

Figure 6-17. Dependence of melting temperature $T_{\rm m}$ on guanine + cytosine (G + C) content of various samples of DNA obtained from different sources. DNA was dissolved in 0.15 M NaCl + 0.015 M Na-citrate, pH 7.0. Points 1 and 41, for poly(dA-dT) and poly(dG-dC), fall off the least-squares line which is described analytically by $T_{\rm m} = 69.3 + 0.41$ (%C). From (549).

Scheme describing processes involved in DNA or RNA double-helix de- and renaturation. A-T-rich regions melt first, giving rise to states (2) and (3). In (4), additional base-pairs are opened and the twist is taken up in coil regions. From (550).

Melting profile of DNA (top) and its first derivative dA/dT (bottom). The latter curve is deconvoluted into nine individual peaks characterized by temperature, amplitude, and breadth. A indicates UV absorption at 260 nm; dA/dT or Δ A/ Δ T are first derivatives with respect to temperature T. These curves are simulated; for some realistic data see Ref. (557).

Prediction of DNA Double Helix Stability from Base Sequence m (555)]

Stability Matrix for Nearest-Neighbor Stacking in Base-Paired Dinucleotides in B-DNA Geometry^a:

		3′				
5′	A	T	G	С		
T	36.73	54.50	54.71	86.44		
Α	54.50	57.02	58.42	97.73		
C	54.71	58.42	72.55	85.97		
G	86.44	97.73	85.97	136.12		

^a Numbers give T_m values in °C at 19.5 mM Na⁺.

T_m Values Predicted with This Matrix for a Collection of Synthetic DNA Polymers with Defined Sequence:

	T _m (°C)		
Polynucleotide	Experimental ^a	Calculated ^b	Difference
Poly(dA-dT)·poly(dA-dT)	45.0	46.9	-1.9
Poly(dA-dA-dT)·poly(dA-dT-dT)	49.2	49.4	-0.2
$Poly(dA) \cdot poly(dT)$	53.0	54.5	-1.5
Poly(dG-dA-dA)·poly(dT-dT-dC)	64.5	66.5	-2.0
Poly(dG-dT-dA)·poly(dT-dA-dC)	66.8	64.3	2.5
Poly(dA-dA-dC)-poly(dG-dT-dT)	70.2	69.0	1.2
Poly(dG-dA)·poly(dT-dC)	71.3	72.4	-1.1
Poly(dG-dA-dT)·poly(dA-dT-dC)	72.0	66.1	5.9
Poly(dG-dG-dA)·poly(dT-dC-dC)	76.3	76.9	-0.6
Poly(dG-dT)·poly(dA-dC)	77.4	76.2	1.2
$Poly(dG) \cdot poly(dC)$	87.8	86.0	1.8
Poly(dG-dC) poly(dG-dC)	99.2	104.3	-5.1

 $[^]a$ Experimental melting temperatures at various ionic strengths are interpolated to 19.5 mM Na⁺.

^b Calculated from values in Table 6-9(A) and nearest-neighbor frequencies in each polymer.

^c T_m (experimental) - T_m (calculated).

