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Abstract. We provide an effective algorithm for determining whether
an element φ of the outer automorphism group of a free group is
fully irreducible. Our method produces a finite list which can be
checked for periodic proper free factors.

1. Introduction

Let F be a finitely generated nonabelian free group of rank at least 2.
An outer automorphism φ is reducible if there exists a free factorization
F = A1 ∗ · · ·Ak ∗B such that φ permutes the conjugacy classes of the
Ai; else it is irreducible. Although irreducible elements have nice prop-
erties, e.g., they are known to possess irreducible train-track represen-
tatives, irreducibility is not preserved under iteration. Thus one often
considers elements that are irreducible with irreducible powers (iwip),
or fully irreducible. These are precisely the outer automorphisms φ for
which there does not exist a proper free factor A < F whose conju-
gacy class [A] satisfies φp([A]) = [A] for any p > 0. If φp([A]) = [A]
for some proper free factor A < F and for some p > 0, we say [A]
is φ–periodic, and, to avoid cumbersome language, also that the free
factor A is φ–periodic. Fully irreducible elements are considered anal-
ogous to pseudo-Anosov mapping classes of hyperbolic surfaces. As
such, they play an important role in the geometry and dynamics of the
outer automorphism group Out(F ) of F .

Although considered in some sense a “generic” property in Out(F ),
full irreducibility is not generally easy to detect. Kapovich [16] gave
an algorithm for determining whether a given φ ∈ Out(F ) is fully
irreducible, inspired by Pfaff’s criterion for full irreducibility in [21]. At
points in his algorithm, two processes run simultaneously, and although
it is known that one of these must terminate, it is not a priori known
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which will; it thus seems unclear that the complexity of Kapovich’s
algorithm can be found without running the algorithm itself.

For mapping class groups and braid groups, there exist algorithms
for determining whether or not a given element is pseudo-Anosov [6, 8,
3, 4, 20, 7]. Recently, Koberda and the second author [17] provided an
elementary algorithm for determining whether or not a given mapping
class is pseudo-Anosov, using a method of “list and check.” They show
that if a mapping class f is reducible, i.e., has an invariant multicurve,
then the curves in its reduction system have length bounded by an
exponential function in terms of the number of generators needed to
write f . Therefore, given a mapping class f , a list is produced of all
multicurves whose curves are sufficiently short. The action of f is then
checked on these finitely many multicurves. If f fixes a multicurve
from the list, it is reducible; otherwise, it is necessarily pseudo-Anosov.

In this article, we provide, in essence, a method of “list and check”
for elements of Out(F ), akin to that of Koberda and the second author.
That is, we provide an algorithm which, given an element φ expressed
as a product of generators from a finite generating set of Out(F ), pro-
duces a finite list of free factors and checks each for φ-periodicity. The
algorithm effectively determines whether or not the given element φ
is fully irreducible. By effective, we understand that there is a com-
putable function which bounds the number of steps in terms of the size
of the input and that does not utilize the algorithm. In particular, we
avoid the use of dual processes, one of which must terminate.

Acknowledgements. We would like to thank the Centre de Recerca
Matemàtica for its hospitality during its research program, Automor-
phisms of Free Groups: Algorithms, Geometry, and Dynamics, in Fall,
2012. The authors also thank Sam Taylor for comments on an earlier
version of this work.

2. Statement of Results

By rk(F ) we denote the rank of the free group F . Let ξ(F ) =
3 rk(F ) − 3. This is the maximum number of edges in a finite graph
with fundamental group F and without degree one or two vertices.
This is also the maximum number of isotopy classes of disjoint, essen-
tial (not bounding a ball) spheres in the double of the handlebody of
genus rk(F ). An element φ ∈ Out(F ) that is not fully irreducible is
cyclically reducible if there exists a φ–periodic rank 1 free factor; else
it is noncyclically reducible.

Our algorithm to determine full irreducibility of an element φ ∈
Out(F ) consists of two effective processes. Process I determines (in
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the absence of an obvious reduction) if φ is cyclically reducible. As we
shall see in Section 3, this will exploit algorithms which are already well-
known. Our main contribution to the algorithm is in process II. For
this we construct a finite list of conjugacy classes of proper free factors
that contains a φ–periodic free factor if φ is noncyclically reducible.
The length of this list is controlled by the word length of φ; this is the
content of Theorem 1. A systematic check of the list then determines
whether or not φ is fully irreducible.

To state our main theorem, we start by fixing a basis X for the
free group F , and let T = TX denote the Cayley graph for F with
respect to X . Given a subgroup A ≤ F , the volume ‖A‖X of A is
the number of edges in the Stallings core of the graph T/F . Recall
that the Stallings core is the graph TA/A, where TA is the minimal
subtree of T with respect to the action of A; or, equivalently, the
Stallings core is the smallest subgraph of the cover of T/F associated
to A that contains every embedded cycle (see [22] for details). Note
that the volume function ‖ · ‖X is constant on conjugacy classes of
subgroups. The quantity ‖A‖X gives some measure of the complexity
of the subgroup A in terms of the basis X . For instance, if A = 〈a〉 is a
cyclic subgroup, the volume ‖〈a〉‖X is the cyclic length of the element
a as a word in the basis X .

Now fix a finite generating set S for Out(F ). Denote by |φ|S the word
length of φ ∈ Out(F ) with respect to S. Our main theorem describes
a relation between the word length of a noncyclically reducible element
of Out(F ) and the volume of one of its periodic free factors.

Theorem 1. There is a computable constant C = C(X ,S) such that,
for any φ ∈ Out(F ), either

(i) φ is fully irreducible, or
(ii) φ has a periodic rank–1 free factor, or
(iii) φ has a periodic proper free factor A such that ‖A‖X ≤ C |φ|S .

In other words, if φ is noncyclically reducible, then C |φ|S bounds the
volume of some proper φ–periodic free factor. An exact formula for C
is given at the end of Section 7.

As there are a finite number of conjugacy classes of free factors A
of F for which ‖A‖X is bounded, the theorem provides a bound for
the size of a list of conjugacy classes of free factors that can be used
to conclusively determine whether or not an element φ ∈ Out(F ) of
length |φ|S is fully irreducible, if φ is not cyclically reducible.

To prove Theorem 1, we utilize a notion of intersection number
i(S, T ) defined between a pair of trees S and T equipped with an iso-
metric action by F , as defined by Guirardel [11]. Horbez [15] related
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the intersection number i(T, Tφ) to the word length of φ ∈ Out(F )
(Section 5, Theorem 5). We thus need only bound the volume of a
φ–periodic proper free factor by i(T, Tφ) (Section 7, Proposition 13).

Before embarking on the details of the proof of Theorem 1, we will
first describe the procedure used in our algorithm for detecting fully
irreducible elements of Out(F ). This is contained in the next section,
where we establish:

Theorem 2. There exists an effective algorithm for determining if an
outer automorphism is fully irreducible.

3. List and check algorithm

The input of our algorithm is an element φ0 ∈ Out(F ). Recall that
φ0 ∈ Out(F ) is not fully irreducible if there exists a periodic proper
free factor, and note that the periodic free factors of φ0 are exactly
the periodic free factors of each of its powers. Feighn and Handel [10]
showed that there is a power Q, depending on the rank of F but not
on the element φ0, so that any periodic free factor of φQ0 is in fact
invariant. An explicit function for Q depending only on rk(F ) can
be found in [12] and [9]. For instance, Handel–Mosher show that this
property is shared by all elements in ker(Out(F ) → GL(rk(F ),Z3))

and hence Q =
∏rk(F )

j=1 (3rk(F ) − 3j−1) suffices. This is analogous to the
fact that the mapping class group has a finite index subgroup all of
whose elements are pure; i.e., any invariant multicurve is curve-wise
fixed. As a preliminary step to our algorithm, we replace the element
φ0 by φ = φQ0 , so that henceforth we need only look for invariant free
factors. Note that φ is irreducible if and only if it is fully irreducible if
and only if φ0 is fully irreducible.

Process I. To begin process I, we apply an effective algorithm due to
Bestvina and Handel [5] which finds a relative train track 1 representa-
tive f : Γ→ Γ of φ. At its conclusion, if Γ has a nontrivial f–invariant
subgraph, then φ fixes a proper free factor and is therefore reducible.
Otherwise, the algorithm gives us an honest train track map repre-
senting φ. Recall that Bestvina and Handel [5] proved that the fixed
subgroup of an automorphism whose outer class is irreducible is at
most rank 1. Thus we next want to check for loops homotopically fixed
by f , which correspond to a fixed conjugacy classes of φ, and then see

1Loosely speaking, a relative train track representative is akin to a Jordan form
for a linear transformation; we will not make use of any properties of relative train
track representatives and refer the reader to the references for details.



VOLUME OF PERIODIC FREE FACTORS 5

whether their corresponding elements generate a higher rank subgroup
of F .

For this, we make use of an algorithm of Turner in [23]. For an
outer automorphism φ with train track map f : Γ → Γ, Turner be-
gins by describing a graph Df equipped with a graph map Df → Γ.
The components of Df are in one-to-one correspondence with the fixed
subgroups of the automorphisms in the outer class of φ, so that, re-
stricted to a component of Df , the map Df → Γ is the covering map
corresponding to the fixed subgroup of one of the elements of the outer
class of φ. The algorithm provides an effective procedure for obtaining
a finite subgraph Cf of Df that carries the fundamental group of Df .
If any component of Cf has rank greater than 1, then φ is reducible.
Otherwise, Whitehead’s algorithm provides an effective method for de-
termining whether any component of Cf corresponds to a primitive
element. If one does, then φ is cyclically reducible. This marks the end
of process I. At this point, we stop if we have found that φ is reducible,
and we continue to process II if we have only managed to determine
that φ is noncyclically reducible or fully irreducible.

Process II. Theorem 1 gives an upper bound V = C |φ|S on the volume
of the smallest φ–invariant free factor, if φ is noncyclically reducible.
(Recall, we have replaced our original input φ0 by φ = φQ0 for which
invariance and periodicity are the same.) There are a finite number of
conjugacy classes of subgroups H with volume less than this bound,
and these can be systematically listed, since they correspond to core
graphs made from at most V edges, where each edge is oriented and
labeled by an element of X . For a gross overestimate of the number of
these, one has V · (2 rk(F ))V · B2V , where Bn, known as the nth Bell
number, counts the number of partitions of n objects. In our case this
is equivalent to the number of ways one can glue the 2V endpoints of
V edges to obtain a graph. In particular, the number of conjugacy
classes is less than V (8V 2 rk(F ))V as B2V ≤ (2V )2V . Whitehead’s
algorithm is then used to eliminate conjugacy classes which are not free
factors. We obtain a list of conjugacy classes of free factors that are
checked (using, say, Stallings’s graph pull backs [22]) one-by-one for
φ–invariance. This process, and hence the algorithm, stops once either
an invariant free factor is identified, concluding with φ reducible, or
once every item on the list is checked and found not to be invariant,
determining that φ is fully irreducible.

This completes the proof of Theorem 2, with the assumption of The-
orem 1. Now we proceed with the proof of Theorem 1.
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4. Outer Space, Trees, and Morphisms

For mapping class groups, the intersection number between curves
on the surface is in various contexts useful in comparison to distances
in, for instance, Teichmüller space or the complex of curves. Simi-
lar methods have been emerging for Out(F ) and its associated spaces.
Culler and Vogtmann’s outer space is the space cv consisting of met-
ric simplicial trees T equipped with simplicial, free F–actions that are
minimal (meaning they leave no proper subtree invariant), up to isom-
etry which commutes with the action. The action of Out(F ) on cv is
defined by pre-composing the free group action with the outer auto-
morphism; this action is therefore on the right. In some contexts, it is
convenient to consider the projectivized outer space CV in which the
sum of the lengths of the edges of the quotient T/F is 1. Outer space
is treated as the analogue for Out(F ) of Teichmüller space; we refer
the reader to Vogtmann’s survey [24] for a more detailed description.

For a tree T ∈ cv, we use dT (·, ·) to denote the metric on T , `T (·)
to denote the length of edges or paths, and E(T ) to denote the set of
edges. We may consider edges oriented, depending on the context. In
the special case that T has a single vertex orbit and unit length on
every edge, we call T a unit rose.

Any pair of unit roses S, T are related by a morphism f : S → T ,
by which we mean a cellular F–equivariant map that linearly expands
every edge of S over a non-backtracking edge path of T . The length of
a morphism f : S → T is

`(f) = max{`T (f(s)) | s ∈ E(S)},

and the length of S in T is

`T (S) = min{`(f) | f : S → T is a morphism}.

We use `T (S) instead of Lipschitz distance to simplify computations in
the next section, but we remark that the two values are easily related
by [15, Lemma 2.4]. If f : S → T satisfies `(f) = `T (S), we say f is
length minimizing. In general, `T (S) and `S(T ) are not equal, but it
is known that the ratio of their logarithms is bounded away from zero,
independently of S and T , when both trees are unit roses (or more
generally, in the “thick part” of cv) [1, 13]. We do not require this fact
in what follows. Instead, it is convenient to define

λ(S, T ) = max{`T (S), `S(T )}.
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5. Intersection and the Guirardel Core

The utility of the intersection number between curves on a surface
is carried over to free groups via the so-called Guirardel core C(S×T ):
a certain closed, F–invariant (with the diagonal action) cellular subset
of the product S × T of trees in S, T ∈ cv. The intersection number
i(S, T ) is the covolume of C(S×T ), that is, the sum of the areas of the
2-cells in C(S × T )/F . Often we may assume S and T are unit roses,
in which case i(S, T ) simply counts the squares in C(S × T )/F .

For our purpose, we do not need the full definition of C(S × T ), for
which we refer the reader to [11, 15]. Rather, we make use of two
approaches to computing i(S, T ). In one of these, intersection numbers
are interpreted as the geometric intersection between sphere systems
in the doubled handlebody. This connection is recalled in the proof of
Lemma 11, where it is used.

The other approach is a simple criterion, given by Behrstock, Bestv-
ina and the first author [2], for when two edges s ∈ E(S), t ∈ E(T )
determine a square s × t in the core C(S × T ). For a tree T ∈ cv, we
let ∂T denote its boundary; that is, equivalence classes of geodesic rays
where two rays are equivalent if their images lie in a bounded neighbor-
hood of one another. An oriented edge t ∈ E(T ) determines a subset
Cyl+T (t) ⊂ ∂T , its (forward) one-sided cylinder, which consists of equiv-
alence classes of geodesics that contain a representative whose image
contains t with the correct orientation. The complement of Cyl+T (t)
in ∂T will be denoted by Cyl−T (t); clearly Cyl−T (t) = Cyl+T (t̄), where
t̄ is t with the reverse orientation. We will typically not bother with
specifying an orientation as we will consider both one-sided cylinders
simultaneously. For S, T ∈ cv, there exists a canonical F -equivariant
homeomorphism ∂ : ∂S → ∂T , which is induced by any morphism
f : S → T .

Lemma 3 ([2, Lemma 2.3]). Let S, T ∈ cv and let ∂ : ∂S → ∂T
denote the canonical F–equivariant homeomorphism. Given two edges
s ∈ E(S) and t ∈ E(T ), the rectangle s×t is in the core C(S×T ) if and

only if each of the four subsets ∂(Cyl
(±)
S (s)) ∩ Cyl(±)

T (t) is nonempty.

Let S, T ∈ cv and t ∈ E(T ). The slice of the core C(S × T ) above t
is the set:

Ct = {s ∈ E(S) | s× t ⊂ C(S × T )}.
Similarly define the slice Cs = {t ∈ E(T ) | s × t ⊂ C(S × T )} for
s ∈ E(S). A simple application of Lemma 3 can be used to describe
the slice.
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Lemma 4 ([2, Lemma 3.7]). Let S, T ∈ cv and suppose f : S → T
is a morphism. Given an edge t ∈ E(T ) and a point y in the interior
of t, the slice Ct ⊂ S of the core C(S × T ) is contained in the subtree
spanned by f−1(y).

As F acts freely on the edges of T , for any point y that is in the
interior of t, the subtree Ct × {y} embeds in the quotient C(S × T )/F .
Similarly, for a point x in the interior of s, the subtree {x}×Cs embeds
in the quotient. Therefore, the intersection number i(S, T ) can be
expressed as:

i(S, T ) =
∑

e∈E(T/F )

`T (ẽ) vol(Cẽ) =
∑

e∈E(S/F )

`S(ẽ) vol(Cẽ). (1)

where by ẽ we denote any lift of the edge e to T or S respectively and
by vol(·) we denote the sum of the lengths of the edges in the respective
slice.

As mentioned in Section 2, Horbez [15] has recently given, for two
trees in cv, a bound on their Guirardel intersection number based on
F–equivariant maps between them, which in turn we can relate to
the geometry of Out(F ). We require a more precise formulation of his
result than what is stated in [15], and we need only consider intersection
between unit roses:

Theorem 5 (Horbez [15]). Let S, T ∈ cv be unit roses. Then

i(S, T ) ≤ 2 rk(F )3λ(S, T )4.

For the remainder of this section, we derive the statement above by
a variation on the arguments in [15, Section 2.2]. Using trees rather
than marked graphs, and keeping track of the precise dependence on
the F–equivariant maps, we obtain inequalities not stated directly in
[15] but needed for our applications.

Remark 6. If f : S → T is a morphism between unit roses, then f
is a bijection between the vertices of S and the vertices of T . Indeed,
this follows as F acts freely and transitively on the vertex sets.

Lemma 7 (cf. Lemmas 2.3 and 2.5 in [15]). Suppose that S, T ∈ cv
are unit roses and f : S → T is a length minimizing morphism. If
v0, v1 are vertices of T , then there exist vertices u0, u1 of S such that
f(u0) = v0, f(u1) = v1, and

dS(u0, u1) ≤ λ(S, T )dT (v0, v1) + λ(S, T )2.

Proof. Since the existence of u0 and u1 is clear by Remark 6, we need
only prove the inequality. Let g : T → S be a length minimizing mor-
phism. For any vertices u, u′ in S, it is clear by concatenating the
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images of edges that

dS(gf(u), gf(u′)) ≤ `(g)dT (f(u), f(u′)) ≤ `(g)`(f)dS(u, u′).

Now consider the geodesic edge path q from u to u′′ = gf(u). There is
a w ∈ F for which dS(u,wu) = 1 and whose axis intersects q only at
u. Thus dS(u′′, wu′′) = 2dS(u, u′′) + 1. On the other hand,

dS(u′′, wu′′) = dS(gf(u), wgf(u)) = dS(gf(u), gf(wu)) ≤ `(g)`(f),

by our first observation and our choice of w. These last two statements
together imply 2dS(u, gf(u)) ≤ `(g)`(f). Since u was arbitrary,

dS(u0, u1) ≤ dS(gf(u0), gf(u1)) + dS(u0, gf(u0)) + dS(u1, gf(u1))

≤ `(g)dT (v0, v1) + `(g)`(f),

from which the lemma follows. �

Lemma 8 (cf. Proposition 2.8 in [15]). Suppose S, T ∈ cv are unit
roses and that f : S → T is a length minimizing morphism. Given any
edge t ∈ E(T ) and a point y in the interior of t, for any x, x′ ∈ f−1(y)
we have

dS(x, x′) ≤ 4λ(S, T )2 + 2.

Proof. Fix v0 a vertex on one end of t, and let u0 be the vertex of S
such that f(u0) = v0. Consider x ∈ f−1(y). Let s ∈ E(S) be the edge
that contains x. Let u1 be a vertex on one end of s, and set v1 = f(u1).
Observe that f(s) is a geodesic of length at most `(f). Because f(s)
contains both v0 and v1, dT (v0, v1) ≤ `(f). By Lemma 7,

dS(u0, u1) ≤ λ(S, T )`(f) + λ(S, T )2 ≤ 2λ(S, T )2.

Because dS(u1, x) ≤ 1, dS(u0, x) ≤ 2λ(S, T )2 + 1. The same is true
replacing x with x′, hence the conclusion. �

Corollary 9. Suppose S, T ∈ cv are unit roses. Given an edge t ∈
E(T ), the diameter of the slice Ct ⊂ S of the core C(S × T ) is at most
4λ(S, T )2.

Proof. Let f : S → T be a length minimizing morphism. Suppose y is
a point in the interior of the edge t. By Lemma 4 any two points in
the slice Ct are contained in a geodesic between points in f−1(y), which
by Lemma 8 has length at most 4λ(S, T )2 + 2. The endpoints of this
geodesic are interior to edges, while the slice is a union of closed edges;
in particular the slice must exclude the partial edges at each end of
the geodesic. Thus the two points in the slice have distance at most
4λ(S, T )2. �
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Proof of Theorem 5 (cf. Proposition 2.8 in [15]). Fix an edge t ∈
E(T ) and a point y in the interior of t. Let f : S → T be a length
minimizing morphism. The cardinality of f−1(y) is at most rk(F )`(f).
By Lemma 4 and Corollary 9, the slice Ct is covered by the union of
1
2

(
rk(F )`(f)

)2
edge paths of length at most 4λ(S, T )2. Thus vol(Ct) ≤

2 rk(F )2λ(S, T )4. Hence by (1), we have i(S, T ) ≤ 2 rk(F )3λ(S, T )4 as
claimed. �

6. Subgroups and volume bounds

Given trees S, T ∈ cv and a nontrivial finitely generated subgroup
A ≤ F , there exist nonempty subtrees SA ⊂ S, TA ⊂ T , on each
of which A acts minimally. We can thus consider the Guirardel core
C(SA × TA) for these minimal subtrees with respect to the action of
A. We might hope that, if A is a free factor of F , then C(SA × TA)
embeds into C(S×T ), so that i(SA, TA) is always dominated by i(S, T ).
Unfortunately this appears to be too much to expect, but we do achieve:

Proposition 10. Let A be a noncyclic finitely generated subgroup of
F . Suppose that S, T ∈ cv are unit roses and let SA ⊂ S, TA ⊂ T be
the minimal subtrees with respect to A. Then:

i(SA, TA) ≤ 6 ξ(A) · λ(S, T )3 · i(S, T ).

Proof. By Equation (1), we have:

i(S, T ) =
∑

e∈E(T/F )

vol(Cẽ)

i(SA, TA) =
∑

e∈E(TA/A)

`TA(ẽ) vol(Aẽ) (2)

where Cẽ ⊂ S and Aẽ ⊂ SA ⊂ S are the slices in the respective cores.
We denote by ∂ : ∂S → ∂T , the canonical F–equivariant homeomor-
phism, and by ∂A : ∂SA → ∂TA, the canonical A–equivariant homeo-
morphism. Observe that ∂

∣∣
∂SA

= ∂A.

First, we claim that for each edge ẽ ⊂ TA ⊂ T we have that
Aẽ ⊆ Cẽ. Indeed, let s be an edge in Aẽ. By Lemma 3, each of the

four sets ∂A(Cyl
(±)
SA

(s)) ∩ Cyl(±)
TA

(ẽ) is non-empty. As ∂A(Cyl
(±)
SA

(s)) =

∂(Cyl
(±)
SA

(s)) ⊂ ∂(Cyl
(±)
S (s)) and Cyl

(±)
TA

(ẽ) ⊂ Cyl
(±)
T (ẽ), each of the

four sets ∂(Cyl
(±)
S (s)) ∩ Cyl(±)

T (ẽ) is nonempty. Hence s is an edge in
Cẽ.

By a natural edge of TA we mean an edge path ẽ = ẽ1, ẽ2, . . . , ẽn
that is a connected component of TA − V≥3(TA), where V≥3(TA) is the
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collection of vertices of degree at least three. A natural edge in TA/A
is the image of a natural edge in TA; the set of all natural edges is
denoted EN(TA/A).

Suppose that ẽ is a natural edge of TA consisting of the edge path

ẽ1, ẽ2, . . . , ẽn. Then since Cyl
(±)
TA

(ẽi) = Cyl
(±)
TA

(ẽj) for all i, j, from
Lemma 3 we see that Aẽi = Aẽj . Therefore, we are justified in writ-
ing Aẽ to denote any of the slices Aẽi . Applying the observation that
Aẽi ⊆ Cẽi we have that:

Aẽ ⊆
n⋂
i=1

Cẽi (3)

Next let us bound `TA(ẽ) whenever Aẽ is not empty. Let f : S → T
be a length minimizing morphism, and consider interior points x1 ∈ ẽ1

and xn ∈ ẽn. If there exists a point p ∈ Aẽ ⊆ Cẽ1 ∩ Cẽn , it lives
in a geodesic between a pair of points in f−1(x1), by Lemma 4. By
Lemma 8, this path has length at most 4λ(S, T )2 + 2. The same is
true replacing x1 with xn. Because p is in the intersection of these two
bounded geodesics, we may choose y1 ∈ f−1(x1) and yn ∈ f−1(xn) so
that d(y1, yn) ≤ 4λ(S, T )2 + 2. Furthermore, d(x1, xn) ≤ `(f)d(y1, yn),
and we may choose x1 and xn so that d(x1, xn) is arbitrarily close to
`TA(ẽ). Thus we conclude that, when vol(Aẽ) > 0,

`TA(ẽ) ≤ `T (S)
(
4λ(S, T )2 + 2

)
< 6λ(S, T )3.

Rewriting (2), we get:

i(SA, TA) =
∑

e∈E(TA/A)

`TA(ẽ) vol(Aẽ)

=
∑

e∈EN (TA/A)

`TA(ẽ) vol(Aẽ)

≤
∑

e∈EN (TA/A)

6λ(S, T )3 vol(Aẽ)

By (3), vol(Aẽ) ≤ i(S, T ) for every natural edge e ∈ EN(TA/A). As
TA/A has at most ξ(A) natural edges, the proof is completed. �

In order to eventually relate intersection number to the volume of an
invariant free factor, we find an effective lower bound for intersection
under a bounded iterate of a fully irreducible automorphism.

Lemma 11. Let φ be a fully irreducible element of Out(F ) and con-
sider a tree T ∈ cv with edge lengths at least 1. Then for some
1 ≤ P ≤ ξ(F ):

vol(T/F ) ≤ ξ(F ) · i(T, TφP ).
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Proof. The lemma will be proved once we establish that, for some 1 ≤
P ≤ ξ(F ), the slice of the core C(T × TφP ) above the longest edge
of T contains at least one edge of TφP and hence has volume at least
1. This is because, if the longest edge is ẽ, by Equation (1) we would
have:

vol(T/F ) ≤ ξ(F ) · `T (ẽ) ≤ ξ(F ) · `T (ẽ) · vol(Cẽ) ≤ ξ(F ) · i(T, TφP ).

To prove the claim above, we compute the intersection number using
sphere systems in the doubled handlebody with fundamental group F .
Briefly, let M be the connect sum of as many copies of S1 × S2 as the
rank of F . By S we denote the simplicial complex whose n–simplicies
correspond to n + 1 isotopy classes of disjoint essential spheres in M ,
and by S∞ we denote the subcomplex of S consisting of simplicies
where the complement of the corresponding sphere system in M has
a non-simply-connected component. By work of Laudenbach [18, 19],
there is a well-defined simplicial action of Out(F ) on S that leaves
S∞ invariant. In this action, fully irreducible elements of Out(F ) act
on S without periodic orbits. Hatcher [14] established an Out(F )–
equivariant isomorphism between projectivized outer space CV and
S − S∞. Under this isomorphism, edges of a marked graph T/F
correspond bijectively to spheres in some sphere system.

Horbez details the correspondence between geometric intersection of
the sphere systems and the volume of the Guirardel core [15]. In partic-
ular he shows that, if T0, T1 are trees in CV , then for the corresponding
sphere systems Σ0,Σ1 ∈ S − S∞, we have i(T0, T1) = i(Σ0,Σ1), where
the latter counts the minimal number of circles common to each sphere
system, weighted appropriately. This minimum is acheived by repre-
sentative sphere systems in a notion of normal position first described
by Hatcher in [14]. While not stated explicitly in [15], it can be verified
that each circle of intersection occurring on a given component σ0 ∈ Σ0

corresponds to an edge in the slice of the core C(T0×T1) above an edge
in T0 corresponding to the lift of the edge in T0/F dual to σ0. This
is because C(T0 × T1) can be built as the 2-complex dual to preimages
of Σ1 and Σ2 in the universal cover of M , where Σ1 and Σ2 are as-
sumed to be in normal position. For our considerations, the weights
on the spheres do not matter as we are only concerned with showing
that some slice is nonempty, i.e., that the corresponding sphere has
nontrivial intersection with another sphere.

Now, given T ∈ cv, we scale its edges equally by 1/ vol(T/F ) to get
a point T ∈ CV . The slice over the longest edge of T in C(T × TφP )
is non-empty if and only if the slice over the longest edge of T in
C(T×TφP ) is non-empty. Suppose Σ is the sphere system dual to T and
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that σ ∈ Σ is dual to the longest edge of T . As the maximum number
of isotopy classes of disjoint essential spheres in M is ξ(F ) and as φ is
fully irreducible, at least two of the spheres σ, φ(σ), . . . , φξ(F )(σ) have
essential intersection, so in particular σ essentially intersects φP (σ) for
some 1 ≤ P ≤ ξ(F ). By the foregoing discussion, this means the slice
above the longest edge in T/F contains at least one edge, proving the
lemma. �

Remark 12. We use sphere systems in the proof above to potentially
give intuition on how the reasoning parallels that for its mapping class
group analogue in [17]. Alternately, Lemma 11 can be proved using
trees instead; we give a sketch of that argument here. As in Lemma 11,
we will show that the slice of the core above the longest edge in T
contains at least one edge.

To this end, let ẽ be the longest edge in T and consider T1 = X,
the tree obtained by collapsing every edge other than the ones in the
orbit of ẽ. If i(T1, Xφ) 6= 0, then the slice Cẽ ⊂ Xφ is non-empty as
i(T1, Xφ) = `T1(ẽ) vol(Cẽ). As Tφ collapses to Xφ, we see that the slice
of the core above ẽ in C(T × Tφ) is also non-empty.

If i(T1, Xφ) = 0, then by [11, Theorem 6.1] the core is tree, denote it
T2. Moreover, T2 is a common refinement for both T1 and Xφ. That is,
there are edge collapse maps T1 ← T2 → Xφ. There is a unique edge
in T2 that is mapped homeomorphically to ẽ ⊂ T1. Abusing notation,
we denote this edge by ẽ as well.

As before, if i(T2, Xφ
2) 6= 0, then we see that the slice Cẽ ⊂ Xφ2 is

non-empty and therefore the slice above ẽ in C(T × Tφ2) is also non-
empty. If i(T2, Xφ

2) = 0, then the core is a common refinement for the
two trees T2 and Xφ2, denote it T3.

Continue in this fashion, if i(Tk, Xφ
k) = 0, denote the common re-

finement by Tk+1. As φ is fully irreducible at each step Tk/F has k
edges. Thus for some 1 ≤ P ≤ ξ(F ), we must have that i(TP , Xφ

P ) 6=
0. Hence the slice of the core above ẽ in C(T × TφP ) contains at least
one edge, proving the lemma.

We apply the previous two results to prove:

Proposition 13. Let T = TX be the Cayley graph with respect to
the basis X , with all edges of unit length. If φ ∈ Out(F ) acts fully
irreducibly on a proper free factor A of rank at least 2, then for some
1 ≤ P ≤ ξ(F ):

‖A‖X ≤ 6 ξ(F )2 · λ(T, TφP )3 · i(T, TφP ).

Proof. The minimal tree TA ⊂ T of A has natural edge-lengths at
least 1, and as such can be thought of as an element of cv(A), the
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unprojectivized outer space for A. We can apply Lemma 11 to TA with
its free A–action to obtain P ≤ ξ(A) for which

‖A‖X = vol(TA/A) ≤ ξ(A) · i(TA, TAφP ).

The conclusion follows by applying Proposition 10, noting that ξ(A) ≤
ξ(F ). �

7. Proof of Theorem 1

In this section we prove the key new result for our algorithm, which
is Theorem 1. We wish to show that if φ ∈ Out(F ) is noncyclically
reducible there is a φ–periodic free factor whose volume is bounded
above by an exponential function in terms of the word length |φ|S .
Since φ is noncyclically reducible, there is a φQ–invariant free factor
A for which 1 < rk(A) < rk(F ), where Q = Q(rk(F )) is the constant
power mentioned at the beginning of Section 3. We can assume that
φQ|A is fully irreducible.

Now let us complete the proof of Theorem 1. Let T = TX be the
Cayley graph with respect to the basis X , with all edges of unit length.
Combining with Theorem 5 with Proposition 13, we have some 1 ≤
P ≤ ξ(F ) for which

‖A‖X ≤ 6 ξ(F )2 · λ(T, TφQP )3 · i(T, TφQP )

≤ 12 ξ(F )5 · λ(T, TφQP )7

Let λX (S) = max{λ(T, Tψ) | ψ ∈ S}. Since the length of a com-
position of morphisms is bounded by the product of their lengths, we
have λ(T, TφQP ) ≤ λX (S)QP |φ|S .

The proof of Theorem 1 is complete with:

‖A‖X ≤ 12 ξ(F )5 · λX (S)7QP |φ|S

≤ C |φ|S ,

where C = 12 ξ(F )5 · λS(X )7Qξ(F ) depends only on X and S.
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