Magma Composition

References:
Encyclopedia of Volcanoes, pp. 115-190

Constitution of Magmas
- Hot molten rock
- $T = 700 - 1200$ degrees C
- Composed of ions or complexes
- Phase
 - Homogeneous
 - Separable part of the system
 - With an interface

Chemical Composition
- Most components
 - Low vapor pressure
 - Designated by mole fraction (X_i)
- Volatile components
 - Mainly exist as a gas
 - Designated by vapor pressure (p_i)
- Fluid pressure = sum of partial pressures
 $$P_f = \sum p_i$$

Gas law
- Important to understand explosive volcanism
- Volume proportional to temperature
- Volume inversely proportional to pressure
 $$V = \frac{RT}{P}$$

Atomic Structure of Magma
- Quenched to form a glass
- Si & Al are polymerized with O
- Forming networks of Si-O chains
- Short-range structural order

Structural Model
- Network formers
 - Si, Al
- Network modifiers (cations)
 - Ca, Mg, etc
- Dissolved water has a strong effect
 $$H_2O + O^2 = 2(OH)^-$$
Magma Generation

- Magmas form at perturbations in P,T,X
- Convergent plates
- Divergent plates
- Peridotite mantle source

Source Regions

- Must originate in the mantle or crust
- At Hawaii source is 60 km deep
- Only 1 to 3% melt exists in peridotite

Magma From Solid Rock

- Basalt & peridotite sources for magma
 - Plagioclase, Olivine, Pyroxene, Fe-Ti oxides
- Granite sources for magma
 - Quartz, K-spar, albite, biotite, hornblende

Basalt & Peridotite Sources

- Equilibrium fusion
 - Solid and liquid remain in equilibrium
 - Continuous but limited composition range
- Fractional fusion
 - Liquid is immediately removed from host rock
 - Melts are both oversaturated & undersaturated with respect to Si

Influence of Pressure

- Pressure strongly influences the cotectic
- Partial melts of mantle peridotite are basalts
- At higher pressures partial melts are more silica deficient

Water Saturation

- Saturated granite melts have 10 to 15% H_2O
- Natural granite melts have about 4% H_2O
- Therefore most silicic melts are undersaturated at depth
Water Undersaturation

- Common granitic mineral assemblage
 - Biotite, K-spar, Fe-Ti oxide

\[
\frac{1}{2} O_2 + \text{biotite} = \text{K-spar} + \text{Fe}_3\text{O}_4 + \text{H}_2\text{O}
\]

- Excess water drives this reaction to the left
- Hence, most granites are not water saturated

Basalt Classification

- Phases:
 - Augite (Cpx)
 - Hypersthene (Hy)
 - Olivine (Oliv)
 - Plagioclase (Plag)
 - Nepheline (Ne)

Ultramafic Classification