Cenozoic Volcanism of Northern South America

Joshua Stroup
Current Volcanism

Focus Area Is the Northern Andean Volcanic Arc
Terrains of the Northern Andes

- There are a large number of accreted terrains

Terrains of oceanic affinity
Terrains of continental affinity
North Andean Block (NAB)
Subduction in the Northern Andes
Geologic Setting

- In Ecuador the Andean magmatic arc is divided into two parallel chains
 - Cordillera occidental (west)
 - Cordillera real (east)
- A back arc also exists further east in the Amazon basin
- Cordillera occidental
 - Allochthonous terrain of mafic composition
 - 30 km thick
- Cordillera real
 - Metamorphosed granites and medasedimentary rocks of continental affinity
 - 60 km thick
- Back arc
 - Sedimentary rocks
 - 35 – 40 km thick
Ecuador

- Volcanism in Ecuador has developed as a broad magmatic arc.
- This is the result of flat slab subduction of the Nazca plate.

Major Volcanoes in Ecuador

- Guagua Pichincha
- Chacana
- Cayambe
- Reventador
- Antisana
- Sumaco
- Cotopaxi
- Tungurahua
- Sangay

Topinka, USGS/CVO, 2003; base map modified from: CIA, 1997; volcanoes from: Simkin & Siebert, 1994
Volcanoes Across the Subduction Zone

- Pichincha volcano
 - Cordillera real
- Antisana volcano
 - Cordillera occidental
- Sumaco volcano
 - Back arc
Pichincha

- Stratovolcano
- Composed of at least two successive volcanoes
- Highly active
- Historic eruptions have produced lava domes, pyroclastic flows and ash falls
Pichincha con't.

- Guagua pichincha is built on the collapsed flank of the old rucu pichincha
- Magmas erupted here are adakites containing amphibole, plagioclase, pyroxene and Fe-Ti oxides
- Magma generated here results from the melting of oceanic crust
Antisana

- Massive stratovolcano
- Also composed of at least two successive volcanoes
- Built up over granitic and medasedimentary rocks
- Only one historic eruption, a lava flow
Antisana Con’t.

- Magmas erupted here are calc-alkaline.
- This is due to the interaction with mature continental crust.
- Minerals include clinopyroxene, orthopyroxene and plagioclase and Fe-Ti oxides.
Sumaco

- Stratovolcano
- Situated far east of the main volcanic arc
- The volcano is built up over cretaceous sedimentary rocks
- From one to three historic eruptions
Sumaco Con’t.

- Magmas erupted here are alkaline.
- Minerals include clinopyroxene, plagioclase, olivine Fe-Ti oxides and apatite.
- Strong enrichment of niobium.
- Highly evolved magmas despite low silica content.
Model of Subduction Below Ecuador
Volcanism in Columbia is a single magmatic arc. This is the result of steep slab subduction of the Nazca plate.
Galeras

- Stratovolcano with a breached caldera
- Two major caldera collapse eruptions in the Pleistocene
- Hydrothermal alteration has led to large scale edifice collapse
- Major explosive eruptions since mid Holocene
- Widespread tephra deposits and pyroclastic flows
Navado Del Ruiz

- Stratovolcano
- Also composed of at least two successive volcanoes
- It is composed of andesitic and dacitic lavas and andesitic pyroclastics
- Cone consists of a broad cluster of lava domes built within the summit caldera
- Known for producing lahars
Correlations with North America

- Pinchincha
- Antisana
- Sumaco
- Galeras
- Navado Del Ruiz
- Mt. St. Helens
- No current correlation
- No current correlation
- Mt. Shasta
- Mt. Rainer
References

- Bourdon et al., 2003. Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case
- Barragan et al., 1998. Subduction controls on the compositions of lavas from the Ecuadorian Andes