Uniform uniform exponential growth of subgroups of the mapping class group

Johanna Mangahas

University of Michigan, Ann Arbor

October 11, 2008

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

Example:
$$F_2 = \langle a, b \rangle$$
:

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

Example:
$$F_2 = \langle a, b \rangle$$
:
 $|B(2; \{a, b\})| = 17$

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

Example:
$$F_2 = \langle a, b \rangle$$
:
 $|B(2; \{a, b\})| = 17$
 $|B(n; \{a, b\})| = 2 \cdot 3^n - 1$
 $h(F_2; \{a, b\}) = \log 3$

A group *G* with finite generating set *S* has *exponential growth* if:

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

Example: any group G containing F_2 .

A group *G* with finite generating set *S* has *exponential growth* if:

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

Example: any group G containing F_2 . If $u, v \in B(d; S)$ freely generate F_2 , $|B(nd; S)| > 2 \cdot 3^n - 1$ $h(G; S) \ge \log 3/d$

A group *G* with finite generating set *S* has *exponential growth* if:

$$h(G;S) = \lim_{n\to\infty} \frac{1}{n} \log(|B(n;S)|) > 0$$

G has uniform exponential growth if: $h(G) = \inf\{h(G; S) : S \text{ finite set of } \}$

generators for G > 0

Groups with uniform exponential growth

- Non-elementary Gromov-hyperbolic groups (Koubi 1998)
- Finitely generated subgroups of $GL_n(K)$ which are not virtually solvable (Eskin, Mozes, Oh 2002)
- Mapping class group Mod(Σ) for compact oriented surface Σ (Anderson, Aramayona, Shackleton 2005)

Groups with uniform exponential growth

- Non-elementary Gromov-hyperbolic groups (Koubi 1998)
- Finitely generated subgroups of $GL_n(K)$ which are not virtually solvable (Eskin, Mozes, Oh 2002)
- Mapping class group Mod(Σ) for compact oriented surface Σ (Anderson, Aramayona, Shackleton 2005)
- Finitely generated subgroups of $\operatorname{Mod}(\Sigma)$ which are not virtually abelian (M 2008)

Groups with uniform exponential growth

- Non-elementary Gromov-hyperbolic groups (Koubi 1998)
- Finitely generated subgroups of $GL_n(K)$ which are not virtually solvable (Eskin, Mozes, Oh 2002)
- Mapping class group Mod(Σ) for compact oriented surface Σ (Anderson, Aramayona, Shackleton 2005)
- Finitely generated subgroups of $\operatorname{Mod}(\Sigma)$ which are not virtually abelian (M 2008)

Theorem (Uniform uniform exponential growth)

There exists $d = d(\Sigma)$ such that, if $G < Mod(\Sigma)$ not virtually abelian and finitely generated by S, one has $u, v \in B(d; S)$ freely generating F_2 . Hence $h(G) > \log(3)/d(\Sigma) > 0$.

f is an automorphism of Σ

f is an automorphism of Σ fixing these curves:

f is an automorphism of Σ fixing these curves:

f is an automorphism of Σ fixing these curves:

f acts as a Dehn twist about the blue curves

f acts as a Dehn twist about the blue curves

f acts as a Dehn twist about the blue curves

f acts as a pseudo-Anosov on the red subsurfaces

f acts as a pseudo-Anosov on the red subsurfaces

f acts as a pseudo-Anosov on the red subsurfaces

The support of f:

The support of f:

Theorem (Thurston, Ivanov)

A pure mapping class is either:

- Pseudo-Anosov on the whole surface (pA)
- Pseudo-Anosov on some subsurface (rpA)
- A composition of Dehn twists about disjoint curves

Theorem (McCarthy, Ivanov)

A subgroup of $Mod(\Sigma)$ is either virtually abelian or contains F_2 .

Proposition

There exists a power p = p(S) with the property that, for any pure mapping classes a, b such that $\langle a, b \rangle$ contains F_2 , (a) if a is pA, $\langle a^p, ba^p b^{-1} \rangle \cong F_2$; (b) if a, b are Dehn twists, $\langle a^p, b^p \rangle \cong F_2$; (c) if a, b are rpA with overlapping pA subsurfaces, $\langle a^p, b^p \rangle \cong F_2$; In general, $\langle a^p, b^p \rangle$, $\langle a^p, ba^p b^{-1} \rangle$, or $\langle a^p, b^p a^p b^{-p} \rangle \cong F_2$, up to switching a and b.

Theorem (McCarthy, Ivanov)

A subgroup of $Mod(\Sigma)$ is either virtually abelian or contains F_2 .

Proposition

There exists a power p = p(S) with the property that, for any pure mapping classes a, b such that $\langle a, b \rangle$ contains F_2 , (a) if a is pA, $\langle a^p, ba^p b^{-1} \rangle \cong F_2$; (Fujiwara 2007) (b) if a, b are Dehn twists, $\langle a^p, b^p \rangle \cong F_2$; (c) if a, b are rpA with overlapping pA subsurfaces, $\langle a^p, b^p \rangle \cong F_2$; In general, $\langle a^p, b^p \rangle$, $\langle a^p, ba^p b^{-1} \rangle$, or $\langle a^p, b^p a^p b^{-p} \rangle \cong F_2$, up to switching a and b.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

Suppose a and b act on a set X, and suppose there exist nonempty disjoint subsets $X_a, X_b \subset X$ such that $a^k(X_b) \subset X_a$ and $b^k(X_a) \subset X_b$ for all nonzero k. Then $\langle a, b \rangle$ is a rank-2 free group.

• No element of the form $b^*a^*b^*\cdots a^*b^*$ is the identity

• Any nontrivial word can be conjugated to $b^*a^*b^*\cdots a^*b^*$. \Box

Dehn twist ping-pong:

Dehn twist ping-pong:

Dehn twist ping-pong: generalize an argument of Hamidi-Tehrani

 $T^4_{\alpha}(\{\text{curves intersecting } \alpha \text{ more than } \beta\}) \subset$

Dehn twist ping-pong: generalize an argument of Hamidi-Tehrani

 $T^4_{\alpha}(\{\text{curves intersecting } \alpha \text{ more than } \beta\}) \subset \{\text{curves intersecting } \beta \text{ more than } \alpha\}$

 $T^4_{\alpha}(\{\text{curves intersecting } \alpha \text{ more than } \beta\}) \subset \{\text{curves intersecting } \beta \text{ more than } \alpha\}$

 $T^4_{\beta}(\{\text{curves intersecting } \beta \text{ more than } \alpha\}) \subset \{\text{curves intersecting } \alpha \text{ more than } \beta\}$

 $T^4_{\alpha}(\{\text{curves intersecting } \alpha \text{ more than } \beta\}) \subset \{\text{curves intersecting } \beta \text{ more than } \alpha\}$

 $T^4_{\beta}(\{\text{curves intersecting } \beta \text{ more than } \alpha\}) \subset \{\text{curves intersecting } \alpha \text{ more than } \beta\}$

By ping-pong lemma, $\langle T^4_{\alpha}, T^4_{\beta} \rangle$ is a rank-2 free group.

 $T^4_{\alpha}(\{\text{curves intersecting } \alpha \text{ more than } \beta\}) \subset \{\text{curves intersecting } \beta \text{ more than } \alpha\}$

 $T^4_{\beta}(\{\text{curves intersecting } \beta \text{ more than } \alpha\}) \subset \{\text{curves intersecting } \alpha \text{ more than } \beta\}$

By ping-pong lemma, $\langle T^4_{\alpha}, T^4_{\beta} \rangle$ is a rank-2 free group.

Proposition

Let a and b be compositions of Dehn twists about sets of curves α_i and β_j resp., such that the $\{\alpha_i\}$ are pairwise disjoint, as are $\{\beta_j\}$, but some α_i intersects some β_j . Then for any k > 4, $\langle a^k, b^k \rangle$ is a rank-2 free group.

 $A = \operatorname{supp}(a)$ and $B = \operatorname{supp}(b)$ Suppose γ "entangles" ∂B in A.

"Entangles": arcs of $\gamma \cap A$ intersect ∂B many times

 $b^k(\{\text{curves entangling } \partial B \text{ in } A\}) \subset \{\text{curves entangling } \partial A \text{ in } B\}$

 $b^k(\{\text{curves entangling } \partial B \text{ in } A\}) \subset \{\text{curves entangling } \partial A \text{ in } B\}$ $a^k(\{\text{curves entangling } \partial A \text{ in } B\}) \subset \{\text{curves entangling } \partial B \text{ in } A\}$

 $b^k(\{\text{curves entangling } \partial B \text{ in } A\}) \subset \{\text{curves entangling } \partial A \text{ in } B\}$ $a^k(\{\text{curves entangling } \partial A \text{ in } B\}) \subset \{\text{curves entangling } \partial B \text{ in } A\}$

Proposition

There exists a power q_{rpA} depending only on S such that, for any rpA mapping classes a and b supported on overlapping connected subsurfaces, and any $k > q_{rpA}$, $\langle a^k, b^k \rangle$ is a rank-2 free group.

Choose $p > \max\{q_{rpA}, 4, \text{ and } q_{pA} \text{ for } S \text{ or any subsurface of } S\}$.

Proposition

For any pure mapping classes a, b such that $\langle a, b \rangle$ contains F_2 , $\langle a^p, b^p \rangle$, $\langle a^p, b^p a^p b^{-p} \rangle$, $\langle b^p, a^p b^p a^{-p} \rangle$, or $\langle a^p, ba^p b^{-1} \rangle \cong F_2$

The lower bound for h(G)

- G has finite-index pure subgroup $G' = G \cap \ker$
- For pure subgroup, suffices to consider two-el't generating sets
- $h(G') \ge (\log 3)/3p$.
- $h(G) > (\log 3)/(3p \cdot (2[Mod(S) : ker] 1))$