
Introduction to Perl

Patrick M. Ryan
patrick.m.ryan@gsfc.nasa.gov

Hughes STX Corporation

Revised November 16, 1993

1 What is Perl?

Perl has become the new language of choice for many system management tasks.
Combining elements of C, awk, sed, grep, and the Bourne shell, Perl is an excellent
tool for text and �le processing. Although Perl is often described as a \system
management language", it is useful for many tasks that would otherwise be done
with shell scripts.

\Perl" is an acronym for Practical Extraction and Report Language. It was
developed by (and is still maintained by) Larry Wall of Netlabs. It is freely
available software and compiles on nearly all major architectures and operating
systems. These include all the major UNIX1 variants as well as VMS and even
DOS.

Perl contains features of the Bourne shell (/bin/sh), awk, sed, and grep as
well as access to systems calls and C library routines. It is said that Perl �lls the
niche between shell scripts and C programs.

Perl is not a compiled language but it is faster than most interpreted languages.
Before executing a Perl script, the perl program reads the entire script into
memory and \compiles" it into a fast internal format. In nearly all cases, a Perl
script is faster than its Bourne shell analogue. Note that by convention, one refers
to the Perl language in upper case and the perl program in lower case.

This document is intended to be an overview of the major features of Perl and
does not describe every facet of the language. Much more extensive reference
materials are available. These references, as well as pointers to example scripts,
are detailed at the end of this document.

1\UNIX" is a trademark of AT&T. No, make that Unix Systems Laboratories. Or maybe Novell, Inc : : :

1

2 Basic Syntax

Perl is a free-form language like C. Perl's control ow structures are very much
like C's. There are no FORTRAN-like line constraints.

Perl programs, by convention, sometimes end in .pl. This is not a requirement,
however, and most Perl scripts simply invoke the interpreter through the use of
the #! construct. The �rst line of a Perl script (at least in the UNIX world)
usually looks like this:

#!/usr/local/bin/perl

In Perl, every statement must end with a semicolon (;). Text starting with a
pound sign (#) is treated as a comment and is ignored.

Blocks of Perl code, such as those following conditional statements or in loops
are always enclosed in curly brackets (f...g).

3 Data Types

Perl has three basic data types:

� scalars

� arrays of scalars

� associative arrays of scalars (also known as hash tables)

3.1 Scalars

The scalar is the basic data type in Perl. A scalar can be an integer, a oating
point number, or a string. Perl �gures out what kind of variable you want based
on context. Scalars variables always have a dollar sign ($) pre�x. Therefore, a
string assignment looks like this:

$str = "hello world!";

not:

str = "hello world!";

2

In Perl, an alphanumeric string with no pre�x is (generally) assumed to be a
string literal. Thus, the second statement above attempts to assign string literal
"hello world!" to string literal "str".

Perl's string quoting mechanisms are similar to those of the Bourne shell.
Strings surrounded in double quotes (": : :") are subject to variable substitution.
Thus, anything that looks like a scalar variable is evaluated (and possible inter-
polated) into a string. Strings inside single quotes (': : : ') are passed through
basically untouched.

Perl variables do not have to be declared ahead of time. The are allocated
dynamically. It is even possible to refer to non-existent Perl variables. The
default value for a variable in a numeric context is 0 and an empty string in a
string context. Perl has a facility for determining whether a variable is undeclared
or if it is really is a zeroish value.

Perl variables are also typed and evaluated based on context. String variables
which happen to contain numeric characters are interpolated to actual numeric
values if used in a numeric context. Consider this code fragment:

$x = 4; # an integer
$y = "11"; # a string
$z = $x+$y;
print $z,"\n";

After this code is executed, $z will have a value of 15.
This interpolation can also happen the other way around. Numeric values are

formatted into strings if used in a string context. Numeric values do not have to
be manually formatted as in C or FORTRAN. This type of interpolation takes
place often when writing standard output. For instance:

$answer = 42;
print "the answer is $answer";

The output from this fragment would be \the answer is 42".
Note that integer constants may be speci�ed in octal or hexadecimal as well

as in decimal.
String constants may be speci�ed by way of \here documents" in the manner

of the shell. Here documents start with a unique string and continue until that
string is seen again. For example:

$msg = <<_EOM_;

3

The system is going down.
Log off now.

EOM

3.2 Arrays of Scalars

Perl scripts can have arrays (or \lists") consisting of numeric values or strings.
Entire array variables are pre�xed with an \at" sign (@). It is also possible to
assign to the array elements by name. Here are some examples of valid Perl array
assignments:

@numbers = (3,1,4,1,5,9);

@letters = ("this","is","a","test");
($word,$another_word) = ("one","two");

Of course, Perl array elements can also be referenced by index. By default, Perl
arrays start at 0. Perl array references look like this:

$blah[2] = 2.718281828;
$message[12] = "core dumped\n";

Note that since an array element is a scalar, it is pre�xed by a $.
The $# construct is used to �nd out the last valid index of an array rather

than its size. The $[variable indicates the base index of arrays in a Perl script.
By default, this value is 0. Here is a code fragment which tells you the number
of elements in an array:

assume that @a is an array with a bunch of interesting elements
$n = $#a - $[+ 1;
print "array a has $n elements\n";

$[can be reset to use a di�erent base index for arrays. To have FORTRAN-style
array indexing, set $[to 1.

Arrays are expanded dynamically. You need only assign to new array elements
as you need them. You can pre-allocate array memory by assigning to its $# value.
For instance:

$#months = 11; # array @months has elements 0..11

4

Perl has operators and functions to do just about anything one would need to
do to an array. There are facilities for pushing, popping, appending, slicing, and
concatenating arrays.

Perl can only do one-dimensional arrays but there are ways to fake multi-
dimensional arrays.

3.3 Associative Arrays of Scalars

Associative arrays are Perl's implementation of hash tables. Associative arrays
are arguably the most unique and useful feature of Perl. Common applications
of associative arrays include creating tables of users keyed on login name and
creating tables of �le names. The pre�x for associative arrays is the percent sign
(%).

Associative arrays are keyed on strings (numeric keys are interpolated into
strings). An associative array can be explicitly declared as a list of key-value
pairs. For example:

%quota = ("root",100000,
"pat",256,
"fiona",4000);

Associative arrays elements are referenced in the following way:

$quota{dave} = 3000;

In this case, "dave" is the key and 3000 is the value. Note that the reference
above is to a scalar and is thus pre�xed by a $.

Here is another example. In Perl scripts, there is a prede�ned associative
array called %ENV which contains all of the environment variables of the calling
environment. Here is a bit of Perl code to see if you are running X Windows:

if ($ENV{DISPLAY})
{

print "X is (probably) running\n";
}

There are routines for traversing the contents of associative arrays and for
deleting elements. The relevant Perl routines are each, keys, values, and
delete.

Note that the namespace for Perl variables is exclusive. One can refer to
scalars, arrays, associative arrays, subroutines, and packages with the same name
without fear of conict.

5

4 Operators and Comparators

Perl's set of operators and comparators comprise nearly all of C's operators and
comparators. All of the usual arithmetic expressions and precedence are the same
in Perl as they are in C. Listed below are expressions which are valid in Perl but
not in C. These descriptions are paraphrased from the Perl man page.

** The exponentiation operator.

**= The exponentiation assignment operator.

() The null list, used to initialize an array to null.

. Concatenation of two strings.

.= The concatenation assignment operator.

eq String equality (== is numeric equality). Other FORTRAN-style comparators
are also available. These are only used on strings.

=~ Certain operations search or modify the string $ by default. This operator
makes that kind of operation work on some other string. The right argument
is a search pattern, substitution, or translation. The left argument is what
is supposed to be searched, substituted, or translated instead of the default
$.

x The repetition operator.

.. The range operator

-f, -x, -l, : : : Unary �le test operator. Perl has the ability to test various �le
permission settings in the same way as the UNIX test command. Consult
the Perl manual page for a full listing of Perl �le test operators.

5 A Word about Default Arguments

Many functions and syntactic structures in Perl have default arguments. In most
cases, this default argument is the variable $. While this is a handy feature for
experienced Perl programmers, it can make their code incomprehensible to those
just learning the language. For novices, it can be a nuisance when one does not
understand how the value of $ is determined.

6

I recommend that when you are �rst learning Perl, put in all arguments explic-
itly. In many cases, Perl �gures out what you are trying to do based on context
and assigns values to $ according to its own rules. The value of $ can change
subtly (or even drastically) depending on context.

Once you have a few lines of Perl under your belt and understand the ways of
$, feel free to use the default arguments. It is a nifty feature which allows you
to write slick, fast, (and cryptic) Perl code.

6 Regular Expressions

Where once you had to execute a grep or expr every time you wanted to compare
a string to a regular expression (\regexp"), you can now stick regexps right in
your code. Perl's regexp handling capabilities are another reason that you'll never
want to write another Bourne shell script.

6.1 Matching Regular Expressions

Perl regular expressions look very much like those in vi.

. Match any one character except a newline.

c* Match zero or more instances of character c.

c+ Match one or more instances of character c.

c? Match zero or one instance of character c.

[class] Match any of the characters in character class class.

nw Match an alphanumeric character (including " ")

nW Match an non-alphanumeric character (including " ")

nb Match a word boundary

nB Match non-boundaries

ns Match a whitespace character

nS Match a non-whitespace character

nd Match a numeric character

7

nD Match a non-numeric character

^ Match the beginning of a line

$ Match the end of a line

Also, nn, nr, nf, nt and nNNN have their usual C-style interpretations.
The actual syntax for the pattern matching command is m/pattern/gio. The

modi�ers are g for \global" match, i for \ignore case", and o for \only compile this
regexp once". With the m command, you can use any pair of non-alphanumeric
characters to bound the expression. This especially useful when matching �le-
names that contain the \/" character. For example:

if (m!^/tmp_mnt!)
{ print "$_ is an automounted file system\n"; }

If the delimiter you choose is \/", then the leading m is optional.
Perl even has the ability to do multi-line pattern matching. Refer to the

documentation on the $* variable for complete information.

6.2 Extracting Matched String from Regexps

As in vi, grep, and sed, Perl can return substrings which are matched in a
regular expression. For instance, here is some Perl code to (sort of) emulate the
UNIX basename command:

$file = "/auto/home/pat/c/utmpdmp.c";
($base) = ($file =~ m|.*/([^/]+)$|);

The result of this code fragment is that $base has the value "utmpdmp.c". The
parens in the regexp indicate the substring we want to extract.

The return value of a regular expression match depends on context. In an
array context, the expression returns an array of strings which are the matched
substrings. In a scalar context, typically in a test to see whether or not a string
matches a regexp, the expression returns a 0 or 1.

Here is an example of a scalar context. The <STDIN> construct, discussed in
detail later, reads in one line of standard input.

$response = <STDIN>;
if ($response =~ /^\s*y/i)
{ print "you said yes\n"; }

8

Note that the distinction between an \array context" and a \scalar context" is
important in Perl. Many routines and syntactic structures return di�erent types
of values depending on context. We will say more about array contexts later.

7 Flow Control

Perl has all of the ow control structures one normally expects in a procedural
language as well as a few extras.

7.1 If-Then-Else

The Perl if statement has the same structure as in C. Perl uses the same con-
junctions and boolean operators as C: && for \and", || for \or", and ! for \not".
One important note is that the C-style one-statement if construct cannot be
used. All of the code following a Perl conditional (if, unless, while, foreach)
must be enclosed in curly brackets. For instance, this C fragment:

if (error < 0)
fprintf(stderr,"error code %d received\n",error);

becomes this Perl fragment

if ($error < 0)
{ print STDERR "error code $error received\n"; }

The Perl analogue to C's else if construct is elsif and the else keyword works
as expected.

Perl has an unless statement which reverses the sense of the conditional. For
instance:

unless ($#ARGV > 0) # are there any command line arguments?
{ print "error; no arguments specified\n"; exit 1; }

Perl's ideas about truth are similar to C. In a numeric context, a zero value
is considered \false" and anything non-zero is \true". An empty string is \false"
and a string with a length of 1 or more is true. Scalar arrays and associative
arrays are considered \true" if they have at least 1 member and \false" if empty.
Non-existent variables, since they are always 0, are \false".

Note that Perl does not have a case statement because there are numerous
ways to emulate it.

9

7.2 The while statement

Perl's while statement is very versatile. Since Perl's notion of truth is very
exible, the while condition can be one of several things. As in C, Perl conditional
statements can be actions or functions.

For instance, the <STDIN> statement with no argument assigns a line of stan-
dard input to the $ variable. To loop until the standard input ends, this syntax
is used:

while (<STDIN>)
{

print "you typed ",$_;
}

In keeping with the recommended beginner practice of including all default ar-
guments, that code would look like this:

while ($_ = <STDIN>)

{
print "you typed ",$_;

}

As stated before, an array is \true" if it has any elements left. For instance:

@users = ("nigel","david","derek","viv");
while (@users)
{

$user = shift @users;
print "$user has an account on the system\n";

}

This while loop will continue as long as @users has at least one element. The
shift routine pops the �rst element o� the named array and returns it.

Perl has two keywords used for shortcutting loop operations. The next key-
word is like C's continue statement. It will immediately jump to the next itera-
tion of innermost loop. The last keyword will break out of the current conditional
statement. It is analogous to C's break statement.

10

7.3 The for and foreach statements

The for and foreach statements in Perl are actually identical. They can be
used interchangeably in any context. Depending on what job is being performed,
however, one usually make more sense than the other.

Just to make things more confusing, there are two ways that the for/foreach
statement can be used. One way is exactly like C's 3-argument for statement.
For instance:

@disks = ("/data1","/data2","/usr","/home");
for ($i=0; $i <= $#disks; ++$i)
{ print $disks[$i],"\n"; }

However, once you understand Perl's built-in ways of iterating over an array's
elements, you will almost never need to use the 3-argument for statement.

Perl's one-argument foreach statement is similar to the foreach statement
in the C Shell. Given an array argument, the foreach statement will itera-
tively return that array's elements. This contrasts with the destructive traversal
demonstrated before with the while and shift statements.

The code fragment we just saw can be rewritten as:

@disks = ("/data1","/data2","/usr","/home");
foreach(@disks)
{ print $_,"\n"; }

This construct is much more elegant and does not (necessarily) destroy the con-
tents of @disks.

An subtle but important point to note is that, in the fragment above, $ is
really a pointer into the array, not simply a copy of a value. If the code in the
loop modi�es the $, the array is changed.

7.4 Goto

Yes, Perl even has a goto statement. goto label will send control of the program
to the named label. The usual caveats against GOTOs apply in Perl as elsewhere.
Don't use GOTOs unless you really need them!

11

8 Built-In Routines, C Library Routines, and System

Calls

Perl has a rich set of built-in routines and access to most of the interesting
functions in the C library. The manual pages for Perl go into exhaustive detail
about all of these routines so I will simply discuss a few of the more commonly
used ones. Most of these descriptions are paraphrased from the man pages.2 The
default argument for most of these routines is $. Note that parentheses around
function parameters are usually optional.

8.1 Built-In Routines

chop expr Chop o� the last character of a string and return the character. This
might not seem like a very interesting thing to do until you understand Perl
�le I/O. Upon reading a line of input into a variable, Perl preserves the
newline (nn). Usually, you don't need the newline so you probably want to
chop it o�.

defined expr Determine whether or not the named variable really exists or not.
This function will return true if the named variable has a value and is not
simply unde�ned.

die expr Utter a �nal message and pass away. This function will print out a
string argument and then cause the script to terminate. It is used most
often when some kind of fatal error occurs.

each array Return the key-value pairs of an associative array in an iterative
manner.

join expr,array Joins the separate strings of array into a single string with �elds
separated by the value of expr, and returns the string.

pop array Pop o� the top element o� the named array and shorten the array by
one.

print expr Print out the arguments. More on the print function later.

push array,list Treat array as a stack and push the values of list on to the stack.
Has the e�ect of lengthening the array.

2And a few are shamelessly copied word for word

12

shift Shifts the �rst value of the array o� and returns it, shortening the array
by 1 and moving everything down. Shift() and unshift() do the same thing
to the left end of an array that push() and pop() do to the right end.

split(/pattern/,expr,limit) Splits a string into an array of strings and returns
it. The pattern is treated as a delimiter separating the �elds. A common
use of this function is to split up lines of the UNIX /etc/passwd �le into its
component �elds. This is similar awk's functionality only more versatile.

substr expr,o�set,len Extract a substring out of expr and returns it.

8.2 UNIX-type Utility Routines

chmod Change the permission bits of the named �les.

chown Change the owner and group of the named �les.

mkdir Make directories.

unlink Remove a �le.

rename Rename a �le.

rmdir Remove a directory.

8.3 C Library Routines

Many C library routines can be accessed in Perl. This is a sampling of them.

getpw, getgr, : : : Perl has access to all of the C routines which access passwd,
group, and hostname information.

bind, connect, socket, : : : Interprocess communication facilities are avail-
able in Perl.

stat Access �le information via the UNIX stat(2) library routine.

exit Exit the program with the speci�ed exit status.

13

9 Operating System Interaction

Perl can execute system commands in several ways.
Perl can run shell commands via the system routine. This acts essentially like

C's system(3) call. A string is passed to the shell for execution. The output
from the command is sent to standard output. The exit status is put into the $?
variable.3

Perl also evaluates backquotes (also known as \backticks" or \grave accents")
in way similar to the shell. This is useful when you want to run a shell command
and capture the output. Here is an example in which a script gets the name of
the host:

$host = `hostname`;
chop($host);

Again, the exit status of this command will be put into $?. Note that we need
to chop o� the newline from the output.

10 File Handling

Perl's has I/O routines for reading and writing text �les as well as \unformatted"
�les.

10.1 Text I/O

Perl reads and writes text �les by way of �lehandles. By convention, �lehandles
are usually in upper case.

Files are opened by way of the open command. This command is given two
arguments: a �lehandle and a �le name (the �le name may be pre�xed with
some modi�ers). Lines of input are read by evaluating a �lehandle inside angled
brackets (<: : :>). Here is an example which reads through a �le:

open(F,"data.txt");
while($line = <F>)
{

do something interesting with the input
}
close F;

3Actually, the entire status word is put into $?. Read the man page for details.

14

The �le name argument can have one of several pre�xes. If the �le name is
pre�xed with <, the �le is opened for reading. (This is the default action.) If the
�le name is pre�xed with > then it is opened for writing. If the �le exists, it is
truncated and opened. Finally, a pre�x of >> opens the �le for appending. Here
are a few examples:

peruse the passwd file
open(PASSWD,"</etc/passwd");
while ($p = <PASSWD>)
{

chop $p;
@fields= split(/:/,$p);
print "$fields[0]'s home directory is $fields[5]\n";

}
close PASSWD;

enter some information into a log file
open(LOG,">>user.log");
print LOG "user $user logged in as root\n";

read a line of input from the user
$response = <STDIN>;

There are 3 prede�ned �lehandles which have obvious meanings: STDIN, STDOUT,
and STDERR. Trying to rede�ne these �lehandles with open statements will cause
strange things to happen. STDOUT is the default �lehandle for print.

Perl's �le input facility acts very di�erently if it is called in an array context.
If input is being read in to an array, the entire �le is read in as an array of lines.
For instance:

$file = "some.file";
open(F,$file);
@lines = <F>; # suck in the whole file. yum, yum,...

close F;

This capability, though useful, should be used with great care. Ingesting whole
�les into memory can be a risky thing to do if you do not necessarily know
what size �les you are dealing with. Perl already does a certain amount of input
bu�ering so reading in a �le at once does not necessarily yield an increase in I/O
performance.

15

10.2 Pipes

Perl can use the open routine to run shell commands and read or write to them
in the manner of C's popen(3S) call.

If a �le name argument starts with the pipe character (|), the �le name is
treated as a command. The command is then executed and the program can be
sent input via the print command.

If the �le name argument ends with a pipe, the command is executed and that
command's output can be read using the <: : :> facility. Here are two examples:

open(MAIL,"| Mail root"); # send mail to root
print MAIL "user \"pat\" is up to no good\n";
close MAIL; # mail is now sent

open(WHO,"who|"); # see who's on the system
while ($who = <WHO>)
{

chop $who;
($user,$tty,$junk) = split(/\s+/,$who,3);
print "$user is logged on to terminal $tty\n";

}
close(WHO);

10.3 Unformatted File Access

Perl can do direct reading and writing of bytes via the sysread and syswrite
calls.

Given the narrow scope of this introduction to Perl, I will not discuss these
functions. The references at the end provide complete information.

10.4 Use of the print command

We have already seen several examples of the use of the print command in Perl.
Now perhaps is a good time to see a more exact description of what it does.

The print command is very exible and, in most cases, can do the same thing
several di�erent ways. In general, print takes a series of strings separated by
commas, does any necessary variable interpolation, and then prints out the re-
sult. The string concatenation operator (.) is often used with print. All of the
following lines yield the same output.

16

print "But these go to 11.\n";
$level = 11;
print "But these go to ",$level,".\n";

print "But these go to $level.\n";
printf "But these go to %d.\n",$level;
print "But these " . "go to ". $level.".\n";
print join(' ',("But","these","go","to","$level.\n"));

As you can see, the C-style printf command is available. However, because of
Perl's ability to automatically interpolate numeric values to strings, printf is
rarely needed.

There are, in fact, subtle performance issues that can be addressed with each
of the methods in the example above. Wall and Schwartz's book, listed in the
references, talks about these issues.

As seen in several of the previous examples, the print command also takes an
optional �lehandle argument.

11 Some Notes about Perl Array Contexts

In C, every expression yields some kind of value. That value can be used as input
to another routine without having to store it in a temporary variable. Thus, you
can do things like chdir(getenv("HOME")).

In Perl, many routines and contexts yield arrays. These resultant arrays can
be passed to other routines, iterated over, and subscripted. This eliminates the
need for many temporary variables.

Here are a few examples. In this �rst case, we use the sort routine. This
routine takes an array as a parameter and passes back a sorted version of the
same array.

@names = ("bill","hillary","chelsea","socks");
@sorted = sort @names;
foreach $name (@sorted)
{ print $name,"\n"; }

In fact, one can iterate directly over the output from sort.

foreach $name (sort @names)
{ print $name,"\n"; }

17

This example shows that we can even put a subscript on an array context.

$name = (getpwuid($<))[6];
print "my name is ",$name,"\n";

The function getpwuid returns an array. We want the \real name" (or GECOS)
�eld from the passwd entry so we put a subscript of [6] on the array context and
put the result in $name.

12 Subroutines and Packages

Perl has the ability to do modular programming by way of subroutines and li-
braries.

12.1 Subroutines

Perl scripts can contain functions (usually called \subs") which have parameters
and can return values. Listed below is a skeleton for a Perl sub called sub1.

sub sub1
{

local($param1,$param2) = @_;
do something interesting

$value;
}

This sub can then be called in this way:

$return_val = do sub1("this is","a test");

The do can be replaced by &. This is actually the preferred method:

$return_val = &sub1("this is","a test");

There are a few thing to keep in mind when writing subroutines. Parameters
are put into the array @ inside the routine. Since all variables are global by
default, we use the local() function to copy the values into local variables.

Perl has a return statement which can be used to explicitly return values. This
is usually unnecessary, however, because the return value from a Perl subroutine
is simply the value of the last statement executed. Thus, if you want a subroutine
to return a zero, the last line of the routine can be 0;.

18

12.2 Packages

Perl has a library of useful routines which you can include in your scripts. The
Perl analogue of C's #include statement is require.

For instance, Perl has a library to do command-line parsing similar to C's
getopt(3) function.

require 'getopts.pl';

&Getopts('vhi:');
if ($opt_v) { print "verbose mode is turned on\n"; }

It is also possible to write your own libraries and include them in other scripts.

13 Prede�ned Variables

Perl has a sizable set of prede�ned variables. These are all documented in detail
in the man pages so I will only describe a few of the common ones.

$ Default argument for many routines and syntactic structures.

$? Status word returned from last system call. The lower bytes contain the signal
upon which the program died (if any) and the upper bytes contain the exit
code.

$$ Process ID of script.

$< Real user ID of user running script.

@ARGV Command-line arguments of script. Note that $ARGV[0] is the �rst actual
argument, not the name of the program (as in C). The name of the script is
in the variable $0.

%ENV Associative array containing the environment variables of the calling envi-
ronment.

14 Command Line Options

Perl has a set of command-line switches. Here are a few of the most useful ones.

-c Check the syntax of a Perl script but do not execute it.

19

-e Specify Perl code on the command line.

-w Warn the programmer about any questionable uses of variables. These include
variable used only once and variables which are referenced before being as-
signed. New Perl programmers are advised to check their scripts with perl
-c -w script.pl.

15 References

15.1 Manuals and Books

There are several very good references to Perl available. The �rst and foremost
is the Perl manual page. It is about 90 pages long and describes all aspects of
Perl, albeit in a terse manner. For me, it is the reference of �rst resort since I
can scan through it in an Emacs bu�er.

The book Programming Perl by Perl author Larry Wall and Randal Schwartz
is the de�nitive compendium of all things Perl. It is known colloquially as \the
Camel book" due to O'Reilly and Associates' habit of putting animals on the
covers of their books, in the case a camel. It should be noted, however, that it
is not the best book to buy for learning Perl from scratch simply because it is so
big. It is a better book to read once you know the basics.

There is a book due out sometime this fall by Randal Schwartz called Learning Perl.
It is being written presumably in response to the di�culty of learning Perl from
the Programming Perl book.

There is a Usenet newsgroup devoted to the Perl language called comp.lang.perl.
This is a forum for discussing nuances of Perl and asking questions about the lan-
guage. New Perl programmers are encouraged to read the manual pages and the
Perl FAQ (mentioned below) and to consult experienced local Perl programmers
before posting to the group.

15.2 How to get Perl

The current version of Perl is 4.036. Although version 5 is in alpha test right now,
version 4 is the stable version. Version 4 can be found via the archie protocol
at hundreds of ftp sites.

I have put the current version of Perl in the anonymous ftp account on my
machine. The code can be found at:

jaameri.gsfc.nasa.gov:/pub/perl/perl-4.036.tar.gz

20

There are several useful things in that directory. They are:

� perl-mode.el An Emacs major mode for editing Perl code.

� perl.faq The list of Frequently-Asked Questions about Perl.

� refguide.ps PostScript format reference guide for perl 4.036.

� examples/ A directory of example Perl scripts

The directory of example scripts is a good place to start hacking with real Perl
code. Even though I refer to these as \example" scripts, they are all real Perl
scripts that I wrote to solve real problems.

I welcome comments, bug �xes, fan mail, et cetera about anything in the ftp di-
rectory or about Perl in general. I can be reached at patrick.m.ryan@gsfc.nasa.gov.

21

