Fredholm theory and localization on metric measure spaces

RAFFAEL HAGGER

University of Reading

r.t.hagger@reading.ac.uk

Let \mathcal{B} be a (unital) commutative Banach algebra and Ω the set of non-trivial multiplicative linear functionals $\omega : \mathcal{B} \to \mathbb{C}$. Gelfand theory tells us that the kernels of these functionals are exactly the maximal ideals of \mathcal{B} and, as a consequence, an element $b \in \mathcal{B}$ is invertible if and only if $\omega(b) \neq 0$ for all $\omega \in \Omega$. A generalization to non-commutative Banach algebras is the *local principle* of Allan and Douglas, also known as *central localization*: Let \mathcal{B} be a Banach algebra, Z a closed subalgebra of the center of \mathcal{B} and Ω the set of maximal ideals of Z. For every $\omega \in \Omega$ let \mathcal{I}_{ω} be the smallest ideal of \mathcal{B} which contains ω . Then $b \in \mathcal{B}$ is invertible if and only if $b + \mathcal{I}_{\omega}$ is invertible in $\mathcal{B}/\mathcal{I}_{\omega}$ for every $\omega \in \Omega$.

From an operator theory point of view, one of the most important features of the local principle is the application to Calkin algebras. In that case the invertible elements of \mathcal{B} are called Fredholm operators. Therefore, by taking suitable subalgebras, we obtain a characterization of Fredholm operators. However, the central localization is often not sufficient to provide a satisfactory characterization. In this talk we therefore consider a generalization where the ideals \mathcal{I}_{ω} do not originate from the center of the algebra. More precisely, we will consider L^p -spaces over metric measure spaces and, under suitable assumptions, characterize Fredholmness in terms of limit operators.

Based on joint work with Christian Seifert.