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CONFORMATIONAL STATISTICS 
 
The packaging of 3 meters of DNA in a eukaryotic cell obviously involves the folding of the molecule back 
on itself.  How the polynucleotide bends is thus important to placement in the cell.  Moreover, many 
regulatory functions involve bringing together protein binding sites that are well separated from each other-a 
process that is thought to require DNA bending.  Because of what we have already learned about the 
sequence specific factors that influence DNA conformation of DNA, we would also like to know something 
about how base sequence may affect the folding of DNA upon itself. 
 Before we discuss the effect of base sequence on DNA deformability, we have to have an 
understanding of how we would begin to measure flexibility and how we would characterize the movements 
of a DNA chain. 
 Native DNAs from organisms have very high molecular weights-the MW of the E coli chromosome 
is ~3 X109.  As we know, DNA is made of segments, in the simplest case these segments can be thought of 
as the base paired nucleotide.  Since these segments have finite size, it is clear that many conformations of 
the chain in solution will be excluded, because of the prohibition of physical overlap of two segments in the 
same volume of space.  Outside of these rather obvious considerations, nucleic acid polymer flexibility can 
be modeled as existing between two limiting case of chain deformability-the completely rigid rod and the 
completely flexible random coil.  In fact DNA can be considered as existing in either of these two regimes, 
depending on the number of segments that one includes in the analysis of DNA deformation.  As we shall 
see, short stretches of DNA can behave as rigid rods while enormous DNA lengths can assume the 
characteristics of completely flexible chains.  In actual fact, DNA of intermediate length (number of 
segments) is best modeled between these two limiting cases, as the so-called worm-like coil, which is of 
intermediate flexibility. 
Average dimensions. 
A solution of flexible polymers contains molecules that may have a different conformation at any given 
instant.  Further, due to the random bombardment of the polymer molecules by solvent (Brownian motion), 
the conformation of a particular polymer molecule will change with time.  This suggests that we cannot 
specify a single dimensional parameter to characterize flexible polymers in solution, but must instead deal 
with average dimensions.  One of the most commonly used average dimensions is that of the mean square 
end-to-end distance <L2>.  We have a polymer of N repeating units, each connected by bond vectors of 
length b.  A vector L is drawn between the beginning and end of the chain, which equals the sum of the 
individual bond vectors bi.  Therefore 

   N 
 L = S bi 

    i=1 
Thus, 

   N N 
 <L2>= S  S bi . bj  

    i=1 j=1 
This all means that the root mean square distance (L) between point i 
and point j is the sum of the vectors that lie between them. 
 
 
 
 
Now that we have defined our measurements somewhat, we shall 
proceed to apply these considerations to particular models of polymer 
chains. 
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Rigid Rod. 
 
This is relatively easy to understand, since the rod is inflexible, no averaging over internal conformations is 
required.  Thus, the distance between any two points is equal to 
 
 Lij= b*i-j 
 
where all bonds have constant length b and the distance between two points at the ends of the chain is 
 L=b*N 
where N is the number of segments and b is the length of the bond that connects the segments. 
 
Flexible Linear Chains 
 
At the opposite extreme from the rigid rod, let us imagine a completely flexible chain containing N 
segments each separated by bonds of length b.  We can imagine that the bonds are connected by universal 
joints that allow completely free rotation.  The conformation of the polymer is therefore that of a random 
walk in which successive steps are completely uncorrelated in direction.  The quantity which must be 
ascertained for the polymer is its distribution function; that is the probability W(L,N)dL that after N steps 
the end of the chain will be at distance L and L+dL from the origin. 
Chains that conform to this distribution function are often called gaussian chains because of the gaussian 
character of the population of chain conformations 
Thus the mean end to end distance of a completely flexible chain is proportional to the first power of N  

<L2>=Nb2 
as opposed to the N2 for the rigid rod.  
 
The concept of a freely jointed chain is obviously an inaccurate representation of a natural polymer. In the 
case of a nucleic acid, the joints connecting the segments are not universal joints because of steric 
considerations and there are fixed bond angles (e.g. geometry imposed by tetrahedral carbons). Thus, both N 
and b for a real polymer are modified to effective N and b.  The values for Ne are less than actual N and be 
smaller than b.  The distribution function for the effective chain is just that for the freely jointed chain with 
N replaced by Ne and b with be.  The mean square end to end distance of this chain is thus, 
 
 <L2> = be

2 Ne 
 
Worm-like chains. 
 
Even with the concept of statistically equivalent (Ne-type) chains, the gaussian distribution requirements are 
such that Ne must be substantially greater than 1, although Ne << N.  For sufficiently short chains or 
relatively stiff chains, this requirement may not be satisfied.  In fact native DNA is stiff enough that 
gaussian statistics are inapplicable for many purposes.  This situation thus demands an even more elaborate 
treatment.  Since stiff chains can be envisioned to bend only gradually and smoothly, somewhat like a 
worm, hence the term wormlike chain 
 
In order to characterize the stiffness of a polymer chain, we imagine that the polymer is laying along the y-
axis of a 3-D coordinate reference frame.  The chain consists of N segments, connected by bonds with 
length b.  We imagine that the first step is taken along the positive z axis.  We then ask, what is the average 
projection <z> of the chain at N steps along chain at the z-axis?  It is obvious that if the rod were completely 
stiff, <z> would have its maximum value of N*b; for a freely jointed chain, <z>=b since steps beyond the 
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first the first would have equal probability to be taken in the (+) or (-) z direction.  Thus, polymers of 
intermediate stiffness will have intermediate values of <z>. The average projection must consider the 
projections of all succeeding bonds on the first, thus,  
 
 <z>= b+ b<cos ?1,2> + b <cos ?1,3> + ... b<cos ?1,N> 
for the chain with free rotation 
 
 <z> = b* 1-cosN ?/ 1- cos ? 
 
if the cos ? is close to zero (i.e. angle of 90o) <z> = b/(1-cos ?), however if ? is 0o, true for very stiff chains, 
cos ?=1 then <z> becomes very large.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is, therefore a continuum, in which both segment length b and the bond angle ? are taken to the 
infinitesimal limit in such a way that the quantity 
 
 a = b/1- cos ? 
 
remains finite.  The quantity a is called the persistence length of the worm like chain and represents the 
average extension along the z-axis of an indefinite length polymer.  In other words the persistence length is 
that number of segments N where the chain behaves as a rigid rod.  In fact for a wormlike chain, the 
effective segment length be is twice its persistence length.  Thus for a short wormlike chain, the limiting 
behavior is a rigid rod. 
 
Thus for considering DNA, the persistence length in units of distance is a measure of its stiffness.  The 
longer the persistence length, the more stiff the chain. 
 
With all of this stuff in mind let us take a look at how to apply it to real DNA 
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In the Shore et al. (1981), they wished to determine experimentally the degree of DNA flexibility and 
whether the model of a worm like coil held true for DNA of all lengths or were other considerations needed. 
 To do this, they measure the rate of circularizing several linear pieces of DNA of different lengths and 
compare the results to that predicted from the model.  The ring closure probability can be understood as the 
effective concentration of one end in the vicinity of the other.  That is if they are so far away the 
concentration of one in near the other is low and closure probability decreases, as they are brought together, 
the effective concentration increases, as does the closure rate.  In all cases they compare the rate of closure 
of the linear DNA into a circle, and normalize this to the probability of joining two ends on separate pieces 
of DNA.  The relative increase is the benefit from being on the same piece of DNA. 
 
In fact the effective concentration of ends (which is proportional to the average mean square distance <L2> 
and thus to the number of base pairs) is not the only thing that limits joining of the two ends.  If the DNA is 
particularly short, the relative orientations of the two ends are correlated.  For joining to occur, the number 
of bases has to be close to 10, i.e., the number of bases/10.5 should be an integer. 
The data shown in FIGURE 43 is in fact in quite good agreement with the worm like coil representation of 
DNA >500 base pairs and end to end correlation do not have an effect until below this value.  The fact they 
do indicates that the twisting motions of DNA are energetically restricted.  This leaves open the possibility 
of using this technique to measure the energetics of twisting. 

 
 

Figure 43 


