Late Miocene Volcanism of NW Mexico

and the Trans-Mexican Volcanic belt

“The great debate”

Geology 581

Wil Shaffer
Jen Lougen
Sarah Black

15 April 2005

Summary

1. Intro to NW Mexico 35-13 Ma
2. Northwestern Mexico
 a. Tectonics
 b. Volcanics
 c. Rift or subduction??
 d. Answer
3. Intro to Trans-Mexican
4. Trans-Mexican Volcanic Belt
 a. Tectonics and Volcanics
 b. Petrology
 c. Subduction, plume, or window??
5. Debata!
6. Relation of NW Mexico to Trans-Mexican VB
7. Conclusion
8. Relation to USA and food for thought!

Introduction to NW Mexico

Andean style 35 Ma
- Farallon plate Subduction and orthogonal rifting of the Gulf of California
- Farallon plate broke into fragments and subduction ceased locally 24 Ma
- Volcanism occurred intermittently along the east side of Baja and on the immediate west coast of Mexico
 - Ended 16 Ma in north
 - Ended 11 Ma in south

Neogene tectonic evolution of the Gulf of California

I) Farallon plate subduction along entire margin
 - Younger crust subducted
 - Magmatic arc in the Sierra Madre Occidental shifted west starting at 28 Ma
 - New arc in Gulf area 24 Ma
II) Farallon plate breakups (Guadalupe microplate)
 - Followed continued path or was transferred to Pacific plate
 - Transition from subduction to extension
III) Baja underwent orthogonal extension 12-6 Ma
IV) Rifting with dextral component of motion
 - New oceanic crust in Gulf
 - Baja fully transferred to Pacific plate

Volcanism

24-15 Ma
- Most volcanic rx's emplaced
 - 55-65% SiO2
 - More felsic Sierra Santa Ursula up to 70% SiO2
14-11 Ma
- 65-78% SiO2 - predominately calc-alkaline
- Porphyritic texture (plagioclase phenocrysts)
- More felsic flow contain alkali feldspars and plagioclase with altered mafics
- Trachyandesites emplaced throughout
10-8 Ma
- 51-54% SiO2 - basalts and andesites
- Isla Tiburon - rhyolite tuffs
- Continental flood basalts

Rift or Subduction?

Subduction of Guadalupe plate corresponds to volcanism in the Sierra Santa Ursula (15 Ma)
- Change from intermediate to felsic (>15 Ma)
 - Increasing resistance of younger subducting Guadalupe plate
- Tholeiitic magmatism - early history of orthogonal extension (10.3-8.5 Ma)
- Trace elements of Miocene rx's in Sierra Santa Ursula show fractional crystallization
 - Mantle source heterogeneous
 - Different magma source
 - Different degrees of partial melting
Introduction to Trans-Mexican Volcanic Belt

- Turning on the Trans-Mexican Volcanic Belt took place mid-late Miocene.
- During the formation of the Gulf there was an emplacement of mafic lavas.
- Debate over origin of basalts!!

Tectonics

- Late Miocene mafic lavas near major fault zones
 - Concurrent with transtensional or extensional reactivation of faults
 - Tepic Plateau lavas placed immediately to west of NW Pochtitan fault system
 - Mafic dikes parallel
 - Ceboruco and San Cristobal mafic successions located along north edge of Jalisco block
 - Los Altos de Jalisco mafic lavas cover boundary of Sierra Madre and Michoacan block

Tectonics and volcanics

- Regionally tectonic transition from subduction to rifting
 - Noted by the progression of:
 1) Calc-alkaline (24-15 Ma)
 2) Felsic calc-alkaline (15-11 Ma)
 3) Tholeiitic Basalt (10-8 Ma)

Tectonics and volcanics

- Petrology
 1) Plateau like formations
 - A) Tepic plateau
 - Basalts-basaltic andesites
 - Olivine + clinopyroxene phenocrysts
 - Ground mass (plag, clino, oxides and olivine)
 - Calc-alkaline trend
 - B) Punta Mita
 - Basalts-basaltic andesites
 - Euhedral olivine phenocrysts
 - Ground mass (plag, clino, olivine, oxides and olivine)
 - Less alkali rich than Tepic

Tectonics

- Late Miocene mafic lavas near major fault zones
 - Concurrent with transtensional or extensional reactivation of faults
 - Tepic Plateau lavas placed immediately to west of NW Pochtitan fault system
 - Mafic dikes parallel
 - Ceboruco and San Cristobal mafic successions located along north edge of Jalisco block
 - Los Altos de Jalisco mafic lavas cover boundary of Sierra Madre and Michoacan block
2) Petrology

- **San Cristobal Basalt (11.2-8.5 Ma)**
 - Basalt – andesite
 - Phenocrysts of plag. and euhedral olivine
 - Groundmass same as phenocryst
 - Seriate texture (continuous range of xstals)

- **Los Altos de Jalisco Lava (10.2-8.7 Ma)**
 - Basalt – andesite
 - Some benmorites and mugearites
 - Phenocrysts of plag. and euhedral olivine
 - Groundmass of plag., olivine, and Fe-Ti oxides

3) Petrology

- **Queretero Volcanics (9-8 Ma)**
 - Mafic to intermediate volcanic rxs
 - Phenocrysts of plag. and minor olivine
 - Groundmass same as phenocryst
 - (microcrystalline to cryptocrystalline)
 - Porphyritic to seriate texture

- **Pathe Lavas (8-7 Ma)**
 - Subakaline (basaltic-andesite comp.)
 - Phenocrysts of plag. And microphenocrysts of rounded olivine
 - Groundmass cryptocrystalline
 - Porphyritic texture

What is going on?

- Westward decrease in orogenic signature
 - Suggest more complex subduction rather than mantle plume
- Slab free window?
 - Cessation of subduction north of 20° (12.5 Ma)
 - Diverging subduction of Rivera and Cocos (9.9-7.9 Ma)
 - “could” place western TMVB above slab free area

What “could” happen over slab free window?

- Sub-slab asthenosphere melts upwell around northern and eastern margin of descending Rivera Plate
 - Subduction altered mantle wedge interacts with the aforementioned
- Transitional magmas from Tepic to San Cristobal are result
- Transtensional reactivation of zone of weakness facilitated magma ascent
 - Asymmetric distribution
 - Basalts > Intermediate and silicic rxs
Relations to USA

- **Western Mexico Vs USA**
 - Right lateral displacement of California and Baja (Unzipping of soon to be exotic terrane)
 - Waves of volcanism before rifting (mechanism of Laramide Orogeny all along the West coast of NA)

- **Trans-Mexican Volcanic Belt**
 - Flood basalts are 3-orders of magnitude smaller than the Snake River Plains Flood Basalt
 - Snake River caused by hot-spot
 - TMVB
 - Early hot spot? (no)
 - Unique subduction

References

- Ferrari, Luca, Conticelli, Sandro, Vaggelli, Gloria, Petrone, Chiara M., and Manetti, Piero, Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt, Tectonophysics, V. 318, pp., 161-185, 2000.
- Maldonado-Sanchez, Guadalupe and Schaaf, Peter, Geochemical and isotope data from the Acatlan Volcanic Field, western Trans-Mexican Volcanic Belt: Origin and evolution, Lithos, [IN PRESS], 2005.