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Convex cocompactness in mapping class groups

Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated G < Mod(S), tfae:

G acts cocompactly on its “weak hull”, is δ-hyperbolic, . . .

Orbits of G are quasiconvex in Teich(S)

Orbit maps of G into C(S) are quasi-isometric embeddings.

1 −→ π1(S) −→ EG −→ G −→ 1
|| ↓ ↓

1 −→ π1(S) −→ Mod(S̊) −→ Mod(S) −→ 1

Thms (Farb-Mosher, Hamenstädt)

EG is word hyperbolic if and only if G is convex cocompact.
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Which subgroups of Mod(S) are convex cocompact?

purely pseudo-Anosov subgroups

convex
cocompact

?

? ex
am

pl
es

Q:

Is { convex cocompact } same as { f.g. all-pA } ?
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Which subgroups of Mod(S) are convex cocompact?

purely pseudo-Anosov subgroups

(virtually) free convex
cocompact

?

? ex
am

pl
es

?

Q:

Is { convex cocompact } same as { f.g. all-pA (v. free) } ?
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RAAGs in mapping class groups

Definition

AΓ = 〈vi vertices of Γ | [vi , vj ] = id iff (vi , vj) is an edge of Γ〉

Thms (Koberda, Clay-Leininger-M, Crisp-Paris/-Weiss/-Farb)

Many ways to embed AΓ in some Mod(S).
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RAAGs in mapping class groups

Definition

AΓ = 〈vi vertices of Γ | [vi , vj ] = id iff (vi , vj) is an edge of Γ〉

Thm (Clay-Leininger-M)

For partially pA {f1, . . . , fn} supported on connected, non-nested
Xi with disjointess recorded in the graph Γ, for large enough pi ,

AΓ → 〈f p1
1 , . . . , f pn

n 〉 < ModS

is a quasi-isometric embedding.

Mangahas (Brown), Taylor (UT) CC in Mod(S) via QC in RAAGs



RAAGs in mapping class groups

Definition

AΓ = 〈vi vertices of Γ | [vi , vj ] = id iff (vi , vj) is an edge of Γ〉

Thm (Clay-Leininger-M)

For partially pA {f1, . . . , fn} supported on connected, non-nested
Xi with disjointess recorded in the graph Γ, for large enough pi ,

AΓ → 〈f p1
1 , . . . , f pn

n 〉 < ModS

is an admissible* embedding.

*meaning AΓ ↪→ Mod(S):

(i) Comes with large subsurface curve complex projections, and

(ii) Word partial order matches subsurface partial order
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CC in Mod(S) via QC in RAAGs

Thm (M-Taylor)

If AΓ < Mod(S) is admissible and G < AΓ < Mod(S) is convex
cocompact, then G is (word) quasiconvex in AΓ.

Thm (M-Taylor)

Suppose AΓ < Mod(S) is admissible and G < AΓ is fin. gen. and
K -quasiconvex. There exists L = L(K , |Γ|) such that if w ∈ G with
0 < |w | < L are pseudo-Anosov, then G is convex cocompact
(thus all-pseudo-Anosov, thus free).

Corollary

All-pA G < AΓ < Mod(S) is convex cocompact in Mod(S) if and
only if it is word quasiconvex in AΓ.
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Convex cocompactness in RAAGs

The Cayley graph of AΓ completes to a CAT(0) cube complex S̃Γ

Thm (Haglund 2008)

For G < AΓ, tfae:

Exists (non-empty) convex

subcomplex C ⊂ S̃Γ which is
G -invariant and cocompact.

G (word) quasiconvex in AΓ

(vertex orbits G · v are

combinatrly. qconvex in S̃Γ.)

< ab, a2b2 >

a

a

a

b

b

b
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Interesting examples

n = g − 1 ρn = id fi = ρi f0ρ
−i gi = ρig0ρ

−i

ρ

Thm (M-Taylor)

For any k, 〈h1, h2 . . . , hk〉 ∼= Fk is convex cocompact
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Interesting examples

n = g − 1 ρn = id fi = ρi f0ρ
−i gi = ρig0ρ

−i

ρ

X0 f0
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Interesting examples
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Interesting examples
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−i gi = ρig0ρ

−i

ρ

ρ

X0 f0

Y0
g0

X0

Y0

X1Y1

Y

Xi

i

hk = (ρf0g0)n = f1g1f2g2 · · · fngn ∈ 〈fi , gi 〉 trans(h) ∼ 1/g

Thm (M-Taylor)

For any k, 〈h1, h2 . . . , hk〉 ∼= Fk is convex cocompact
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Further questions

Q:

Construct a non-cyclic convex cocompact subgroup containing
pseudo-Anosovs with 1/g 2 translation length in curve complex.

Q:

Does G all-pseudo-Anosov imply G convex cocompact in Mod(S)?

Q:

Does G < AΓ all-loxodromic imply G (word) quasiconvex in AΓ?
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Fun pictures
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Consequences of convex cocompactness in Mod(S)

Requirements for word hyperbolicity:

(1) No subgroups BS(p, q) = 〈a, b|a−1bpa = bq〉
(2) Has finite K (G , 1) if torsion-free (in general, type FP∞).

Q: (Gromov, Farb-Mosher)

If G with finite K (G , 1) has no BS subgroups, is it hyperbolic?

Example (which might not exist)

If G is all-pA, then EG has finite K (G , 1) and no BS subgroups.
Recall if G fails to be convex cocompact, it also fails hyperbolicity.

Q:

Does there exist free, non-quasiconvex G < AΓ and admissible
embedding AΓ < Mod(S) such that G is all-pA?
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