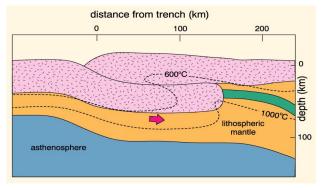
Granitoid Rocks

Reading: Winter (2001) Chapter 18

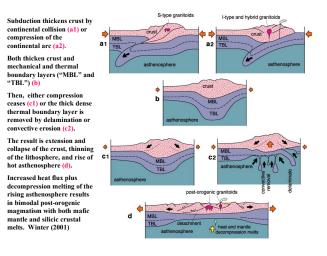
Granitoids

"Granitoids" (*sensu lato*): loosely applies to a wide range of felsic plutonic rocks

This lecture focuses on non-continental arc intrusives


Associated volcanics are common and have same origin, but are typically eroded away

Common Features


- Most large granitoid bodies occur in areas where the continental crust was thickened by orogeny
- Formed by either continental arc subduction or collision of sialic masses.
- Many granites, however, may post-date the thickening event by tens of millions of years.

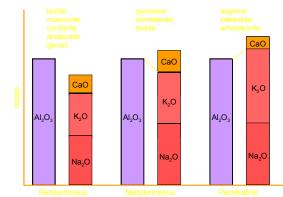
Anatexis?

- Because the crust normally is solid, some thermal disturbance is required to form granitoids
- Most workers believe that the majority of granitoids are derived by crustal anatexis, but that the mantle may also be involved in the process.
- The mantle contribution may range from being a source of heat for crustal anatexis to being the source of material as well.

The effect of subducting a slab of continental crust. The dip of the subducted plate shallows as subduction ceases and the isotherms 'rtelax'' (return to a steady-state value). Thickened crust, whether created by underthrusting (as shown) or by folding or flow, leads to sialic crust at depths and temperatures sufficient to cause partial melting. Winter (2001)

Granitoid Classification

- · Aluminum ratios
- SIAM classification
 - Sedimentary source
 - Anorogenic


Ternary cotectic

the effects of

contents on the position of the

thermal minima.

- Mantle source
- Igneous source

Alumina saturation classes based on the molar proportions of Al2O3/(CaO+Na2O+K2O) ("A/CNK") after Shand (1927). Common non-quartzo-feldspathic minerals for each type are included. After Clarke (1992). Granitoid Rocks. Chapman Hall.

Ab-Or-Qtz System Qtz curves and eutectic minima from 0.1 to 3 ternary minimum ternary eutectic GPa. Locus of most granite compositions in orange and plotted positions of the norms from analyses. Note increasing pressure and the An, B, and F Ah From Winter (2001).

SIAM Characteristics

Table 18-3. The S-I-A-M Classification of Granitoids

Туре	SiO ₂	K ₂ O/Na ₂ O	Ca, Sr	A/(C+N+K)*	Fe ³⁺ /Fe ²⁺	Cr, Ni	8 ¹⁸ 0	87Sr/88Sr	Misc	Petrogenesis
м	46-70%	low	high	low	low	low	< 9‰	< 0.705	Low Rb, Th, U Low LIL and HFS	Subduction zone or ocean-intraplate
										Mantle-derived
-	53-76%	low	high in mafic	low: metal- uminous to	moderate	low	< 9‰	< 0.705	high LIL/HFS med. Rb, Th, U	Subduction zone Infracrustal
			rocks	peraluminous					hornblende	Mafic to intermed.
									magnetite	igneous source
S	65-74%	high	low	high	low	high	> 9‰	> 0.707	variable LIL/HFS	Subduction zone
									high Rb, Th, U	
				metaluminous					biotite, cordierite	Supracrustal
									Als, Grt, Ilmenite	sedimentary source
Α	high	Na ₂ O	low	var	var	low	var	var	low LIL/HFS	Anorogenic
	$\rightarrow 77\%$	high		peralkaline					high Fe/Mg	Stable craton
		Ŭ							high Ga/Al	Rift zone
									High REE, Zr	
									High F. Cl	
* molar	molar Al ₂ O ₃ /(CaO+Na ₂ O+K ₂ O) Data from White and Chappell (1983), Clarke (1992), Whalen (1985)									

Tectonic Setting

Table 18-4. A classification of granitoid rocks based on tectonic setting

		OROGENIC		TRANSITIONAL	ANOROGENIC	
	Oceanic Island Arc	Continental Arc	Continental Collision	Post-Orogenic Uplift/Collapse	Contintntal Rifting, Hot Spot	Mid-Ocean Ridge, Ocean Islands
s granitoid magma underplated mantle melts		manite wedge	batch anatoxis	decompression melting	decompression not spot	hot spot

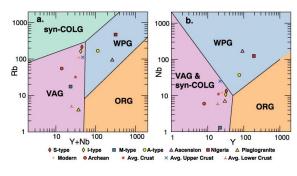
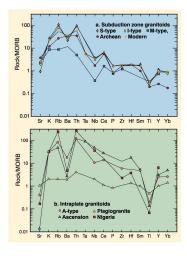

A Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hsü (ed.), Mountain Building Processes, Academic Press, London; Pitcher (1993), The Nature and Origin of Granite, Blackie, London; and Barbarin (1990) Geol. Journal, 25, 227-238. Diagram from Winter (2001)

Table 18-4. A classification of granitoid rocks based on tectonic setting

		OROGENIC		TRANSITIONAL	ANOROGENIC	
	Oceanic Island Arc	Continental Arc	Continental Collision	Post-Orogenic Uplift/Collapse	Contintntal Rifting, Hot Spot	Mid-Ocean Ridge Ocean Islands
= granitoid magma		UI	CONTRACT.	- AND		
underplated mantle melts	1	manite [†] wedge melting	batch anatexis melting	decompression melting	decompression hot spot melting plume	hot spot
Examples	Bougainville, Solomon Islands, Papua New Guinea	Mesozoic Cordilleran batholiths of west Americas Gander Terrane	Manaslu and Lhotse of Nepal, Amorican Massif of Brittany	Late Caledonian Plutons of Britain, Basin and Range, late Variscan, early Northern Proterozoic	Nigerian ring complexes, Oslo rift, British Tertiary Igneous Province, Yellowstone hotspot	Oman and Troodor ophiolites; Iceland, Ascensior and Reunion Islan intrusives
Geo-	Calc-alkaline > thol.	-alkaline > thol. Calc-alkaline		Calc-alkaline	Alkaline	Tholeiitic
Geo- chemistry	M-type & I-M hybrid I-type > S-type		S-type I-type S-type (A-type		A-type	M-type
	Metaluminous	Met-Al to sl. Per-Al	Peraluminous	Metalum. to Peralum	Peralkaline	Metaluminous
Rock types	qtz-diorite in mature arcs	tonalite & granodior. > granite or gabbro	migmatites & leucogranite	bimodal granodiorite + diroite-gabbro	Granite, syenite + diorite-gabbro.	Plagiogranite
Associated Minerals	Hbl > Bt	Hbl, Bt	Bt, Ms, Hbl, Grt, Als, Crd	Hbl > Bt	Hbl, Bt, aogirine fayalite, Rbk, arfved.	НЫ
Associated Volcanism	Island-arc basalt to andesite	Andesite and dacite in great volume	often lacking	basalt and rhyolite	alkali lavas, tuffs, and caldera infill	MORB and ocean island basalt
Classification Barbarin (1990)	T _{IA} tholeiite island arc	H _{CA} hybrid calc-alkaline	C _{ST} C _{CA} C _{CI} continental types	H _{LO} hybrid late orogenic	A alkaline	T _{OR} tholeiite ocean ridg
Pearce et al. (1984)		nic arc granites)	COLG (collis	ion granites)	WPG and ORG (within plate and ocean ridge granites)	
		CAG contin. arc granite	CCG cont. collision gran.	POG post-orogenic gran.	RRG CEUG rift & aborted/hotspot	OP ocean plagiogranit
Origin Partial melting of mantle-derived mafic underplate		PM of mantle-derived mafic underplate + crustal contribution	Partial melting of recycled crustal material	Partial melting of lower crust+ mantle and mid-crust contrib	Partial melting of mantle and/or lower crust (anhydrous)	Partial melting of mantle and frac- tional crystallizatio
Melting Mechanism	dissolved species	transfer of fluids and from slab to wedge. ansfer of heat upward	Tectonic thickening plus radiogenic crustal hea	Crustal heat plus mantle heat (rising asthen. + magmas)	Hot spot and/or adiabatic mantle rise	

After Pitcher (1983, 1993), Barbarin (1990)



Granitoid discrimination diagrams used by Pearce *et al.* (1984, *J. Petrol.*, 25, 956-983) with the granitoids of Table 18-2 plotted. From Winter (2001)

MORB-normalized spider diagrams for the analyses in Table 18-2. From Winter (2001)

