Cenozoic Magmatism and Mineral Deposits: Peru

Sarah Black
Jay Zambito
Chaudhry Ahmed

Cenozoic Magmatism and Mineral Deposits: Peru

Cenozoic Tectonic Setting

Overview

- Notable deposits:
 - Peru: Gold and Silver
 - Chile: Copper
 - Bolivia Mineral Belt
- What types of magmatism/tectonic settings helped to create these mineral deposits?

Cenozoic Cordilleras

- Two main cordilleras
 - Occidental (west)
 - Oriental (east)
- Main volcanic activity today is located in Cordillera Occidental

Early Cenozoic

Sandeman et al. (1996)
The Subduction Situation

- Early Cenozoic: slow convergence
 - Steeply dipping Nazca plate
- Subduction zone moves closer to Pacific-Nazca Ridge, causing younger, more buoyant crust to be subducted
 - Shallower angle of subduction
 - Magmatism moves further inland and becomes wider
 - Exerts upward forces on the overlying continental crust
- *Pilger 1984*

Cordillera Oriental (East)

- Few Cenozoic sed. rocks
- Volcanics different from the typical calc-alkaline Andean volcanics (Cordillera Occidental)

<table>
<thead>
<tr>
<th>CENOZOIC</th>
<th>Stages</th>
<th>Cordillera Oriental</th>
<th>Name and thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pliocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eocene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eastern Cordillera

- Two-mica, cordierite-, and biotite-bearing volcanics
 - Usually associated with high K calc-alkaline basalts
 - North American Analog: Similar to the two-mica volcanics in the Sonoran and Mojave Desert Region.

South American Deposits

Tinka Resources Limited
Economic Geology of Peru

- Mined for Cu, Pb, Zn, Ag, Au, Fe
- All notable mining areas are within the cordillera

Peru: Gold and Silver Deposits

- 2003: Peru ranked as 2nd Ag and 6th Au producer
- Hydrothermal mineral deposits
- Notable deposits:
 - Arcata, Caylloma, and Orcopampa (each has produced over 40 mil. oz of Ag, and 100,000 to 1 mil. oz of Au), and many, many more
 - Deposits mostly in Tacaza Group (possibly also in Barroso group)

Tacaza Group

- Lower part mainly sed rx
 - coarse congl. -> interbedded ss and volcanic mudstones
- Two volcanic packages
 - Lower package: similar to underlying sed package, but with layers of tuffs and flows
 - Upper package: bedded flows, breccias, andesite tuffs, dacite and rhyolite lenses

Barroso Group

- Andesites and Dacites with pyroclastics
- Broken into two formations:
 - Malmanya Fm (andesite, dacite) and Vilcarini Fm (PF’s and lava sequences – evolved lavas)
- Veins with Au and Ag mineralizations
 - Also Pb, Zn, Cu
- Have found conflicting reports about the economic value of the Barroso Group (Fletcher et al. 1989)
Mineral Deposit Formation

- Do not appear to be from sills or laccoliths
 - Very little alteration and rarely mineralized
- Proposed formation model: (Fletcher et al. 1989)
 - Hot Taaca facilitates up-convection cell and circulate hydrothermal fluid
 - Hydrothermal fluid leeches materials from lava piles and deposits them along fracture zones

North American Analogs

- How does this compare to North America?
- Sonoran and Mojave Desert Regions
 - Increased buoyancy of crust induces crustal flexure; 2-mica deposits

Migration of Magmatism

- Three active volcanic zones in the Andes (north, central, south) broken up by areas of inactivity
- Shallower subduction causes magmatic zones to move to the north and south; central area becomes inactive

North American Analogs

- Colorado Mineral Belt
 - Gold and Silver deposits
 - Water circulating through rocks leeches elements and deposits them back out

North American Analogs

- Au and Ag deposits in Sonoran and Mojave Desert Regions
 - Porphyry deposits containing Cu, Pb, Zn, Au, and Ag

References

