South American Plate Relationships: The Nazca and South American plate interactions

Sarah Craig
8-April-2005

Nazca Plate

- Subducts beneath vast majority of western South America
 - Oblique angle of subduction
- Not normal subduction – flat slab subduction
- Has several triple points
 - Nazca, Caribbean, South American (off coast of Colombia)
 - Nazca, South American, Antarctic (off coast of Chile)
- Due to oblique angle of subduction, shows diminishing age progression to the south
 - 33.5 Ma – 19 Ma

Location, location, location

Flat Slab subduction

- Along strike variations in dip
 - 4 major “segments” with differing dips
 - Southern Peru/Northern Chile – dips east ~ 30°
 - Northern/Central Peru, Western Argentina – Extends eastward for 100’s km at depth of 100 km before resuming descent.
 - First thought to be areas of plate bounded by tears in the plate
 - Later thought to be a continuous flexure, not a tear

Flat Slab subduction – A tour

- Peru → Chile
- Based on seismic data
- Plate is convex up
- Shows that the slab is constantly changing
 - Beneath northern/central Peru (8°S-13°S) – quakes at 100-125 km, dipping E-NE at 5°
 - Abrupt change at 14°S to steeper inclination (~30°).
 - Continues to ~20°S where it “stabilizes”, creating a bench at about 125 km depth.
A tour

- Subduction zone along the coast of Peru and Chile
- Note benches - areas of little seismic change

A tour: Southern Peru

- First transition zone, from near horizontal to steeper subduction
- Seismically active
- First thought to be a major plate tear, later found to be plate contortion
 - Below 100 km, plate broadens
 - Lack of intermediate seismic data makes further interpretation hard

A tour: Northern Argentina

- Second transition zone, beneath northern Argentina and Bolivia
- Gradual change, not as sharp as that under Peru
 - Determined by seismicity
 - Like Peru, little to no intermediate data is available
 - Zones of quiescence present in 2 locations – between 25.5°S and 27°S and 29°S and 31°S

A Tour: Chile

- Third transition zone
- Flat slab zone makes it harder to determine dip angle – originally no change in dip was thought to exist

Questions??

References