Convex Cocompactness in Mod(S) via Quasiconvexity in RAAGs

Johanna Mangahas¹ and Samuel Taylor²

¹Brown University, ²University of Texas at Austin

December 8, 2013

Convex cocompactness in mapping class groups

Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated G < Mod(S), TFAE:

- G acts cocompactly on its "weak hull", is δ -hyperbolic, ...
- Orbits of G are quasiconvex in Teich(S)
- Orbit maps of G into C(S) are quasi-isometric embeddings.

Convex cocompactness in mapping class groups

Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated G < Mod(S), TFAE:

- G acts cocompactly on its "weak hull", is δ -hyperbolic, ...
- Orbits of G are quasiconvex in Teich(S)
- Orbit maps of G into C(S) are quasi-isometric embeddings.

Convex cocompactness in mapping class groups

Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated G < Mod(S), TFAE:

- G acts cocompactly on its "weak hull", is δ -hyperbolic, ...
- Orbits of G are quasiconvex in Teich(S)
- Orbit maps of G into C(S) are quasi-isometric embeddings.

<u>Thms</u> (Farb-Mosher, Hamenstädt) E_G is word hyperbolic if and only if G is convex cocompact.

Which subgroups of Mod(S) are convex cocompact?

Which subgroups of Mod(S) are convex cocompact?

Definition

 $A_{\Gamma} = \langle v_i \text{ vertices of } \Gamma \mid [v_i, v_j] = id \text{ iff } (v_i, v_j) \text{ is an edge of } \Gamma \rangle$

<u>Thms</u> (Koberda, Clay-Leininger-M, Crisp-Paris/-Weiss/-Farb) Many ways to embed A_{Γ} in some Mod(S).

Definition

 $A_{\Gamma} = \langle v_i \text{ vertices of } \Gamma \mid [v_i, v_j] = id \text{ iff } (v_i, v_j) \text{ is an edge of } \Gamma \rangle$

<u>Thm</u> (Clay-Leininger-M)

For partially pA $\{f_1, \ldots, f_n\}$ supported on connected, non-nested X_i with disjointess recorded in the graph Γ , for large enough p_i ,

$$A_{\Gamma}
ightarrow \langle f_1^{p_1}, \ldots, f_n^{p_n}
angle < \mathrm{Mod}S$$

is a quasi-isometric embedding.

Definition

 $A_{\Gamma} = \langle v_i \text{ vertices of } \Gamma \mid [v_i, v_j] = id \text{ iff } (v_i, v_j) \text{ is an edge of } \Gamma \rangle$

<u>Thm</u> (Clay-Leininger-M)

For partially pA $\{f_1, \ldots, f_n\}$ supported on connected, non-nested X_i with disjointess recorded in the graph Γ , for large enough p_i ,

$$A_{\Gamma}
ightarrow \langle f_1^{p_1}, \ldots, f_n^{p_n}
angle < \mathrm{Mod}S$$

is an admissible* embedding.

*meaning $A_{\Gamma} \hookrightarrow \operatorname{Mod}(S)$:

(i) Comes with large subsurface curve complex projections, and(ii) Word partial order matches subsurface partial order

Thm (M-Taylor)

If $A_{\Gamma} < Mod(S)$ is admissible and $G < A_{\Gamma} < Mod(S)$ is convex cocompact, then G is (word) quasiconvex in A_{Γ} .

<u>Thm</u> (M-Taylor)

Suppose $A_{\Gamma} < Mod(S)$ is admissible and $G < A_{\Gamma}$ is fin. gen. and *K*-quasiconvex. There exists $L = L(K, |\Gamma|)$ such that if $w \in G$ with 0 < |w| < L are pseudo-Anosov, then *G* is convex cocompact (thus all-pseudo-Anosov, thus free).

Corollary

All-pA $G < A_{\Gamma} < Mod(S)$ is convex cocompact in Mod(S) if and only if it is word quasiconvex in A_{Γ} .

Convex cocompactness in RAAGs

The Cayley graph of A_{Γ} completes to a CAT(0) cube complex $\widetilde{S_{\Gamma}}$

Thm (Haglund 2008)

For $G < A_{\Gamma}$, then the transformation of $G < A_{\Gamma}$ is the transformation of G

- Exists (non-empty) convex subcomplex C ⊂ S_Γ which is G-invariant and cocompact.
- G (word) quasiconvex in A_Γ (vertex orbits G · v are combinatrly. qconvex in S_Γ.)

Convex cocompactness in RAAGs

The Cayley graph of A_{Γ} completes to a CAT(0) cube complex $\widetilde{S_{\Gamma}}$

Thm (Haglund 2008)

For $G < A_{\Gamma}$, then the transformation of $G < A_{\Gamma}$ is the transformation of G

- Exists (non-empty) convex subcomplex C ⊂ S_Γ which is G-invariant and cocompact.
- G (word) quasiconvex in A_Γ (vertex orbits G · v are combinatrly. qconvex in S_Γ.)

 $h = (\rho f_0 g_0)^n = f_1 g_1 f_2 g_2 \cdots f_n g_n \in \langle f_i, g_i \rangle \quad \operatorname{trans}(h) \sim 1/g$

$$h_k = (\rho f_0^k g_0^k)^n = f_1^k g_1^k f_2^k g_2^k \cdots f_n^k g_n^k \in \langle f_i, g_i \rangle \quad \operatorname{trans}(h_k) \sim 1/g$$

<u>Q</u>:

Construct a non-cyclic convex cocompact subgroup containing pseudo-Anosovs with $1/g^2$ translation length in curve complex.

Q:

Construct a non-cyclic convex cocompact subgroup containing pseudo-Anosovs with $1/g^2$ translation length in curve complex.

Q:

Does G all-pseudo-Anosov imply G convex cocompact in Mod(S)?

Q:

Construct a non-cyclic convex cocompact subgroup containing pseudo-Anosovs with $1/g^2$ translation length in curve complex.

Q:

Does G all-pseudo-Anosov imply G convex cocompact in Mod(S)?

<u>Q</u>:

Does $G < A_{\Gamma}$ all-loxodromic imply G (word) quasiconvex in A_{Γ} ?

mapping class subgroup

Consequences of convex cocompactness in Mod(S)

Requirements for word hyperbolicity:

- (1) No subgroups $BS(p,q) = \langle a, b | a^{-1} b^p a = b^q \rangle$
- (2) Has finite K(G, 1) if torsion-free (in general, type FP_{∞}).

<u>Q:</u> (Gromov, Farb-Mosher)

If G with finite K(G, 1) has no BS subgroups, is it hyperbolic?

Example (which might not exist)

If G is all-pA, then E_G has finite K(G, 1) and no BS subgroups. Recall if G fails to be convex cocompact, it also fails hyperbolicity.

Q:

Does there exist free, non-quasiconvex $G < A_{\Gamma}$ and admissible embedding $A_{\Gamma} < \operatorname{Mod}(S)$ such that G is all-pA?