METAMORPHIC STRESS

Reading: Winter Chapter 21, p. 412-417

Stress and Strain

- Stress is an applied force acting on a rock (over a particular cross-sectional area)
- Deviatoric stress affects the textures and structures, but not the equilibrium mineral assemblage
- Strain is the response of the rock to an applied stress (= yielding or deformation)
- Strain energy may overcome kinetic barriers and facilitate reactions

Strain

- Strain is the response to stress
- e is the symbol for strain
- $e = \lim DI/I_o$ as DI approaches zero
 - **D** I is the change in length in a line element
 - I₀ is the original length of the same line element

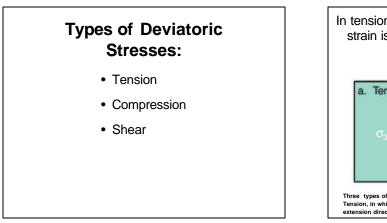
Strain Measurements

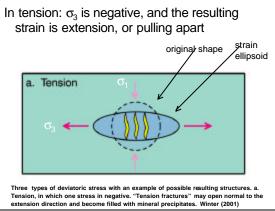
- Units of strain are given as a fraction of the initial dimension
- Length strain $-\mathbf{e}_1 = \mathbf{D} I/I_o$
- Volume strain $-\mathbf{e}_{v} = \mathbf{D} V/V_{o}$

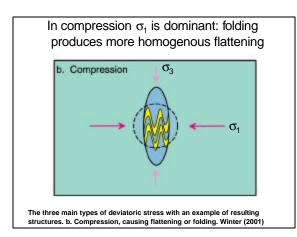
Stress

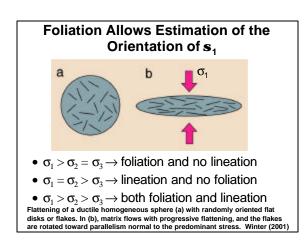
- Stress is F/A (force/area)
- Units are Newtons/m², MPa, bars, etc.
- s is the symbol for stress
- s = lim D F/D A as D A becomes infinitely small

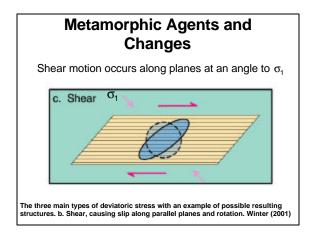
Hydrostatic and Lithostatic Pressure

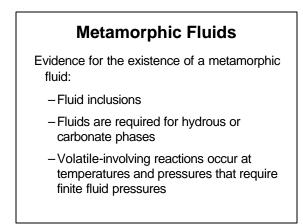

- Lithostatic (and hydrostatic) pressure is uniform stress is all directions
- For hydrostatic pressure, compared with deviatoric conditions, all three components of stress are equal


Directed Stress


- Tectonism produces non-uniform stress
- This causes:
 - Rock deformation
 - Preferred orientation of mineral grains
 - Development of large -scale structures


Deviatoric Stress


- Deviatoric stress = unequal pressure in different directions
- Deviatoric stress can be resolved into three mutually perpendicular stress (σ) components:
 - σ_1 is the maximum principal stress
 - σ_2 is an intermediate principal stress
 - $\sigma_{\!_3}$ is the minimum principal stress



Fluid Pressure

- P_{fluid} indicates the total fluid pressure, which is the sum of the partial pressures of each component ($P_{fluid} = p_{H2O} + p_{CO2} + ...$)
- May also consider the mole fractions of the components, which must sum to 1.0 (X_{H2O} + X_{CO2} + ... = 1.0)

Spatial Variations

- Gradients in T, P, X_{fluid} across an area
- Zonation in the mineral assemblages