Structural Controls

- This segment considers factors in the lithospheric that favor volcanism
- What allows magma to pass through the rigid crust onto the surface?

Large-scale Stress Regimes

- Compression
 - Mostly in subduction zones
- Tension
 - Mid ocean ridges
 - Back arc basins
 - Rift zones

Local Stress Regimes

- Folding of a slab
- Strike-slip faulting
- Magma intruding a dike
- Magma in a sill
- Magma in a cylindrical conduit
- Magma in a chamber

Stress and Strain

- Stress is the force per unit area
 \[\sigma = \frac{F}{A} \]
- Strain is the amount of change in length of an object
 \[\varepsilon = \frac{\Delta l}{l_0} \]

Stress Ellipse

- Three principal stress axes
 - \(\sigma_1, \sigma_2, \sigma_3 \)
- Major and minor stress axes
- Lithostatic stress
 \(\rho g z = \) stress of overburden
 - May be the maximum, minimum or intermediate stress

Strain Ellipse

- Position of maximum extension (tension)
- Position of maximum compression
- Simple Shear
 - Card deck model
 - A circle becomes and ellipse
- Lines of no net change = \(l_0 \)
- Determination of strain from model
Relation of Stresses to Faulting

- If σ_1 is vertical
 - Normal faults occur with a dip $\approx 60^\circ$
- If σ_2 is vertical
 - Transcurrent faults occur and the slip direction is horizontal
 - The fault plane is vertical
- If σ_3 is vertical
 - Thrust faults occur with a dip $\approx 30^\circ$

Tension?

- Where does tension occur in the rigid earth?
- At a bent slab
 - Stretched zone, neutral cone compressed zone
 - Subduction environments, upper and lower plates
- Dominantly horizontal strain
 - Where σ_1 is horizontal
 - Normal faults
 - Rifting environments

Dikes or Sills?

- What factors favor dikes vs. sills?
- Orientation of principal stresses
- If least principal stress (σ_3) is vertical, sills are favored
- If intermediate principal stress (σ_2) is vertical, dikes are favored

Dikes as Stress Indicators

- Parallel dike swarms
 - Canada
 - USA
 - Scotland
- Dike azimuth is perpendicular to σ_3

Radial dike swarms

- Dike Mountain, CO
- Spanish Peaks, CO
- Theoretical model of radial dikes in a stress field

Segmented Dikes

- Geometry is like a hand and fingers
- Caused by rotation of least principal stress near the surface
- Buds on dikes may form conduits to the surface
Scoria Cone Fields

- Characterized by
 - Aspect ratio (L/W)
 - Orientation

- Scoria fields may be stress indicators
 - Field, chains of craters, and fissures are elongated in direction normal to least principal stress

- Examples from western USA and Mexico
 - Pinacate
 - Uinkaret