
Applicable Analysis

Vol. 89, No. 4, April 2010, 627–644

The Ablowitz-Ladik system on the natural numbers with certain

linearizable boundary conditions

Gino Biondini* and Guenbo Hwang

Department of Mathematics, State University of New York at Buffalo, Buffalo,
NY 14260, USA

Communicated by W. Hereman

(Received 4 September 2009; final version received 11 January 2010)

We solve the initial-boundary value problem (IBVP) for the
Ablowitz–Ladik system on the natural numbers with certain linearizable
boundary conditions. We do so by employing a nonlinear method of
images, namely, by extending the scattering potential to all integers in such
a way that the extended potential satisfies certain symmetry relations.
Using these extensions and the solution of the initial value problem (IVP),
we then characterize the symmetries of the discrete spectrum of the
scattering problem, and we show that discrete eigenvalues in the IBVP
appear in octets, as opposed to quartets in the IVP. Furthermore, we derive
explicit relations between the norming constants associated with symmetric
eigenvalues, and we identify a new kind of linearizable IBVP. Finally, we
characterize the soliton solutions of these IBVPs, which describe the soliton
reflection at the boundary of the lattice.
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1. Introduction

The inverse scattering transform (IST) has been successfully used to solve initial

value problems (IVPs) for a certain class of nonlinear partial differential equations

(PDEs) called integrable systems, such as the nonlinear Schrödinger equation (NLS),

Korteweg-deVries (KdV) and sine-Gordon equation (see [1,2] and references

therein). The IST has also been extended to solve IVPs for integrable discrete

nonlinear equations [3,4]. One of such equations is the celebrated Ablowitz–Ladik

(AL) system, also known as the integrable discrete NLS:

i _qn þ
qnþ1 � 2qn þ qn�1

h2
� �jqnj

2ðqnþ1 þ qn�1Þ ¼ 0, ð1:1Þ

where qn¼ qn(t), _f ¼ @f=@t and h is the lattice spacing. As usual the cases �¼�1 and

�¼ 1 are called, respectively, focusing and defocusing.
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The effort to extend the IST to solve initial-boundary value problems (IBVPs) for

nonlinear PDEs also has a long history. In [5], the even and odd extensions of the

potential to the whole line were developed to solve IBVPs for the NLS equation on

the half-line with homogeneous Dirichlet and Neumann boundary conditions (BCs).

This method was generalized to nonlinear sine and nonlinear cosine transforms [6].

However, these approaches only worked for IBVPs with linearizable BCs (namely,

for the NLS equation, homogeneous Robin BCs [7–10]). A different method was

introduced in [11–15], which is based on the simultaneous spectral transform of both

parts of the Lax pair. In [16], we showed that this method can be extended to solve

IBVPs for the AL system on the natural numbers. Other interesting approaches have

been presented. Bäcklund transformations have been used to identify linearizable

BCs for integrable nonlinear PDEs on the half-line [7–10]. It was also shown in [17]

that a similar approach can be applied to IBVPs for integrable discrete lattices. An

‘elbow scattering’ transform was introduced in [18] to solve the IBVP for the KdV

equation by formulating an appropriate Gel’fand–Levitan–Marchenko equation.

Finally, a rigorous analysis of the problem was also presented in [19–22].

The purpose of this work is to solve IBVPs for the AL system (1.1) on the natural

numbers with certain linearizable BCs. In [16], we solved the IBVP for (1.1) when a

generic boundary datum q0(t) is given. As in the continuum case, in general the

expression for the solution depends on some unknown boundary data, and their

elimination leads to a complicated system of coupled nonlinear differential

equations. That is (as in the continuum case), the IBVP in general does not

linearize. As in the continuum case, however, a special class of BCs exist for which

the IBVPs can be solved as effectively as the IVP via the IST. Such BCs are called

linearizable. For the AL system, it was shown in [17] that the linearizable BCs are the

discrete analogue of homogeneous Robin BCs, namely,

q0ðtÞ � �q1ðtÞ ¼ 0, �2R: ð1:2Þ

These same linearizable BCs are also found naturally via spectral analysis of both

parts of the Lax pair [16].

Here we consider the IBVP for the AL system (1.1) on the natural numbers with

the linearizable BCs obtained by setting �¼ 0 or �¼ 1 in (1.2). The first case is the

discrete analogue of homogeneous Dirichlet BCs; the second case is the discrete

analogue of homogeneous Neumann BCs. In a recent work on the NLS equation on

the half-line with linearizable BCs [23], we characterized the discrete eigenvalues

of the scattering problem and soliton solutions. Because of its conceptual similarities

to the method of images in electrostatics [24], we referred to the approach we used in

[23] as a nonlinear method of images. Here we show how the same approach can be

used to solve the IBVPs for the AL system on the natural numbers with linearizable

BCs. As in the continuous case, we characterize the discrete spectrum of the

associated scattering problem, thereby showing that the discrete eigenvalues appear

in octets, as opposed to quartets in the IVP. This ensures that for each soliton there

exists a symmetric counterpart typically located beyond the boundary, with equal

amplitude and opposite velocity. As a result, the apparent soliton reflection at the

boundary is simply the manifestation of the interchanging of the roles between the

true and mirror solitons satisfying the BCs.
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The outline of this work is the following: In Section 2, we briefly review the

solution of the IVP for the AL system via the IST. In Section 3, we then solve the

IBVP and we characterize the discrete eigenvalues of the associated scattering

problem. In Section 4, we obtain a novel expression in terms of the scattering data

for the normalization constant that appears in the direct and inverse scattering

problem. Finally, in Section 5, we derive quantitative relations between the norming

constants associated to the symmetric eigenvalues, and in Section 6, we use our

results to discuss the soliton behaviour. Section 7 ends this work with a few final

remarks. Throughout this work, whenever the discrete spectrum is discussed, we

implicitly assume �¼�1. After rescaling t0 ¼ t/h2 and q0n(t)¼ hqn(t), one can always

reduce to a modified AL equation where h¼ 1 effectively. Thus for simplicity we

consider the rescaled problem.

2. IVP for the AL system via IST

The IVP for the AL system on all integers was successfully solved via the IST in [3,4]

in the case of zero BCs at infinity and in [25,26] in the case of constant-amplitude

BCs. The method that we use in Section 3 to solve the IBVP on the naturals with

linearizable BCs makes essential use of the IST for the IVP. Hence, here we briefly

recall the main steps of the method, thereby introducing much of the machinery that

will be used. We refer the reader to Refs. [16,27,28] for all details. As usual, we

assume that qn(0) is given for all n2Z, and that qn(0)2 ‘
1(Z) (i.e.

P

n2Zjqn(0)j51).

The Lax pair of the AL system is, after factoring out the term Z
ne�i!ðzÞt�3 from the

eigenfunctions,

�nþ1 � Z�nZ
�1 ¼ Qn�nZ

�1, _�n þ i!ðzÞ½�3,�n� ¼ Hn�n, ð2:1Þ

where �n is the matrix eigenfunction, !(z)¼�(z� 1/z)2/2, ½A,B� ¼ AB� BA and

Z ¼
z 0

0 1=z

� �

, QnðtÞ ¼
0 qnðtÞ

rnðtÞ 0

� �

, �3 ¼
1 0

0 �1

� �

, ð2:2aÞ

Hnðz, tÞ ¼ i�3
�

QnZ
�1 �Qn�1Z�QnQn�1

�

¼ i
�qnrn�1 zqn � qn�1=z

zrn�1 � rn=z rnqn�1

� �

,

ð2:2bÞ

where rnðtÞ ¼ �q�nðtÞ and the asterisk denotes complex conjugate. As usual, the Jost

solutions are defined as the eigenfunctions of the Lax pair (2.1) which reduce to the

identity matrix as n!�1:

�ð1Þ
n ðz, tÞ ¼ Iþ Z

�1
X

n�1

m¼�1

Z
n�m

Qm�
ð1Þ
m Z

m�n,

�ð2Þ
n ðz, tÞ ¼ I� Z

�1
X

1

m¼n

Z
n�m

Qm�
ð2Þ
m Z

m�n:

ð2:3Þ

Hereafter we denote the columns of the eigenfunctions as ð�ðm,LÞ
n ,�ðm,RÞ

n Þ ¼: �ðmÞ
n ðz, tÞ,

for m¼ 1, 2. From (2.3), one obtains the analyticity regions for each column as

�ð1,LÞ
n ,�ð2,RÞ

n : jzj4 1, �ð1,RÞ
n ,�ð2,LÞ

n : jzj5 1: ð2:4Þ
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The first of (2.1) also implies

det�ð1Þ
n ¼

Y

n�1

m¼�1

ð1� qmrmÞ, det�ð2Þ
n ¼

Y

1

m¼n

ð1� qmrmÞ
�1 ¼: 1=Cn: ð2:5Þ

As usual, we assume that qnrn 6¼ 1 for 8n2Z and that C�1¼ limn!�1 Cn is finite.

Then �ð1Þ
n and �ð2Þ

n are both fundamental matrix solutions of the scattering

problem (2.1). Thus one can introduce the scattering matrix AðzÞ as

�ð1Þ
n ðz, tÞ ¼ �ð2Þ

n ðz, tÞZn e�i!ðzÞ�3tAðzÞZ�nei!ðzÞ�3t, jzj ¼ 1: ð2:6Þ

With the above definitions, AðzÞ is independent of time. It can also be expressed as

AðzÞ ¼ Iþ Z
�1

X

1

n¼�1

Z
�ne�i!ðzÞ�3tQnðtÞ�

ð1Þ
n ðz, tÞZnei!ðzÞ�3t, ð2:7Þ

from which it follows that a11(z) and a22(z) can be analytically continued off the unit

circle, respectively, into the domains jzj41 and jzj51. The reflection coefficients,

which will appear in the inverse problem, are nowhere analytic and are only defined

on jzj ¼ 1:

�1ðzÞ ¼ a21ðzÞ=a11ðzÞ, �2ðzÞ ¼ a12ðzÞ=a22ðzÞ: ð2:8Þ

The discrete eigenvalues of the scattering problem (2.1) are the zeros of the

analytic scattering coefficients; a11(z) and a22(z). We assume that there are finite

number of simple zeros of a22(z) and a11(z). We denote by zj the discrete eigenvalues

corresponding to the zeros of a22(z) for j¼ 1, . . . , J, with jzjj51 and Im zj� 0.

Similarly, we denote by �zj the zeroes of a11(z) for j ¼ 1, . . . , �J, with j �zj j4 1

and Im �zj � 0. From the Wronskian representations of the scattering coefficients

we have

�ð1,RÞ
n ðzj, tÞ ¼ bjz

2n
j e�2i!ðzj Þt�ð2,LÞ

n ðzj, tÞ: �ð1,LÞ
n ð �zj, tÞ ¼ �bj �z

�2n
j e2i!ð �zj Þt�ð2,RÞ

n ð �zj, tÞ, ð2:9Þ

for some complex constants bj and �bj. Moreover, (2.9) imply the residue relations:

Res
z¼zj

�

�ð1,RÞ
n

a22

�

¼ Kjz
2n
j e�2i!ðzj Þt �ð2,LÞ

n ðzj Þ, Res
z¼ �zj

�

�ð1,LÞ
n

a11

�

¼ �Kj �z
�2n
j e2i!ð �zj Þt �ð2,RÞ

n ð �zj Þ,

ð2:10Þ

where

Kj ¼ bj=a
0
22ðzj Þ,

�Kj ¼ �bj=a
0
11ð �zj Þ: ð2:11Þ

As customary, Kj and �Kj (or equivalently, bj and �bj) are referred to as the norming

constants. Hereafter, the prime will denote the derivative of a function with respect

to its argument.

When rnðtÞ ¼ �q�nðtÞ, we have the well-known symmetries:

�ðm,LÞ
n ðz, tÞ ¼ ��

�

�ðm,RÞ
n ð1=z�, tÞ

�

, �ðm,RÞ
n ðz, tÞ ¼ ���

�

�ðm,LÞ
n ð1=z�, tÞ

��
:
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We can thus write the scattering matrix in terms of just two coefficients as

AðzÞ ¼
a�ð1=z�Þ bðzÞ

�b�ð1=z�Þ aðzÞ

� �

: ð2:12Þ

The above symmetries also imply

J ¼ �J, �zj ¼ 1=z�, �bj ¼ �b�j ,
�Kj ¼ ðz�j Þ

�2K�
j : ð2:13Þ

An additional symmetry also exists for the scattering coefficients [27]:

aðzÞ ¼ að�zÞ, bðzÞ ¼ �bð�zÞ: ð2:14Þ

Together, (2.12) and (2.14) imply that discrete eigenvalues appear as quartets:

f�zj, � �zjg
J
j¼1, with �zj ¼ 1=z�j for all j¼ 1, . . . , J. Also, (2.14) implies that the norming

constants at z¼�zj are identical, and so are those at z ¼ � �zj.

From (2.6), one can define the inverse problem in terms of the following matrix

Riemann–Hilbert problem (RHP):

M
þ
n ðz, tÞ �M

�
n ðz, tÞ ¼ M

þ
n ðz, tÞJnðz, tÞ, ð2:15aÞ

where, introducing the normalization matrix CnðtÞ ¼ diagð1,CnðtÞÞ , the sectionally

meromorphic matrices M�
n are

M
þ
n ðz, tÞ ¼ Cn

�

�ð2,LÞ
n ðz, tÞ,

�ð1,RÞ
n ðz, tÞ

aðzÞ

�

, ð2:15bÞ

M
�
n ðz, tÞ ¼ Cn

�

�ð1,LÞ
n ðz, tÞ

a�ð1=z�Þ
, �ð2,RÞ

n ðz, tÞ

�

, ð2:15cÞ

and

Jnðz, tÞ ¼
�1ðzÞ�2ðzÞ z2ne�2i!ðzÞt�2ðzÞ

�z�2ne2i!ðzÞt�1ðzÞ 0

 !

: ð2:15dÞ

Thanks to the presence of Cn, it is M
�
n ðz, tÞ ! I as z!1, while

M
þ
n ðz, tÞ ¼

1=Cn 0

0 Cn

� �

þ
0 qn�1

rn 0

� �

zþOðz2Þ as z ! 0: ð2:16Þ

The solution of the RHP is simply found using Cauchy projectors after subtracting

out the pole contributions:

Mnðz, tÞ ¼ Iþ
X

J

j¼1

�

1

z� zj
Res
z¼�zj

½M�
n ðzÞ� þ

1

z� �zj
Res
z¼� �zj

½Mþ
n ðzÞ�

�

þ
1

2�i

Z

j�j¼1

M
þ
n ð�, tÞ

Jnð�, tÞ

� � z
d�: ð2:17Þ
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Computing the asymptotic behaviour ofMþ
n as z! 0 and comparing with (2.16) then

yields the reconstruction formula for the potential as

qnðtÞ ¼ �2
X

J

j¼1

Kjz
2n
j e�2i!ðzj Þt�

ð2Þ
nþ1,11ðzj, tÞ þ

1

2�i

Z

jzj¼1

z2ne�2i!ðzÞt�2ðzÞ�
ð2Þ
nþ1,11ðz, tÞ dz:

ð2:18Þ

In the reflectionless case with �¼�1, that is, when �(z)¼ 0 for all jzj ¼ 1, (2.17)

and (2.18) yield the pure soliton solutions of the AL system:

qnðtÞ ¼
XJ

j¼1
Zj, ð2:19aÞ

where Z¼ (Z1, . . . ,ZJ)
T solves the algebraic system of equations

ðI�GÞZ ¼ y, ð2:19bÞ

with G ¼ ðGj,mÞ and y¼ (y1, . . . , yJ)
T, and where yj ¼ �2z2nj e�2i!ðzj ÞtKj and

Gj,m ¼Kj z
2n
j e�2i!ðzj Þt

X

J

p¼1

�

1

zj� �zp
�

1

zjþ �zp

��

1

�zp� zm
þ

1

�zpþ zm

�

�Kp �z
�2ðn�1Þ
p z2me

2i!ð �zpÞt,

ð2:19cÞ

for all j, m¼ 1, . . . , J. For a single quartet (i.e. for J¼ 1), one recovers the well-known

one-soliton solution of the AL system:

qð1sÞn ðtÞ ¼ ei½n	þwtþ’� sinh� sech½�ðn� vt� 
Þ
�

, ð2:20Þ

where z1¼ e(�þi	)/2, and

v ¼ ð2=�Þ sinh � sin 	, w ¼ 4ðcosh� cos	� 1Þ, ’ ¼ �þ argK1,


 ¼
	

logðsinh�Þ � log jK1j
�

=�:

3. IBVPs for the AL system with certain linearizable BCs

We now consider IBVPs for the AL system on the natural numbers with certain

kinds of linearizable BCs. Note first that from the n-part of the Lax pair (2.1)

we have

�nðzÞ ¼ ðZþQnÞ
�1�nþ1ðzÞZ:

Letting wn(z, t)¼Cn(t)�n(z, t), and noting detðZþQnÞ ¼ 1� qnrn, we have that

wn solves

wn � Z
�1wnþ1Z ¼ �Qnwnþ1Z: ð3:1Þ
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Replacing n by �n and z by 1/z, and letting  n(z, t)¼w�nþ1(1/z, t), we then have

 nþ1 � Z nZ
�1 ¼ �Q�n nZ

�1: ð3:2Þ

We will use (3.2) in Sections 3.1 and 3.2, and (3.1) in Section 3.3.

3.1. Odd extension

We consider first the IBVP with a homogeneous Dirichlet BC given; namely,

q0(t)¼ 0. We introduce the odd extension of the potential as

Q
ext
n ðtÞ ¼ QnðtÞ�ðnÞ �Q�nðtÞ�ð�n� 1Þ, ð3:3Þ

which is the discrete analogue of the odd extension in the continuum case [5,23].

Hereafter, �(n) is the Heaviside theta function, defined as �(n)¼ 1 for n� 0 and

�(n)¼ 0 for n50. Obviously, Qext
n ðtÞ satisfies the BC at n¼ 0. We then define the Jost

solutions via (2.3) with QnðtÞ replaced by Q
ext
n ðtÞ, and we use the IST for the IVP to

solve to the IBVP. It should be clear that the symmetries of the IVP are still valid.

Moreover, we show next that the following symmetries apply for the Jost solutions

and the scattering data:

�ð1Þ
n ðz, tÞ ¼ C�nþ1ðtÞ�

ð2Þ
�nþ1ð1=z, tÞ, Að1=zÞ ¼ C�1 ZA

�1ðzÞZ�1, ð3:4Þ

where

C�1 ¼
Y

1

m¼�1

ð1� qmrmÞ: ð3:5Þ

Note the shift �n!�nþ 1 in the first of (3.4), which disappears in the continuum

limit.

To prove the first of (3.4) we use (3.2) and the fact that Q
ext
n ðtÞ is odd:

Q
ext
�nðtÞ ¼ �Q

ext
n ðtÞ. That is, if �(z, t) solves the Lax pair, so does  n(z, t). Moreover, if

�ðz, tÞ ¼ �ð2Þ
n ðz, tÞ in (2.1), we have  n! I as n!�1. That is,  n(z, t) satisfies the

same BCs of �ð1Þ
n ðz, tÞ. By uniqueness, we thus have  nðz, tÞ ¼ �ð1Þ

n ðz, tÞ, which proves

the first of (3.4).

To prove the second of (3.4), note that (2.6) and the first of (3.4) imply

CnðtÞC�nþ1ðtÞ ¼ Z
�1
Að1=zÞZAðzÞ: ð3:6Þ

However, the odd extension of the potential implies, for all n� 0,

C�nþ1ðtÞ ¼
Y

n�1

m¼1

ð1� qmrmÞ
Y

0

m¼�1

ð1� qextm rextm Þ: ð3:7Þ

Hence Cn(t)C�nþ1(t)¼C�1, and the second of (3.4) then follows.

In particular, using detA ¼ C�1, the second of (3.4) yields

aðzÞ ¼ a�ðz�Þ, bð1=zÞ ¼ �z2bðzÞ: ð3:8Þ
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Equations (3.8) will provide the key to characterize the soliton solutions to the IBVP.

An obvious consequence is that discrete eigenvalues appear in symmetric octets

(as opposed to quartets in the IVP):

�zj, �z�j , � �zj, � �z�j , ð3:9Þ

where �zj ¼ 1=z�j as before, with jzjj51 and Imzj� 0 for all j¼ 1, . . . , J.

3.2. Even extension

Similarly to Section 3.1, we now introduce the even extension of the potential as

Q
ext
n ðtÞ ¼ QnðtÞ�ðnÞ þQ�nðtÞ�ð�n� 1Þ: ð3:10Þ

The corresponding symmetries of the eigenfunctions and the scattering matrix are

�ð1Þ
n ðz, tÞ ¼ C�nþ1ðtÞ �3�

ð2Þ
�nþ1ð1=z, tÞ�3, Að1=zÞ ¼ C�1 Z�3A

�1ðzÞ�3Z
�1: ð3:11Þ

To prove (3.11), we multiply (3.2) by �3 both from the left and the right, we use

the property Q
ext
�nðtÞ ¼ Q

ext
n and we note that �3B ¼ B�3 and �3B ¼ �B�3 if B is a

diagonal matrix and an off-diagonal matrix, respectively. We then obtain that the

matrix function �3 nþ1(z, t)�3 is a solution of the Lax pair in (2.1). Also, if �n ¼ �ð2Þ
n

in (2.1), �3 nþ1�3! I as n!�1. Hence, by uniqueness, we conclude that

�3 nþ1(z, t)�3¼�(z, t), thereby obtaining the first of (3.11). The second of (3.11)

follows in a similar way as before.

From the second of (3.11) follow the symmetries of the scattering coefficients:

aðzÞ ¼ a�ðz�Þ, bð1=zÞ ¼ z2bðzÞ: ð3:12Þ

These imply that the symmetry (3.9) of the discrete spectrum also holds for the even

extension of the potential. Note, however, that Qext
n ðtÞ does not satisfy the BC (1.2)

for any value of �. Instead, it satisfies the BC q1(t)� q�1(t)¼ 0 for a modified IBVP

posed on n2N0 instead of n2N. As far as we know, this kind of IBVP had not been

previously studied in the literature.

3.3. Even-shift extension

Motivated by the results of Section 3.2, to solve the IBVP for the AL system with the

BC (1.2) with �¼ 1 we introduce the following shifted version of the even extension:

Q
ext
n ðtÞ ¼ QnðtÞ�ðnÞ þQ�nþ1ðtÞ�ð�nÞ: ð3:13Þ

For brevity, we will refer to this as the ‘even-shift’ extension of the potential.

The extended potential now enjoys the shifted symmetry

Q
ext
�nðtÞ ¼ Q

ext
nþ1ðtÞ, ð3:14Þ

for all n2Z. It is then obvious that the corresponding extension of the AL field,

namely, qextn ðtÞ ¼ qnðtÞ�ðnÞ þ q�nþ1ðtÞ�ð�nÞ, satisfies the BC (1.2) with �¼ 1. We next

show that the symmetries of the eigenfunctions and scattering coefficients are

�ð1Þ
n ðz, tÞ ¼ C�nþ2ðtÞ �3�

ð2Þ
�nþ1ð1=z, tÞ�3, Að1=zÞ ¼ C�1 Z

2�3A
�1ðzÞ�3Z

�2: ð3:15Þ
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Starting from (3.1), let  nþ1(z, t)¼ �3w�nþ1(1/z, t)�3. Using the symmetry of the

shifted potential and noting that �3Q
ext
n �3 ¼ �Q

ext
n , we then find, after re-indexing,

 nþ1 � Z nZ
�1 ¼ Q

ext
n  nZ

�1: ð3:16Þ

Comparing the asymptotic behaviour of  n(z, t) with that of �ð1Þ
n as before, we then

obtain the symmetry of the eigenfunctions as the first of (3.15). Performing similar

steps as before and using the fact that Cn(t)C�nþ2(t)¼C�1 thanks to the even-shift

extension of the potential. From the scattering relation (2.6) we then obtain the

following symmetry of the scattering matrix as the second of (3.15).

As a result of (3.15), we have the following symmetries for the scattering

coefficients:

aðzÞ ¼ a�ðz�Þ, bð1=zÞ ¼ z2bðzÞ: ð3:17Þ

In particular, the first of these implies that the symmetry (3.9) of the discrete

spectrum also holds for the IBVP with BCs (1.2) with �¼ 1.

4. Normalization constant C
Z1

in terms of scattering data

We will see later that the relation between the norming constants associated with

symmetric eigenvalues involves the overall normalization constant C�1 defined in

(3.5). It is well-known that C�1 is a conserved quantity [27]. In order for the method

to provide an effective characterization of the discrete spectrum and the soliton

solutions of the IBVP, however, one must be able to express C�1 only in terms of the

scattering data. We next show that this indeed is the case. Interestingly, the relation

that we will derive holds for all solutions of the AL system on the integers; i.e. it

applies also to the solutions of the IVP, not just to those of the IBVP with extended

potential.

In the reflectionless case with �¼�1, one can in principle compute explicitly C�1

in terms of the eigenvalues as follows. In the reflectionless case, (2.17) yields

M
ðþ,RÞ
n ðz, tÞ ¼

0

1

� �

þ
X

J

j¼1

Kjz
2n
j e�2i!ðzj Þt

�

1

z� zj
M

ðþ,LÞ
n ðzj, tÞ þ

1

zþ zj
M

ðþ,LÞ
n ð�zj, tÞ

�

:

ð4:1Þ

Comparing this with (2.16), and noting that Mþ
n,21 and M

þ
n,22 are, respectively, an odd

function and even function of z[16,27], we then have

CnðtÞ ¼ 1� 2
X

J

j¼1

Kjz
2n�1
j e�2i!ðzj ÞtM

þ
n,21ðzj, tÞ, ð4:2Þ

where Mþ
n,21ðzj, tÞ can be obtained from the solution of an algebraic system obtained

by evaluating Equations (2.17) at z¼ zj and z ¼ �zj with �(z)� 0. For example, when

J¼ 1, solving this algebraic system, substituting in (4.2) and taking the limit n!�1

one obtains C�1 ¼ ð �z1=z1Þ
2. It is also straightforward, although tedious, to show

that when J¼ 2, one obtains C�1 ¼ ½ �z1 �z2=ðz1z2Þ�
2. The calculations with this

approach, however, quickly become cumbersome for larger systems, and the method

cannot be used for solutions with a nonzero reflection coefficient.
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We now present a different method to obtain C�1, which results in an explicit

expression in terms only of the scattering data. Note first that

detAðzÞ ¼ C�1 ¼ jaðzÞj2 � �jbðzÞj2, where a(z)¼ a22(z) and b(z)¼ a12(z) as before.

This implies, for all jzj ¼ 1,

C�1 ¼ jaðzÞj2ð1þ j�ðzÞj2Þ ð4:3Þ

where as before �(z)¼ b(z)/a(z) and �¼�1. Multiplying (4.3) by 1/z and integrating

over the unit circle we then have

logC�1 ¼
1

2�i

Z

jzj¼1

log jaðzÞj2
dz

z
þ

1

2�i

Z

jzj¼1

logð1þ j�ðzÞj2Þ
dz

z
: ð4:4Þ

A further simplification can be obtained by recalling that the analytic scattering

coefficients obeys trace formulae. In particular, for all jzj 	 1, it is [27]

log aðzÞ ¼
X

J

j¼1

log

 

z2 � z2j

z2 � �z2j

!

þ
1

2�i

Z

j�j¼1

logð1þ j�ð�Þj2Þ

�2 � z2
d�, ð4:5Þ

where again �zj ¼ 1=z�. An identical relation holds for a11(z), except for the

interchange of zj and �zj in the sum and a minus sign in front of the integral. Recall

that, on jzj ¼ 1 it is a11(z)¼ a�(z). We can then use (4.5) and the corresponding

relation for a11(z) in the first integral in (4.4), obtaining

logC�1 ¼ 2
X

J

j¼1

logð �zj=zj Þ þ
1

2�i

Z

jzj¼1

logð1þ j�ðzÞj2Þ
dz

z
, ð4:6Þ

where the integral is obviously absent for reflectionless solutions. This relation,

which holds for all solutions of the IVP for the AL system, was not known in the

literature to the best of our knowledge. For reflectionless soliton solutions of the

IBVP one can further use the symmetries of the discrete spectrum to obtain simply

C�1 ¼ 1=jz1 
 
 
 zJj
2: ð4:7Þ

5. Relations between norming constants and symmetric eigenvalues

We denote the eigenvalue symmetric to zj as zj0 ¼ z�j . Note that real eigenvalues are

self-symmetric; that is, Im zj¼ 0, implies zj0 ¼ zj. Thus, for these eigenvalues the octet

(3.9) degenerates into a quartet.We can therefore divide the discrete eigenvalues in two

classes by writing J¼ J0þ J1, where J0 and J1 are the number of discrete eigenvalues zj
inside the unit circle with Im zj¼ 0 and Im zj40, respectively. The corresponding

numbers of eigenvalues in the IBVP are S0¼ J0 and S1¼ J1/2, with S¼S0þS1.

5.1. Derivative of the analytic scattering coefficients

Recall from (2.11) that the norming constants contain a0(z). Also recall that a(z) can

be obtained via the trace formula (4.5). In particular, in the reflectionless case with

J¼ 1, one obtains simply

a0ðz1Þ ¼ 2z1=½z
2
1 � 1=ðz�1Þ

2�: ð5:1Þ
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In the general reflectionless case with J41, it is, for all j¼ 1, . . . , J,

a0ðzj Þ ¼
2zj

z2j � 1=ðz�j Þ
2

Q0
J

m¼1

z2j � z2m

z2j � 1=ðz�mÞ
2
, ð5:2Þ

where the prime in the product indicates that the term m¼ j is omitted. Using the

symmetry of the discrete eigenvalues one then obtains the corresponding expressions

in the IBVP as

a0ðzsÞ ¼
2zs

z2s � 1=ðz�s Þ
2

Q0
S0

p¼1

z2s � z2p

z2s � 1=ðz�pÞ
2

Y

S1

m¼1

ðz2s � z2mÞðz
2
s � ðz�mÞ

2Þ

ðz2s � ðz�mÞ
�2Þðz2s � z�2

m Þ
, ð5:3aÞ

for all s¼ 1, . . . ,S0, and

a0ðzsÞ ¼
2zsðz

2
s � ðz�s Þ

2Þ

ðz2s � ðz�s Þ
�2Þðz2s � z�2

s Þ

Y

S0

p¼1

z2s � z2p

z2s � 1=ðz�pÞ
2

Q0
S

m¼1

ðz2s � z2mÞðz
2
s � ðz�mÞ

2Þ

ðz2s � ðz�mÞ
�2Þðz2s � z�2

m Þ
, ð5:3bÞ

for all s¼ 1, . . . ,S1.

5.2. Odd extension

Note first that from (2.9), we have

�ð1,RÞ
n ðzs0Þ ¼ bs0z

2n
s0 e

�2i!ðzs0 Þt�ð2,LÞ
n ðzs0 Þ: ð5:4Þ

Using the symmetry (3.4) with (2.9), we also obtain

�ð1,RÞ
n ðzs0Þ ¼ C�nþ1

�b�1
s �z�2ðn�1Þ

s e�2i!ð �zsÞt�
ð1,LÞ
�nþ1ð �zsÞ: ð5:5Þ

Finally, we know that �ð2,LÞ
n ðzs0 Þ ¼ C�1

n �
ð1,LÞ
�nþ1ð �zsÞ. Recalling that �zs ¼ 1=z�s and

�bs ¼ �b�s and combining these with the above equations we then obtain

b�sbs0 ¼ �C�1=ðz
�
s Þ

2, ð5:6aÞ

from which we can derive the relations between the norming constants associated

with symmetric eigenvalues. Note first, however, that since C�140 and self-

symmetric eigenvalues are real, (5.6a) implies that there can be no self-symmetric

eigenvalues in this case.

Now, using the symmetries of the scattering coefficients we have

a011ð �zsÞ ¼ �ðz�s Þ
2a022ðzsÞ

� and a022(zs0)¼ a022(zs)
�. From the definitions of the norming

constants Kj and �Kj, we then obtain

K�
sKs0 ¼ �C�1=

�

z�sa
0ðzsÞ

�
�2
: ð5:6bÞ

By analogy with the one-soliton solution (2.20), let zj¼ e(�jþi	j)/2 and Kj¼ e�jþi�j, with

�j ¼ logðsinh�j Þ � �j
j: �j ¼ ’j � �: ð5:7Þ

Using (5.6b) we have

�s þ �s0 ¼ log jC�1j � 2 log ja0ðzsÞj � �s, ð5:8aÞ

�s0 � �s ¼ argC�1 þ 2 arg
	

a0ðzsÞ
�

þ 	s þ �: ð5:8bÞ
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For one-soliton solutions of the IBVP (that is, for S¼S1¼ 1), (4.7) is simply

C�1¼ e�4�1. Substituting this relation and (5.3b) into (5.8), one can then express the

relation of the norming constants associated with symmetric eigenvalues only in

terms of z1:

�1 þ �2 ¼ 2 log




 sinh �1




þ 2 log




 sinhð�1 þ i	1Þ= sin 	1




� 8�1, ð5:9aÞ

�2 � �1 ¼ 2 arg
	

sin	1 cschð�1 þ i	1Þ
�

þ �: ð5:9bÞ

5.3. Even extension

Performing similar calculations as in the case of the odd extension we obtain

b�sbs0 ¼ C�1=ðz
�
s Þ

2, K�
sKs0 ¼ C�1=

�

z�sa
0ðzsÞ

�
�2
: ð5:10Þ

As a result,

�s þ �s0 ¼ log jC�1j � 2 log ja0ðzsÞj � �s, ð5:11aÞ

�s0 � �s ¼ arg½C�1� þ 2 arg
	

a0ðzsÞ
�

þ 	s: ð5:11bÞ

Then, when S¼S1¼ 1 one has the same relation as (5.9b) between the norming

constants, except that the � at the end of (5.9b) is now absent. But (5.10) implies that

self-symmetric eigenvalues are now also allowed. When S¼S0¼ 1, we then obtain a

condition that the self-symmetric soliton must satisfy in order for it to be a solution

of the IBVP:

�1 ¼ log




 sinh �1




� 2�1, ð5:12Þ

with �1 arbitrary.

5.4. Even-shift extension

In a similar way as in the previous cases, from Equations (3.15) we obtain the

relation of the norming constants as

b�sbs0 ¼ C�1=ðz
�
s Þ

4, K�
sKs0 ¼ C�1=

	

ðz�s Þ
2a0ðzsÞ

�
�2
: ð5:13Þ

As a result

�s þ �s0 ¼ log jC�1j � 2 log ja0ðzsÞj � 2�s, ð5:14aÞ

�s0 � �s ¼ arg½C�1� þ 2 arg
	

a0ðzsÞ
�

þ 2	s: ð5:14bÞ

Then in the case S¼S1¼ 1 we have

�1 þ �2 ¼ 2 log




 sinh �1




þ 2 log




 sinhð�1 þ i	1Þ= sin 	1




� 9�1, ð5:15aÞ

�2 � �1 ¼ 2 arg
	

sin 	1 cschð�1 þ i	1Þ
�

þ 	1: ð5:15bÞ
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As in the even case, however, self-symmetric solitons are now possible. In particular,

when S¼S0¼ 1, we obtain

�1 ¼ log




 sinh�1




�
5

2
�1, ð5:16Þ

with �1 arbitrary as before.

5.5. Multi-soliton solutions

The above results are easily generalized to the case of multi-soliton solutions. Recall

that (4.7) and (5.3) give, respectively, the general form of C�1 and of a0(z) for an

arbitrary number of discrete eigenvalues. Inserting these expressions into (5.6), (5.10)

and (5.13) one can easily obtain the analogue of (5.9) and (5.15). Since these

extensions are straightforward, we omit the relevant formulae for brevity.

6. Soliton behaviour

We now discuss the behaviour of the soliton solutions of the AL system on the half-

line. For simplicity we first restrict ourselves to the case in which no self-symmetric

eigenvalues are present.

Recall that each discrete eigenvalue of the scattering problem is associated with

a zero of a(z) and generates a soliton travelling with constant velocity. Let

zs¼ e(�sþi	
s
)/2 be one such eigenvalue. By the symmetry (3.9), we know that

zs0 ¼ z�s ¼ eð�s�i 	sÞ=2 is also a discrete eigenvalue. Since the velocity of the soliton

is vs¼ v(�s, 	s)¼ (2/�s)sinh �s sin 	s, we have immediately vs0 ¼ v(�s,�	s)¼�vs. That

is, solitons generated by symmetric eigenvalues travel with equal and opposite

velocities. We refer to the soliton that appears to the right of the boundary (i.e.

n40), as the physical soliton. The symmetry of the discrete spectrum and norming

constants implies that there exists a counterpart to each physical soliton, generated

by the symmetric eigenvalue, and located to the left of the boundary (i.e. n50). Since

this counterpart can be considered a reflected image of the physical soliton, we refer

to it as a mirror soliton. It should be obvious that the number of physical solitons

equals that of mirror solitons.

Let us now discuss more in detail the behaviour of the soliton solutions. Once the

eigenvalues and norming constants of the physical solitons are assigned, the

eigenvalues and norming constants of the mirror solitons are determined by (5.9),

(5.11) and (5.15) in such a way that the solution satisfies the given BCs. Solving the

algebraic system (2.19) one then obtains the corresponding two-soliton solution of

the AL system. Consider first the case S¼ 1 (i.e. J¼ 2). Figure 1 (a) shows such a

solution for the IBVP with BC q0(t)¼ 0. The physical soliton appears to be reflected

at the boundary of the lattice. Since the soliton velocity is completely determined by

the discrete eigenvalue, however, it cannot change with time. The contour plot

(Figure 1b), which includes the mirror soliton, shows what is really going on: the two

solitons interact at the boundary, and the amplitudes and velocities of both solitons

return to their initial values after the interaction, but the roles of the physical and

mirror solitons are interchanged. A similar scenario occurs in the case of the even

and even-shift extensions, as shown respectively in Figures 2 and 3, the only
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difference being that the norming constant of the mirror soliton in each case is such

that the appropriate BCs are satisfied.

Note that the symmetry of the discrete spectrum and the relations between

eigenvalues and norming constants apply independently of whether the physical

soliton has a positive or negative velocity. Of course, if the physical soliton has a

positive velocity, no reflection occurs for t40, and the solution is exponentially small

at the origin for all t40. Nonetheless, a mirror soliton is still needed to satisfy the

BCs at the origin – as in the continuum case [23]. Note also that these results are not

limited to reflectionless solutions, nor to solutions with S¼ 1. Indeed, Figure 4

displays the reflection of two physical solitons.

It is convenient to label the discrete eigenvalues (including symmetric ones) so

that v1	 v2	 
 
 
 	 v2S. With this convention, as t!�1 the physical solitons

–10 –5 0 5 10

0

1

2

3

4

5

n

t

(a) (b)

Figure 1. Soliton reflection at the boundary in the case of BCs q0(t)¼ 0, with z1¼ (�1þ i)/2,
�1¼ 4, and argK1¼�/2. (a) three-dimensional (3D) plot of jqn(t)j. (b) contour plot showing
the mirror soliton (dashed) to the left of the boundary. Note that in both plots we allow n to be
real-valued in the expression obtained from (2.11); integer values of n are shown as solid lines
in the 3D plot and as dotted lines in the contour plot.
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(a) (b)

Figure 2. Same as Figure 1 but for the even extension, with z1¼ (�1þ i)/2, �1¼ 4, and
argK1¼�/2.
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correspond to eigenvalues in the second quadrant of the complex z-plane (i.e. those

with vs50). Then, as each soliton is reflected in succession, the corresponding

discrete eigenvalue associated with the physical soliton switches role with its

symmetric counterpart, until, as t!1, all physical solitons correspond to the S

discrete eigenvalues in the first quadrant (i.e. with vs40). Thus, as t!�1 the

discrete eigenvalues associated with the physical solitons are z1, . . . , zS, and the

corresponding mirror solitons are, respectively, z2S, . . . , zSþ1. Conversely, as t!1

the eigenvalues associated with the physical solitons are zSþ1, . . . , z2S, and the

corresponding mirror solitons are, respectively, zS, . . . , z1.

We now briefly discuss the situation in which self-symmetric eigenvalues are

present. Since zs0 ¼ z�s , the condition zs0 ¼ zs implies 	s¼ 0, and therefore vs¼ 0.

That is, all solitons associated with self-symmetric eigenvalues are stationary, and no

soliton reflection occurs. Multiple self-symmetric eigenvalues give rise to bound

–15 –10 –5 0 5 10 15

0

1

2

3

4

5

6

n

t
(a) (b)

Figure 4. A multi-soliton solution of the IBVP with BC q0(t)¼ 0, with z1¼ (�1þ i)/2, �1¼ 6,
z2¼�1/3þ i/2, �2¼ 12 and argK1¼ argK2¼�/2. (a) 3D plot of jqn(t)j. (b) Contour plot
showing the mirror solitons (dashed).
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(a) (b)

Figure 3. Same as Figure 1 but for the even-shift extension, with z1¼ (1� i)/2, �1¼ 4, and
argK1¼�/2.
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states of stationary solitons. Generically, the solution of the IBVP in the even and

even-shift cases will contain a mixture of self-symmetric and non-self-symmetric

eigenvalues.

7. Conclusions

In summary, we studied the solutions of the IBVP for the AL system with certain

linearizable BCs at the origin, using a nonlinear method of images. We have

characterized the symmetries of the discrete spectrum and norming constants, and we

have discussed the behaviour of the soliton solutions. Our approach provides the

discrete analogue of the results obtained in Refs. [5,23] for the NLS equation.

We have also identified a new linearizable BC, which does not fall into the kind (1.2)

that was studied previously.

We emphasize that the method we used here to solve the IBVP is fundamentally

different from the one we used in Ref. [16], which was based on the simultaneous

spectral analysis of both parts of the Lax pair. That method is more general, since it

can deal with both linearizable and nonlinearizable BCs. For linearizable BCs,

however, the present method has the advantage of being considerably simpler, and it

easily allows one to characterize the soliton solutions explicitly. At the same time, it

should be clear that the present results (symmetries of the discrete spectrum, norming

constants and the characterization of the soliton solutions) only apply for

linearizable BCs, and do not hold for generic BCs. A simple counterexample is

given by the one-soliton solution (2.20), which provides a solution of the IBVP posed

with IC qnð0Þ ¼ qð1sÞn ð0Þ and BC q0ðtÞ ¼ q
ð1sÞ
0 ðtÞ for which the discrete spectrum does

not possess any symmetry.

We were not able to identify an extension of the potential suitable for solving the

IBVP with generic values of � 6¼ 0, 1 in (1.2). Thus, a proper characterization of the

IBVP with the most general linearizable BCs is still at present an open issue.

We believe that no simple extension of the potential exists in general. One promising

approach instead might be to use an extension provided by certain Bäcklund

transformations of the AL system [17], in a similar way to what was done for the

NLS equation in Refs [7–10]. This, however, is a nontrivial task that is left for

future work.
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