	Gibbs Phase Rule
Phase Diagrams Best, Chapter 14	$F = 2 + C - \phi$ F = degrees of freedom (P-T-X) C= components ϕ = phases
Degrees of Freedom	Petrogenetic Grid
• Rule applies to a phase or assemblage	• The grid define stability limits
 Divariant indicates two degrees of	– End-member minerals
freedom	– Mineral assemblages

- Univariant means one degree of freedom
- Invariant means there are no degrees of freedom

• More thermodynamic data is needed to construct a useful grid

Anhydrous Phase Diagrams

- Solid-solid reactions
- Governed by Clapeyron equation
 - $dP/dT = 10 \Delta H/T \Delta V = \Delta S/\Delta V$
 - $\, \Delta H$ is the heat of reaction
 - $-\,\Delta S$ is the change in entropy
 - $-\,\Delta V$ is the change in volume
- The slope of the stability is dP/dT

System Open to H₂O

- Dehydration curves
- Example of the general case
- Specific minerals
 - Breakdown of chlorite, muscovite, biotite, etc

System Open to CO₂

- Decarbonation curves
- · General case example
- Specific minerals
 Breakdown of calcite,

dolomite, etc

Univariant Curves

- Curves that define reactions with one degree of freedom
- In P-T space this means that if T is changed, than P must also change to maintain equilibrium
- Many important metamorphic reactions are defined by these curves

Important Reactions

- Al₂O₃ phase stability
- Dehydration curves

Stability of Iron Oxides

- $P_{02}(f_{02})$ vs. Temp.
- Main phases
 - Hematite
 - Magnetite
 - Fayalite
 - Native Iron/Wustite

Miyashiro's Facies Series

- Low geothermal gradient
 - Zeolite, pumpellyite-prehnite, blueschist
- Intermediate geothermal gradient - Barrow's zones
- High geothermal gradient
 - Andalucite present in pelitic rocks

Relation to Geotherms

- High pressure series
- Medium P/T series
- High temperature series

Granite Solidus (Wet)

Polymetamorphism

- Sometimes there are repeated episodes of metamorphism
- The last event may be weak or of short duration
- Polymetamorphism is common in post tectonic environments and in contact aureoles

Material TransportDiffusionDiffusion• Materials move through crystal lattices or a
stationary pore fluidInfiltration• Rate of movement controlled by a diffusion
coefficient (Fick's Law)
 $Q = k (\delta C / \delta x)$ • Material moves about 1 cm/m.y.

Infiltration

- Passive mass transport of a solute in a moving fluid medium
- Driven by fluid pressure
- Microfractures are important
- Reaction-enhanced permeability - Volume reduction due to reactions
- Dilatency pumping

Reaction Textures

olivine + plagioclase = hypersthene + diopside+ spinel

