stability
result on p-Kostka numbers under twisting:

Theorem 4.3. [15, Theorem 2.21] Let λ, μ � d. Then:

[Mλ : Y μ] = [Mpλ : Y pμ].

We remark that an alternative proof of Theorem 4.3 could be given using the
general linear group and an actual Frobenius twist. This is because p-Kostka num-
bers are equal to weight space multiplicities in simple GLn(k) modules. Namely:

Proposition 4.4. [8, p. 55] The p-Kostka number [Mλ : Y μ] is the dimension
of L(μ)λ, the λ weight space in the simple module L(μ).

But there is no obvious way to use transfer the proof of Proposition 4.4 to give
a short symmetric group proof of Theorem 4.3.

4.2. Young module cohomology. If one thinks of Y pλ as a twist of Y λ

then the following theorem can be interpreted as a generic cohomology theorem for
Young modules, valid in arbitrary degree:
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Theorem 4.5. [5, Theorem 13.2.1] Fix i > 0 and let p be arbitrary. Then there
exists s(i) > 0 such that for any d and λ � d we have

Hi(Σpad, Y
paλ) ∼= Hi(Σpa+1d, Y

pa+1λ)

whenever a ≥ s(i).

Here we have our first example of what will be a common theme, a vector space
isomorphism of cohomology but without any map realizing the isomorphism. Indeed
the proof of Theorem 4.5 proceeds by using Schur functor techniques to translate
the symmetric group cohomology problem to a representation theory problem for G.
That in turn is solved using powerful algebraic topology techniques, and “reverse
engineering” the answer gives the isomorphism; but one cannot trace back to find
a symmetric group proof or explicit realization of the isomorphism. For example if
p = 2 and i = 1 we can compute s(i) = 1, i.e. [5, Theorem 12.4.1] gives:

(4.2) Ext1Σ2d
(k, Y 2λ) ∼= Ext1Σ4d

(k, Y 4λ).

This leads us to ask:

Problem 4.6. Can you prove (4.2) purely using symmetric group represen-
tation theory? Can you give an explicit map that takes a short exact sequence
0 → Y 2λ → U → k → 0 and produces the corresponding one for Y 4λ?

Recall that Hi(G,M) ∼= ExtiG(k,M). This suggests a natural generalization of

Theorem 4.5 would be to consider ExtiΣd
(Y λ, Y μ) ∼= Hi(Σd, Y

μ ⊗ Y λ).
Already the i = 0 case of this problem is extremely difficult. Indeed knowing the

dimension of HomkΣd
(Y λ, Y μ) for all λ, μ � d is equivalent [5, Proposition 9.2.1] to

knowing the decomposition matrix for the Schur algebra S(d, d), and thus contains
more information than computing the decomposition matrix for the symmetric
group, a notoriously intractable problem. While computing the actual dimensions
is beyond reach, Gill managed to prove:

Theorem 4.7. [14, Theorem 4.3] Let λ, μ � d. Then:

dimk HomkΣd
(Y λ, Y μ) ≤ dimk HomkΣpd

(Y pλ, Y pμ).

Mackey’s theorem easily implies that Y λ⊗Y μ is a direct sum of Young modules.
The proof of Theorem 4.7 uses fact that dimk HomkΣd

(Y λ, Y μ) is the number of
summands in Y λ ⊗ Y μ which have a trivial submodule. Since Y λ ⊆ Mλ it is clear
that HomkΣd

(k, Y λ) is at most one-dimensional. The λ for which it is nonzero are
known (see [5, Proposition 12.1.1] for example), and these partitions are preserved
under twisting. Then the following key theorem from [14] is used to complete the
proof.

Theorem 4.8. [14, Thoerem 3.6] Let λ, μ, τ � d. Then:

[Y λ ⊗ Y μ : Y τ ] = [Y pλ ⊗ Y pμ : Y pτ ].

This theorem is proved numerically by counting multiplicities, but looks like it
should come from some explicit twist map!

Several obvious questions arise:
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Problem 4.9. Theorem 4.7 implies a sequence of injections

0 → HomkΣd
(Y λ, Y μ) → HomkΣpd

(Y pλ, Y pμ) → HomkΣp2d
(Y p2λ, Y p2μ) → · · · .

Does this sequence stabilize? How many twists does it take to do so?

Problem 4.10. Can one find an explicit embedding of HomkΣd
(Y λ, Y μ) into

HomkΣpd
(Y pλ, Y pμ)?

Problem 4.11. Can Theorem 4.7 be extended to ExtikΣd
(Y λ, Y μ) for i > 0,

perhaps with more twists required as i grows in the spirit of Theorem 4.5?

5. Specht modules

The Specht modules Sλ are perhaps the most well-studied among all kΣd mod-
ules. They are a complete set of irreducible CΣd modules, but they are defined
over any field and are not well understood over k. For example only quite recently
was it proven which remain irreducible over k [11]. Computing the homomorphism

space HomkΣd
(Sλ, Sμ) is an active area of research. Cohomology Hi(Σd, S

λ) was
worked out in degree i = 0 more than thirty years ago in [21, 24.4], but the i = 1
case remains open. Recent results for Specht modules involve both twisting λ → pλ
and λ → λ+ paτ .

5.1. Homomorphisms between Specht modules and decomposable
Specht modules. There is quite a large literature on homomorphisms between
Specht modules, for example Carter-Payne maps, row removal theorems, etc. When
p > 2 it is known that Sλ is indecomposable and HomkΣd

(Sλ, Sλ) ∼= k. In 1980
Murphy [33] analyzed the hook Specht modules S(d−r,1r) in characteristic p = 2
and discovered they can have arbitrarily many indecomposable summands, so the
dimension of HomkΣd

(Sλ, Sλ) can be arbitrarily large. Only in 2011 were such
homomorphism spaces with dimension larger than one discovered in odd charac-
teristic [6], [30]. Dodge’s examples are found in Rouquier blocks while Lyle finds
explicitly examples with dimension two, then uses row and column removal theo-
rems to get arbitrary dimension. In line with the theme of this paper we observe
that the examples from [30, Theorem 1.2] are of the form:

(5.1) HomkΣd+3ap
(Sλ+a(p,p,p), Sμ+a(p,p,p)).

Lyle suspects the spaces in 5.1 are all two-dimensional but does not prove this.
If so it would give another example of the λ → λ + prτ twisting. However she
constructs the maps individually for each choice of a rather than, for example, by
“twisting” the a = 1 case, so this is somewhat speculative at this point.

We collect Murphy’s results below. Recall from [21, 6.7] that Sλ⊗sgn ∼= (Sλ′
)∗.

Since the sign representation is trivial in characteristic two, the assumption d ≥ 2r
below does not impose a real restriction, all possible hooks are handled.

Theorem 5.1. Let p = 2 and assume d ≥ 2r.

(1) If d is even then S(d−r,1r) is indecomposable and dimHomkΣd
(S(d−r,1r),

S(d−r,1r)) = 1.
(2) If d is odd and r is even then dimHomkΣd

(S(d−r,1r), S(d−r,1r)) = r/2.
(3) If d is odd and r is odd then dimHomkΣd

(S(d−r,1r), S(d−r,1r)) = (r+1)/2.
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(4) If d is odd then S(d−r,1r) is indecomposable if and only if d − r − 1 ≡
0mod 2L where 2L−1 ≤ r < 2L.

From Theorem 5.1 we can extract the following twisting result:

Proposition 5.2. Let p = 2 and d ≥ 2r. Then:

(1) dimHomkΣd
(S(d−r,1r), S(d−r,1r)) = dimHomkΣd

(S(d−r+2,1r), S(d−r+2,1r)).
(2) Suppose 2L−1 ≤ r < 2L. Then S(d−r,1r) is indecomposable if and only if

S(d−r+2L,1r) is.

Since a module is indecomposable if and only if its endomorphism algebra is
local, we conclude from Proposition 5.2(2) that the vector space isomorphisms in
Proposition 5.2(1) are not, in general, algebra isomorphisms.

In [7], Dodge and Fayers discovered new infinite series of decomposable Specht
modules in characteristic two, the first new examples since Murphy’s 1980 paper.
Again in their series we see the twisting λ → λ + prτ occurring. For example a
special case of Theorem 3.1 in [7] is:

Proposition 5.3. Let p = 2. Then S(4+4n,3,1,1) is decomposable for n ≥ 0.

We can ask much more generally:

Problem 5.4. Find general theorems relating HomkΣd
(Sλ, Sμ) with the space

HomkΣd
(Sλ+(pa), Sμ+(pa)). More generally, inspired by Lyle’s work, we could ask

for homomorphism results relating λ+ prτ and μ+ prτ for more general τ.

The work in [19] mentioned in Section 2 may be relevant here for Problem 5.4
As for comparing HomkΣd

(Sλ, Sμ) with HomkΣd
(Spλ, Spμ) in hopes of a result

like Theorem 4.7, the following example suggests some caution. The computations
were done in GAP4 [13] using code written by Matthew Fayers.

Example 5.5. Let p = 3. Then:

dimHomkΣ9
(S(7,1,1), S(3,16)) = 0

dimHomkΣ27
(S(21,3,3), S(9,36)) = 1

dimHomkΣ81
(S(63,9,9), S(27,96)) = 0.

5.2. Generic cohomology for Specht modules. We recently proved a
generic cohomology type result for Specht modules. The proof proceeds by trans-
lating the problem to GLn(k) using the result of Kleshchev and Nakano [26,
6.3(b)]that:

(5.2) Hi(Σd, S
λ) ∼= ExtiGLd(k)

(H0(d),H0(λ), 0 ≤ i ≤ 2p− 4.

Using extensive knowledge on the structure of H0(d) worked out by Doty [9] to-
gether with knowledge of cohomology for the Borel subgroup B and its Frobenius
kernel Br, we applied the Lyndon-Hochschild-Serre spectral sequence to obtain:

Theorem 5.6. Let p ≥ 3 and λ � d. Then

H1(Σpd, S
pλ) ∼= H1(Σp2d, S

p2λ).
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Theorem 5.6 can be interpreted as a generic cohomology theorem for Specht
modules in degree one. We remark that the same result holds for H0(Σd, S

λ),
although somewhat trivially as HomkΣpd

(k, Spλ) is always zero unless λ = (d).
It is natural to ask if this extends to a more general theorem like Theorem 4.5,

that is:

Problem 5.7. Fix i > 0. Is there a constant c(i) such that for any d with
λ � d and any a ≥ c(i) that

Hi(Σpad, S
paλ) ∼= Hi(Σpa+1d, S

pa+1λ)?

As in the case of the Young module cohomology, the proof of Theorem 5.6
leaves one unable to produce an explicit map, so we can ask:

Problem 5.8. Given an element 0 → Spλ → M → k → 0 in H1(Σpd, S
pλ),

can one explicitly construct an extension of Sp2λ by k realizing the isomorphism in
Theorem 5.6?

We also proved a generic cohomology result of the other variety. Namely:

Theorem 5.9. Let λ � d and pr > d. Then:

H1(Σd, S
λ) = H1(Σd+pr , Sλ+(pr)).

Finally we ask for stronger results like that of Theorem 5.9.

Problem 5.10. Let λ � d and μ � c. Can one find more results that relate the
cohomology Hi(Σd, S

λ) and Hi(Σd+cpr , Sλ+prμ)?

We end this section by mentioning a different sort of stability result that holds
for H0(Σd, S

λ) and, in all examples we have computed, also for H1(Σd, S
λ). For

an integer t let lp(t) be the least nonnegative integer satisfying t < p lp(t). The
following is an easy consequence of Theorem 24.4 in [21]:

Lemma 5.11. Suppose λ = (λ1, λ2, . . . , λs) � d and suppose a ≡ −1mod plp(λ1).
Then

(5.3) H0(Σd, S
λ) ∼= H0(Σd+a, S

(a,λ1,λ2,...,λs)).

This leads to the following

Problem 5.12. Does the isomorphism in (5.3) hold for Hi for any other i > 0?

6. Complexity of symmetric group modules.

Some computer calculations done by the VIGRE algebra group at the Uni-
versity of Georgia suggest that twisting of partitions may arise in determining the
complexity of Specht modules. A thorough discussion of the complexity of modules
can be found in [1, Ch. 5] Recall that an indecomposable module M has complexity
the smallest c = c(M) such that the dimensions in a minimal projective resolution
are bounded by a polynomial of degree c − 1. The maximum possible complexity
for M is the p-rank of the defect group of its block, which for the symmetric group
is just the p-weight w of the block.

Determining the complexity of various kΣd modules is an active area of re-
search. The complexity c(Y λ) was determined in [17, 3.3.2]. It is worth remarking
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that for λ � d it follows immediately from that result that c(Y pλ) = d, the maxi-
mum possible.

Very little is known on the complexity of simple modules Dλ. The paper [17]
gives an answer when Dλ is completely splittable. The preprint [29] show that
simple modules in Rouquier blocks of weight w < p all have complexity w.

In contrast to the “twisted” Young modules Y pλ having maximal possible com-
plexity, it seems the situation for Specht modules Sλ may be somewhat reversed.
Say a partition λ is p × p if both λ and λ′ are of the form pτ . Equivalently if the
Young diagram of λ is made up of p× p blocks.

The UGA VIGRE Algebra Group made the following conjecture:

Conjecture 6.1 (UGA VIGRE 2). Let Sλ be in a block B of weight w. Then
the complexity of Sλ is w if and only if λ is not p× p.

In [16] we proved that when λ is p × p then its complexity is not maximal,
by finding a natural equivalent condition for p × p in terms of the abacus display
for λ, and then looking at the branching behavior of Sλ. The other (surely more
difficult!) direction of the conjecture remains open:

Problem 6.2. Resolve the other direction of Conjecture 6.1.

Problem 6.3. Suppose λ is p × p of weight w. Is the complexity of Sλ equal
to w − 1, or can it be less than w − 1?

Problem 6.3 has been resolved only in the case λ = (p, p, . . . , p) � p2. In this
case the support variety was computed explicitly by Lim [28], and its dimension
(which equals the complexity) is indeed p− 1. The support variety for the Specht
module S(3,3,3) in characteristic three provides a motivating example in Chapter
7 of the book [2] as a small-dimensional module with a very interesting support
variety. Perhaps further twisting might lower the complexity even more:

Problem 6.4. One can generalize the definition of p× p in several ways. For
example one obvious generalization would be to require λ be p2 × p2 . Can one
say anything interesting about these situations? Perhaps the complexity drops by

even more in this case? For example can one determine the complexity of S(99) in
characteristic three?

7. Generic cohomology for simple modules and twists of the Mullineux
map

Recall that the irreducible modules for kΣd are labeled by p-regular partitions
and are denoted Dλ. However there is another indexing, by p-restricted partitions
and denoted Dμ. The latter is more natural in some ways, as Dμ is the image under
the Schur functor of the irreducible G module L(μ). The labellings are related by:

(7.1) Dλ ⊗ sgn ∼= Dλ′ .

It was a longstanding open problem to determine the partition m(λ) so that
Dλ ⊗ sgn ∼= Dm(λ). This problem was finally solved by Kleshchev in [24]. A
short time later Ford and Kleshchev [12] confirmed that Kleshchev’s answer agreed
with the original conjecture made by Mullineux in [32]. We will find it useful to

2This conjecture and some discussion can be found at http://www.math.uga.edu/

~nakano/vigre/vigre.html
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use Mullineux’s original algorithm and also a different (but of course equivalent)
description given later by Xu in [34]. Both are nicely described in [3]. It follow
from (7.1) that:

(7.2) Dλ ∼= Dm(λ)′

so one can easily arrive at a version of the Mullineux bijection, except on p-restricted
partitions; namely λ → m(λ′)′.

7.1. Generic cohomology for two-part irreducibles. Suppose one wanted
a generic cohomology theorem for extensions between simple kΣd modules. The
simple module L(λ) corresponds to Dλ, but pλ is never p-restricted so Dpλ does not
exist. Strangely though something seems to be going on with the “wrong” upper
notation. For example:

Proposition 7.1. Assume p > 2. Let λ = (v, u) and μ = (s, r) be partitions
of d. Then

Ext1kΣpd
(Dpλ, Dpμ) ∼= Ext1kΣp2d

(Dp2λ, Dp2μ).

Proof. Assume u ≥ r without loss of generality. All the extensions between
two-part simple modules were worked out by Kleshchev and Sheth in [27] (but see
the Corrigendum [25]). In their notation we have pv− pu+1 = 1+

∑
i≥1 aip

i and

the condition for the Ext group to be nonzero is that pu− pr = (p− ai)p
i for some

i such that ai > 0 and either ai+1 < p − 1 or u < pi+1. This condition is clearly
equivalent to the corresponding one for p2v − p2u+ 1 and p2u− p2r. �

We remark that Proposition 7.1 requires the additional twist before the coho-
mology stabilizes. For example when p = 3 one can use Kleshchev-Sheth’s result
to compute:

Ext1Σ29
(D(20,9), D(26,3)) ∼= k

Ext1Σ87
(D(60,27), D(78,9)) ∼= 0.

Of course this suggests the following:

Conjecture 7.2. Let λ, μ � d. Then:

Ext1kΣpd
(Dpλ, Dpμ) ∼= Ext1kΣp2d

(Dp2λ, Dp2μ).

Once again we have a vector space isomorphism in cohomology (Proposition
7.1) with no module homomorphisms realizing it!

7.2. Mullineux map and twists. The labelling of irreducibles Dμ by p-
restricted partitions seems more natural when comparing with GLn(k) (where ac-
tual Frobenius twists can occur). But pλ is never p-restricted, and we observed

above a relationship between Dpλ and Dp2λ. Using (7.2) suggests some relation-
ship between m(pλ)′ and m(p2λ)′. This led us to a strictly combinatorial question,
namely is there any relation between twisting and the Mullineux map? And then
of course given any such relation, is there a representation-theoretic interpretation?
We have found a large class of partitions that have interesting behavior here.

For example if λ = (λ1, λ2, . . . , λs) � d is a partition with distinct parts, define
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λ̂ = (λp−1
1 , λp−1

2 , . . . , λp−1
s ) � (p− 1)d.

Proposition 7.3. Suppose λ = (λ1, λ2, . . . , λs) � d has distinct parts. Then

m(λ̂) = (p− 1)λ.

Proof. Consider the p-regular version of Xu’s algorithm from [34] (nicely

described in [3]). If we apply it to calculate λ̂X using [3, Def 3.5] we obtain
j1 = j2 = · · · = jp−1 = s. At this point in the algorithm the first column (consisting

of s(p− 1) nodes) will have been removed from λ̂, and what remains is λ̂ where λ
denotes λ with its first column removed. One can now apply induction using [3,
Proposition 3.6(2′)] or just continue with the algorithm to obtain (p− 1)λ. �

Corollary 7.4. Let λ � d have distinct parts. Then

m(pμ) = pm(μ)

for both μ = (p− 1)λ and μ = λ̂.

Proof. By Proposition 7.3 we have:

m((p)(p− 1)λ) = p̂λ

= pλ̂

= pm((p− 1)λ)

and

m(pλ̂) = m(p̂λ)

= p(p− 1)λ

= pm(λ̂).

�

The appearance above of p(p− 1)λ for λ having distinct parts is reminiscent of
the twist of the Steinberg weight p(p − 1)ρ from the GLn(k) theory, although we
have no representation-theoretic interpretation at this time.

The examples in Corollary 7.4 are not the only ones where m(pμ) = pm(μ)
although other examples seem to be rare. For example if p = 5 and d = 20 then
Corollary 7.4 yields all μ � 20 where m(5μ) = 5m(μ). On the other hand for p = 5
and λ = (3, 3) we have m(15, 15) = (10, 10, 10) = 5m(3, 3), although λ does not
have distinct parts.. This brings us to:

Problem 7.5. Classify all λ such thatm(pλ) = pm(λ) and give a representation-
theoretic interpretation of the answer.

The subset of such λ arising in Corollary 7.4 is certainly closed under twisting,
as are all other examples we have computed, so we conjecture:

Conjecture 7.6. Suppose m(pλ) = pm(λ). Then m(p2λ) = pm(pλ).

More generally we can ask:

Problem 7.7. Classify all λ such that m(pλ) = pτ for some τ.
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For example when p = 5 and λ = (6, 6, 4) we have:

m(30, 30, 20) = (203, 54) = 5m(10, 3, 3).

Even for partitions without such a nice relationship, there still seems to be
some intriguing behavior among the m(paλ) for various a. For example we will
now derive a sort of Steinberg tensor product theorem for Mullineux maps.

First define τn = m(1n), so the trivial kΣn module is Dτn . It is well known
that τn = (p− 1, p− 1, p− 1, · · · , p− 1, a).

Lemma 7.8. Suppose λ = (λ1, λ2, . . . , λs) is a partition with distinct parts.
Then:

m(pλ)′ = τpλ1
+ τpλ2

+ · · ·+ τpλs
.

For example if λ = (4, 2, 1) and p = 5 then

m(5λ)′ = (12, 9, 6, 4, 4) = (45) + (4, 4, 2) + (4, 1) = τ20 + τ10 + τ5.

Proof. The proof is by induction on s where the case s = 1 is just the defini-
tion of τn. We will use the original algorithm of Mullineux, described and proved
in [12, p. 272]. Since the parts of λ are distinct, then all the rim p-hooks removed
in determining the Mullineux symbol Gp(pλ) are horizontal. Thus we determine
the Mullineux symbol Gp(m(pλ)) =
(7.3)(

sp · · · sp (s− 1)p · · · (s− 1)p · · · p · · · p
s(p− 1) · · · s(p− 1) (s− 1)(p− 1) · · · (s− 1)(p− 1) · · · p− 1 · · · p− 1

)

where the first column in (7.3) occurs λs times, the second occurs λs−1 − λs times,
the third λs−2 − λs−1, etc. So the last column occurs λ1 − λ2 times. Notice

then that removing the columns
sp
s(p− 1)

we obtain the Mullineux symbol for

p(λ1 − λs, λ2 − λs, . . . , λs−1 − λs). So we apply induction and the result follows.
�

Using the result above and drawing a diagram with the appropriate τpλi
and

τp2λi
, the following corollary is immediate:

Corollary 7.9. Suppose λ has distinct parts. Then:

m(p2λ)−m(pλ) = pλ̂.

Using Proposition 7.3 one can rewrite this as:

m(p2λ)−m(pλ) = pm((p− 1)λ).

For arbitrary λ with repeated parts we conjecture a weaker form of stability
after multiple “twists:”

Conjecture 7.10. Let λ � d. Then there exist 1 ≤ a < b such that:

m(pbλ) = m(paλ) + paτ.

As an example of Conjecture 7.10 needing multiple twists consider the following:

Example 7.11. Let p = 7 and λ = (292, 24, 42, 33, 2, 1). Then:

m(75λ)−m(7λ) = 7(1238405, 96005, 54004, 38405, 8006, 4006).

If 1 ≤ x < y < 5 then m(7yλ) − m(7xλ) is not of the form 7τ , i.e. this stability
really requires at least five twists.

198



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

FROBENIUS TWISTS 13

Finally we remark that the results above on the Mullineux map did not depend
on p being prime, and any possible representation-theoretic interpretations might
hold true for the Hecke algebra of type A at an eth root of unity.

It seems fitting to close with a completely general (and quite possibly absurd)
question:

Problem 7.12. Can one say anything interesting about how the structure of
the principal block B0(kΣpd) is reflected inside B0(kΣp2d)?

For example Theorem 4.7 is a statement about Cartan invariants.
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