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Abstract—The basic theory of importance sampling (IS) as rel-
evant to polarization-mode dispersion (PMD) in optical fibers is
discussed, and its application to Monte Carlo (MC) simulations of
PMD-induced transmission impairments is demonstrated. The use
of IS allows rare PMD events to be simulated much more efficiently
than with standard MC methods. As a consequence, methods em-
ploying IS provide natural and effective tools to assess PMD-in-
duced impairments and outages in optical transmission systems at
realistic probability levels.

Index Terms—Importance sampling (IS), Monte Carlo (MC)
simulations, optical fiber communications, polarization-mode
dispersion (PMD).

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) is a potentially
major impairment in high-bit-rate terrestrial and undersea

wavelength-division-multiplexed (WDM) systems. In its sim-
plest manifestation, PMD splits a pulse between the fast and
the slow axes in an optical fiber; at the same time, higher orders
of PMD induce depolarization and polarization-dependent chro-
matic dispersion (PCD). At high bit rates, all of these effects can
lead to unacceptable transmission penalties. One of the main dif-
ficulties with PMD is that it is a stochastic phenomenon, and, as
a consequence, the penalties it produces change randomly over
distance and time as the ambient temperature and other envi-
ronmental parameters vary. To account for random fluctuations,
a maximum power penalty (typically 1 dB) is usually assigned
to PMD, and one demands that the outage probability (i.e., the
probability of the PMD-induced penalty exceeding this allowed
value) is very small—typically 1 min per year, that is, or
less. Because of this stringent requirement, it has been difficult
to use either Monte Carlo (MC) simulations or laboratory mea-
surements to fully assess system outage probabilities due to the
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extremely large number of PMD configurations that are neces-
sary to obtain reliable estimates.

One measure of PMD is the differential group delay (DGD)
[1]–[3], which quantifies the splitting between the fast and slow
axes. In optical fibers, the DGD has a Maxwellian probability
distribution. The rare events where the DGD is significantly
larger than its mean are particularly important, since they are
the ones most likely to result in system outages. In the absence
of effective tools for calculating outage probabilities, system
designers have resorted to stopgap techniques. One such tech-
nique is to artificially produce specific values of DGD, deter-
mine the penalties at these values, and then weight the results
using the Maxwellian distribution. A fundamental problem with
this method, however, is that there is not necessarily a direct re-
lationship between the DGD and the power penalty. In partic-
ular, the penalty generally depends also on higher order PMD.
Thus, different fiber configurations can give the same DGD but
not contribute equally to the penalty.

The technique of importance sampling (IS), which is one
member of a family of methods known as variance reduction
techniques, addresses these difficulties. The technique allows
low-probability events to be efficiently simulated by concen-
trating MC simulations in the most significant regions of interest
in sample space. The method is well known and has been ap-
plied with success in other contexts [4]–[10]. Recently, we have
developed IS techniques for the study of PMD-induced effects
generated by a concatenation of birefringent sections [11]–[13].
In this context, IS provides a tool that can be used in numer-
ical simulations—and, in principle, in experiments—to accu-
rately estimate PMD-induced system penalties. In the simplest
case, the regions of interest in the sample space are the config-
urations that lead to large values of DGD and/or second-order
PMD (SOPMD). This method has been recently applied for nu-
merically calculating PMD-induced transmission penalties [14],
[15]. Here, we give a detailed description of the technique and
its applications. It should be noted that other variance reduc-
tion techniques have also recently been proposed, such as the
multi-canonical MC method [16], [17] and the Brownian-bridge
method [18]. We also note that a limited form of IS using vari-
ance scaling has recently been implemented in a hardware PMD
emulator [19].

The structure of this paper is as follows. Section II provides a
basic introduction to IS in a general setting, including the tech-
nique of multiple IS. Section III discusses the application of
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IS to numerical simulations of transmission effects where large
DGD values are the primary cause of penalties. Because PMD is
frequency dependent, however, the DGD at any single frequency
is not sufficient to uniquely describe PMD effects, and in many
practical cases, higher orders of PMD need to be considered.
Thus, in Section IV, an IS technique that employs multiple IS to
generate arbitrary combinations of first- and second-order PMD
is discussed. Finally, in Section V, the methods are demonstrated
by calculating the distribution functions of various quantities of
interest for a concatenation of a finite number of birefringent
sections, and the application of the same techniques to the di-
rect numerical estimation of PMD-induced outage probabilities
are presented.

II. IMPORTANCE SAMPLING: OVERVIEW

IS has been extensively discussed in the literature [4]–[10],
and we refer the reader to the references for further details. Here,
we only review the basic aspects of the theory that are necessary
for PMD emulation.

A. Rare Events and MC Simulations

Consider a quantity which depends upon a random vector
. In our case, the components will be

the angles describing the relative orientations of the sections
of a PMD emulator, but obviously this framework can be used
more generally. The random variable could be any generic
quantity such as the DGD, a specific combination of first- and
second-order PMD, the amount of pulse broadening, or any
combination thereof. Suppose we are interested in calculating
the probability that falls in a given range . (For ex-
ample, could be the probability that the power penalty is
larger than 1 dB, the outage probability, or any other probability
of interest.) The probability can be represented as the expecta-
tion value of an indicator function , where
if falls in the prescribed range and otherwise.
That is, is represented by the -dimensional integral

E (1)

where is the joint probability density function (pdf) for
the RVs, E denotes the expectation value with respect to

, and represents the entire configuration space. (In the
following, we will omit the subscripts and unless they are
needed to avoid ambiguities.)

In many cases of interest, the variable depends in a highly
nontrivial way upon the RVs , thus making a direct calculation
of the integral in (1) impossible. Thus, one usually resorts to MC
simulations and writes an estimator for the probability by
replacing the integral in (1) by

(2)

where is the total number of samples and where the samples
are drawn according to the distribution [4]–[10]. Equa-

tion (2) simply expresses the relative number of samples falling
in the range of interest. By design, E . In practice, how-
ever, many MC samples may be necessary to obtain a good esti-

mate. In particular, if one is interested in low-probability events
(that is, if ), an impractical number of samples is nec-
essary in order to see even a single event, and an even larger
number is required to obtain an accurate estimate.

B. Importance-Sampled MC Simulations

When the main contribution to the desired probability comes
from regions of the sample space where is small, IS can
be used to speed up simulations. Here, the idea is to first rewrite
the probability in (1) as

E (3)

where E denotes the expectation value with respect to ,
and where

(4)

is called the likelihood ratio. The density is usually called
the biasing distribution. As before, we then estimate the corre-
sponding integral through MC simulations; that is, we write an
importance-sampled MC estimate for as

(5)

where now the samples are drawn according to . Using
a biased probability distribution allows the desired regions of
sample space to be visited much more frequently. At the same
time, the likelihood ratio automatically adjusts the results
so that all of the different realizations are correctly weighted,
thus contributing properly to the final estimate.

Not all biasing schemes are equivalent, of course. First of all,
in order to obtain an unbiased estimator for , the biased prob-
ability distribution should generate with nonzero proba-
bility all of the configurations that contribute to the result (i.e.,
all the samples such that ). One way to assess the
efficiency of an MC estimator is to compute its variance, which
determines the number of samples that are necessary on average
to obtain a desired level of accuracy. If the samples are statis-
tically independent, the variance of in (2) is ,
where the variance is

E E (6)

since . Thus, if represents a rare event (that
is, if ), then , and the coefficient of variation
(or relative variance) of the MC estimator will be proportional
to . In particular, if is small (as in the case
of the bit-error ratio or the outage probability), an exceedingly
large number of unbiased MC samples are necessary to obtain a
reliable estimate, i.e., one whose relative variance is a fraction
smaller than 1.

If (5) is used instead, we have , where the
(biased) variance of , defined as in (3), is

E E

(7)
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With appropriate choices of biasing distribution, this variance
can be made much smaller than its unbiased counterpart. This
can be seen by observing that (7) is that same as (6), except
for the addition of the factor in the first term; if is
large where is small, then will be small, and the first
term on the right-hand side (RHS) of (7) will be smaller than
the equivalent term in (6); thus, the variance will be reduced. In-
deed, the use of IS results in substantial speed-ups of numerical
simulations precisely because it is highly effective at reducing
the variance of estimators.

An importance-sampled MC estimate of in (7) is

(8)

It is straightforward to verify that E so that this
sample variance is unbiased (in the statistical sense). From this,
we then immediately have the result for the sample variance in
the estimator , namely

(9)

It should be noted that direct use of (9) in numerical simulations
requires that the user store all the individual samples until the
estimator is calculated. If this is not possible, a recursion
relation for and can be employed, as follows:

(10a)

(10b)

with , and where

(11)

C. Asymptotic Efficiency

The main difficulty with IS is the choice of biasing distribu-
tion, which requires some knowledge of the system. From (7),
it is easy to see that the best choice

(12)

yields exactly zero variance. Of course, this choice is not prac-
tical, since it requires the knowledge of the parameter being esti-
mated, . It does, however, offer some insight into what a good
biasing distribution should look like: (12) generates only con-
figurations that do contribute to the desired event (that is, only
those for which ), and it selects them with a relative
weight that is proportional to the original density. The rationale
is that, of all the configurations that do lead to the desired event,
the most important ones are those for which the original density
is largest. This illustrates a general principle: in order for IS to
be effective, the biasing distribution should preferentially select
the most likely configurations that lead to the desired event. In
other words, if the events sought are the transmission errors, the
biasing distribution should “encourage typical errors” [10].

Techniques have been proposed for choosing biasing distri-
butions [4]–[10], but finding good distributions in any given sit-
uation still remains a nontrivial task, and it represents the most
difficult step when applying IS. The problem is twofold: 1) to
understand which regions of sample space are most important,
namely, find the most likely configurations that result in the de-
sired events; and 2) to devise an efficient way to bias the simu-
lations toward these regions. This cannot be done blindly; a bad
approach can result in a less efficient method and, in extreme
cases, an importance-sampled estimator with a variance that is
even larger than the unbiased case [20]. One biasing choice that
is at first glance promising but often fails is variance scaling,
i.e., the idea of producing rare events merely by increasing the
variance of the sample distribution. This may push random sam-
ples toward events of interest, but if the number of dimensions
of the configuration space is large, the number of ways of get-
ting unimportant events generally increases even more rapidly.1

Variance scaling has been used to guide sampling in a hardware
PMD emulator [19]; this type of device is therefore limited to
a small number of degrees of freedom (i.e., a small number of
adjustable birefringent elements).

Often, for simplicity, the choice of biasing distribution is re-
stricted to a specific family of distributions, usually dependent
on one or more parameters. In this case, we refer to the choice
of parameters that yields the lowest variance as the optimal one.
A more useful concept, however, is that of asymptotic efficiency
[20], [21], which is formulated in the framework of large devi-
ations theory [22]. Consider a set of probabilities dependent
on a parameter ; e.g., the probability that the random variable

takes values that are larger than times its mean, or, in
systems affected by PMD, the probability that the power penalty
exceeds dB. Furthermore, suppose that the probabilities
decay exponentially as increases. In this case, it is reasonable
to expect that the computational cost required for an accurate
estimation of will grow with . Next, consider a sequence
of biasing distributions . Roughly speaking, the sequence
is said to be asymptotically efficient if the computational burden
grows less than exponentially fast.

In general, it is quite difficult to show rigorously that a method
is asymptotically efficient [20]. It is important to realize, how-
ever, that optimal biasing is limited to a predetermined class of
biasing distributions, and therefore it only provides a relative
form of comparison. Asymptotic efficiency, on the other hand,
is concerned with the actual computational cost associated to
the importance-sampled estimator. It is possible for a biasing
distribution to be optimal within a subclass but not asymptoti-
cally efficient (see Section IV-D for examples).

D. Multiple IS

In many practical cases, including all the PMD examples
to be discussed in the following sections, no single choice of
biasing distribution can efficiently capture all the regions of
sample space that give rise to the events of interest. In these

1This is often referred to as the dimensionality problem of variance scaling
[9]. Another situation where IS can fail arises when there are two significant
but disjoint regions in sample space, and the biasing directs the samples only
toward one of them. In this case, it is possible in principle to obtain incorrect
results even when the sample variance is low.



1204 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 4, APRIL 2004

cases, it is necessary to use IS with more than one biasing dis-
tribution. The simultaneous use of different biasing methods is
called multiple IS [23], [24]. When using several biasing distri-
butions , a difficulty arises about how to correctly weight
the results coming from different distributions. One solution to
this problem can be found by assigning a weight to each
distribution and by rewriting the probability as

(13)

where is the number of different biasing distributions used
and is the likelihood ratio for the th dis-
tribution. Note that the weights depend on the value of
the random variables for each individual sample. From (13), a
multiply-importance-sampled MC estimator for can now be
written as

(14)

where is the number of samples drawn from the th distri-
bution , and is the th such sample.

Several ways exist to choose the weights . Generally,
is an unbiased estimator for (i.e., the expectation value of is
equal to ) for any choice of weights such that
for all [23], [24]. Thus, each choice of weights corresponds
to a different way of partitioning of the total probability. The
simplest possibility is just to set for all , meaning
that each distribution is assigned an equal weight in all regions
of sample space. This choice is not advantageous, however, as
will be seen shortly.

If is a multiply-importance-sampled MC estimator defined
according to (14), then, similarly to (9), one can show that an
unbiased estimator of its variance is

(15)

Similarly to (10), recursion relations can also be written so that
can be obtained without the need of storing all the individual

samples until the end of the simulation, as follows:

(16)

with and

(17a)

(17b)

E. The Balance Heuristic

When using multiple IS, the choice of weights is al-
most as important as the choice of biasing distributions .
Different weighting functions result in different values for the
variance of the combined estimator. A poor choice of weights
can result in a large variance, thus partially negating the gains
obtained by IS. The best weighting strategies are obviously the
ones that yield the smallest value.

For example, consider the case where the weighting functions
are constant over the whole domain . In this case

E (18)

That is, the estimator is simply a weighted combination of the
estimators obtained by using each of the biasing techniques. Un-
fortunately, the variance of is also a weighted sum of the indi-
vidual variances , and if any of the sampling
techniques is bad in a given region, then will also have a high
variance.

A relatively simple and particularly useful choice of weights
is the balance heuristic [23]. In this case, the weights are
assigned according to

(19)

The quantity is proportional to the expected
number of hits from the th distribution. Thus, the weight as-
sociated with a sample with the balance heuristic is given by
the relative likelihood of realizing that sample with the th dis-
tribution relative to the total likelihood of realizing that same
sample with all distributions. Thus, (19) weights each distribu-
tion most heavily in those regions of sample space where

is largest. ((19) can also be written in terms of likelihood
ratios, a form that is particularly convenient for use in (14).)

The balance heuristic has been mathematically proven to be
asymptotically close to optimal as the number of realizations
becomes large [23]. Because of its effectiveness and simplicity,
we used the balance heuristic in this paper. The same choice was
also used in [12]–[15]. Of course, other strategies are possible
(see [23], [24], and Appendix I). In specific cases, some of these
alternatives might offer better results—namely, lower variances.
In any given situation, however, it is difficult to tell a priori
which choice will be best.

III. IS FOR THE DGD

We now discuss the application of IS to the numerical sim-
ulation of those rare events in which the DGD at a particular
frequency assumes large values. As explained in Section II, the
key step to IS is determining an efficient biasing distribution or
an efficient set of biasing distributions. We shall see that infor-
mation can be extracted from the equations governing PMD that
leads to very efficient DGD biasing distributions.
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A. Transmission Matrices and the PMD Vector

Let us first establish some basic notation. The action of any
lossless transmission element on an optical pulse can be de-
scribed, up to a polarization-independent factor, by a unitary
2 2 frequency-dependent transmission matrix U , which
can be expressed as [3]

U

I (20)

where is a vector of Pauli matrices [3], and is
a unit vector representing a rotation axis (hereafter, the circum-
flex accent will be used to denote unit vectors).2 The orthogonal
3 3 Müller matrix R corresponding to the Jones matrix
U is given by the expression

R

I (21)

which represents a frequency-dependent rotation through an
angle about the axis . Note that, in general, both and are
also frequency dependent.

As described in [3], the polarization effects can be uniquely
characterized (up to an arbitrary constant rotation) by the
PMD vector (also called the polarization disper-
sion vector), which is the real three-dimensional (3-D)
vector defined by R R , or equivalently by

U U . The DGD is given by the length
of this PMD vector. For linearly birefringent elements,
is independent of frequency, and has a linear frequency
dependence , where

is the frequency derivative of the birefringence strength of
the element, is its length, and is a reference frequency [3].
In this case, the PMD vector is simply given by .
In addition, if no circular birefringence is present (e.g., for
linearly birefringent elements), lies on the equatorial plane
of the Poincaré sphere [29].

B. The First-Order PMD Concatenation Equation

A standard technique for simulating PMD effects is the
coarse-step method [26], which approximates the continuous
birefringence variations present in real fibers using a concate-
nation of fixed-length birefringent sections. Many experimental
PMD generation techniques also employ a concatenation of
birefringent elements, such as high-birefringence fibers [27]
or birefringent waveplates [28], [29]. These can be connected
by either polarization scramblers (e.g., polarization controllers
[27]), or rotatable connectors [28].

In all cases, the total PMD vector after the st section,
, is obtained from the PMD concatenation equation [3]

R (22)

2Throughout this work, we use the conventions of [3] regarding the repre-
sentations of an optical pulse (in particular, the choice of sign for the carrier
frequency), of the Pauli matrices f� ; � ; � g and, as a consequence, of the
Stokes’ parameters. In these conventions, the third component of a Stokes’
vector is+1 for right-handed circular polarization. We refer the reader to in [3,
App. B] for further details and for the connection with other conventions.

Fig. 1. Graphical representation of the first-order PMD concatentation.

as illustrated in Fig. 1. Here, is the differential contri-
bution to the PMD vector coming from the st section.
For fixed-length sections, the magnitude of is constant,
and only its direction varies. For linearly birefringent elements,
R and (22) can alternatively be written as3

R (23)

When polarization controllers are present, an additional rota-
tion matrix Q precedes in (22) and (23) to represent the
action of the controller. It is possible to factor out altogether this
rotation Q from the concatenation equation by redefining

; the resulting equation is identical to (23) with a new
rotation matrix R R Q except that the new contri-
butions Q are now uniformly distributed
on the Poincaré sphere. Thus, except for the rotation R , the
case of polarization scramblers is formally equivalent to a 3-D
random walk. Since a theoretical result for a 3-D random walk is
available, this allows an independent check of the results for IS
with polarization scramblers. To distinguish the different cases,
in the following we refer to the situation where there are no po-
larization controllers as the case of rotatable waveplates.

C. Deterministic Biasing Directions

When applying IS to the PMD concatenation (22), we need
to target the rare events in which the DGD assumes values much
larger than its mean. The appropriate variables to control to
do this are the polar angles between the PMD vector after
the first sections and the differential contribution in the

st section , as shown in Fig. 1. The critical step of
biasing is to determine at each fiber section the deterministic di-
rection around which the random samples should preferentially
be selected.

It should be intuitively clear that the configurations that lead
to large DGDs are those in which the individual contributions
to the PMD vector from each section tend to be aligned with
each other. It is not useful to attempt this alignment with respect
to some fixed direction, however, because random sampling is
still to be performed, and after a sufficiently large number of
random variations, it is possible for the fluctuations to build up

3Equations (20) and (21) express the Jones matrix U and the Müller matrix R
in terms of frequency-dependent SU(2) and O(3) rotations, respectively. These
formulas are valid for birefringent elements with any degree of ellipticity. In
general, however, PMD vector ���� is parallel to the rotation axis r̂ only for
linearly birefringent elements, corresponding to the case when r̂ is independent
of frequency and � varies linearly with frequency (e.g., see [3, eq. (5.13)]).
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to the point where the direction of the PMD vector is arbitrary
[1]. The correct strategy, therefore, is to choose the alignment
of each successive section with respect to the direction defined
by the total PMD vector up to that point.

When polarization scramblers are present, the length and
orientation of the successive differential PMD vectors
can be regarded as fixed, while the output of the polarization
scramblers varies. We therefore bias the simulations by making
the scramblers preferentially rotate toward the direction
of . More specifically, we bias (the angle between
the PMD vector at the output of the th scrambler and the

st differential PMD vector) toward zero. This choice
does not uniquely determine the orientation of the PMD vector
at the scrambler output, however, because can still be
rotated by an arbitrary amount about while keeping

constant. We take this additional rotational angle to be
uniformly distributed.

When using rotatable waveplates, the relative orientations be-
tween sections are the primary variables determining the total
DGD, since different configurations are then generated solely by
rotating sections relative to one another. In the case of linearly
birefringent elements, each section’s PMD vector lies in
the equatorial plane. The largest increase in the DGD is obtained
when is aligned with the projection of the total PMD
vector up to that point onto the equatorial plane. Thus, the
biasing toward large DGDs is done by choosing to be
preferentially aligned with the projection of onto the equa-
torial plane.

If frequency dependence is desired (as, for example, when
simulating pulse transmission), or in the case of rotatable wave-
plates, the differential phase retardations in the Müller
matrix R must also be specified. Recall that each beat
length of a birefringent section generates a retardation.
In practice, sections with significant DGDs will be many beat
lengths long, and unless the section lengths are precise to within
a small fraction of a beat length, these retardations will vary
from section to section. One way to proceed is to choose the re-
tardation angles to be uniformly distributed between
0 and . Alternatively, one could assume a random distri-
bution of lengths ; if the variance of the lengths is large
compared with the beat length, however, an approximately uni-
form distribution of the angles results. Of course, if
the lengths are very precise, specific phase retardations should
be used. In either case, the results do not depend significantly
upon the particular retardation angles used, except for certain
clearly pathological cases such as identical angles with
equal to 0 or .

D. Biasing Distributions

Once the deterministic biasing directions have been identi-
fied, a biasing distribution must be chosen that preferentially
selects the random samples to be close to these directions. In the
unbiased case, the angles are independent random variables,
with uniformly distributed in . When applying IS,
we choose , where is a uniform random
variable in and is a biasing parameter. Other choices
are possible for the biasing distribution of the ; the effective-

Fig. 2. Angular biasing distributions p(cos �) = p (�)= sin � in the case of
polarization scramblers for different values of the biasing strength �.

ness of the method is not very sensitive to the particular distri-
bution used. This choice yields the likelihood ratio as

(24)

where

(25)

The value reproduces the unbiased case, while increasing
values of biases the distribution toward , thus preferen-
tially producing configurations with increasingly large values
of DGD. If the individual sections are independent, the overall
likelihood ratio is the product of all of the individual likelihood
ratios. Here, the orientation of each section depends upon the
PMD vectors of all previous sections. Nevertheless, the overall
likelihood ratio can still be written as a product of individual
likelihood ratios (see Appendix II).

For the case of birefringent waveplates, the individual contri-
butions lie on the equatorial plane of the Poincaré sphere. In
this case, we choose so that the angle between it
and the projection of onto the equatorial plane is prefer-
entially close to zero. This can be done, for example, by taking

, where is again uniformly dis-
tributed between 0 and 1.4 As before, other choices are pos-
sible. If (unbiased case), is uniformly distributed in

, while for is concentrated near 0, meaning
that the waveplates’ PMD vectors will be preferentially
aligned with the projection of the total PMD vector to that point
onto the equatorial plane. As explained previously, this prefer-
ential alignment tends to increase the length of the total PMD
vector. The likelihood ratio is still given by (24), but now

(26)

As illustrated in Figs. 2 and 3 for the case of polarization scram-
blers, each biasing distribution allows us to sample a different

4In [11], it was incorrectly stated that the same distribution as that used for
scramblers was utilized. The correct expression was used in the simulations,
however.
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Fig. 3. Biased DGD distributions (numerically reconstructed from MC
simulations) resulting from the distributions in Fig. 2 for a concatenation of
50 birefringent elements with 0.5-ps DGD each (corresponding to a mean
DGD of 3.26 ps) with polarization scramblers. Inset: Likelihood ratios and
their distribution for samples with DGD values within a 0.2-ps interval
around 20 ps and simultaneously with second-order PMD lying within a 6 ps
interval around 20 ps for the same emulator as in Fig. 3. The distribution was
numerically reconstructed through MC simulations with � = 8.

range of DGDs, and simulations with different values of biasing
strength can be combined using the techniques described in
Section II-D in order to cover the whole range of DGD values.

We emphasize that different configurations with the same
DGD (and/or SOPMD) can have very different likelihood ra-
tios, and thus their relative contribution can vary substantially.
It is therefore not sufficient merely to generate some realizations
with a given DGD and/or SOPMD. The inset in Fig. 3 is an illus-
tration of this point; here, we plot the distribution of likelihood
ratios for samples generated by biasing the DGD but that pro-
duce a DGD and SOPMD in a narrow range. Note that the hor-
izontal axis has a logarithmic scale and shows a variation of al-
most three orders of magnitude of the likelihood ratios. Similar
considerations apply to the pulse broadening, the power penalty,
or other quantities of interest: different fiber realizations with
the same values of first- and second-order PMD can result in
different values for any of these quantities.

IV. IS FOR BOTH FIRST- AND SECOND-ORDER PMD

Because the PMD vector is frequency dependent, in gen-
eral the DGD at any given frequency is not the sole determiner
of system outages. In particular, second-order PMD, which in-
cludes both depolarization and PCD, is known to produce addi-
tional system penalties [30], [31]. This is especially important
when PMD compensation is applied, since first-order PMD is
typically reduced to moderate values (or perfectly cancelled at
a particular frequency); in this case, it is possible for SOPMD to
become the primary cause of system penalties [15], [30]–[33].
Thus, when using IS to calculate outage probability, it is impor-
tant to generate sufficient statistics of the frequency derivative of
the PMD vector , which quantifies SOPMD. We now describe
an IS technique that employs multiple biasing schemes to gen-
erate arbitrary combinations of first- and second-order PMD,

Fig. 4. Diagram showing the preferential direction b for biasing the
simulations in the plane identified by ��� and ��� � ��� .

effectively targeting all regions of the plane. As a re-
sult, the method generates much more complete PMD statistics
than first-order biasing alone.

A. The Second-Order PMD Concatenation Equation

A concatenation equation similar to (22) holds for the second-
order PMD vector [3], as follows:

R (27)

For linearly birefringent elements, . In addition,
R , and (22) can be rewritten in a form
similar to (23)

R (28)

In a manner similar to the first-order concatenation equation,
when polarization scramblers are present, an additional rotation
matrix Q precedes in (27) and (28). As before, the con-
catenation equation can then be written in a form identical to
(28), with a new rotation matrix R R Q and with
the new contributions Q uniformly dis-
tributed on the Poincaré sphere.

As demonstrated previously, the appropriate variables to con-
trol when applying IS are the orientations of the individual PMD
vectors of each section . IS works by biasing these vec-
tors toward specific directions which maximally increase
the particular quantity of interest (in the previous section, the
specific directions were those of the preceeding total PMD vec-
tors, and the quantity of interest was the total DGD). In what
follows, we will formalize this idea by characterizing the vector

relative to a orthonormal frame of reference formed
by the unit vectors , where

(29a)

(29b)

(29c)

Here, is the component of perpendicular to , as
illustrated in Fig. 4. The magnitudes of (the component

of parallel to ) and quantify the PCD and the
depolarization, respectively.

As before, in order to apply IS, we first need to find the de-
terministic configurations that maximize the desired quantity.
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(Once these directions are found, random samples around these
directions are generated.) For example, the total DGD is maxi-
mized by choosing to be preferentially aligned with the
previous PMD vector , i.e., using . We refer to
this case as first-order biasing. While first-order biasing yields
the largest DGDs, it does not produce particularly large values
of SOPMD, because when is parallel to , the contri-
bution to is zero. In fact, if all the were parallel
to , no SOPMD would be produced at all. Random fluctu-
ations add significant SOPMD, but large values are not specifi-
cally targeted.

When just a single section is added, one can easily show that,
in the case of polarization scramblers, the orientation that max-
imizes the contribution to is to align with the di-
rection of . In the case of rotatable waveplates, a constrained
(Lagrange multiplier) maximization shows that the optimum is
to align with the projection of onto the equatorial
plane. Unfortunately, looking at a single section is not sufficient,
because (27) shows that the rate at which increases de-
pends both upon the orientation of and upon the size
of . Thus, when many sections are used, maximizing the
SOPMD also depends upon the growth of .

B. Continuum Limit and Deterministic Biasing Directions

When the number of sections in the emulator is large, it is pos-
sible to employ a continuum approximation to find the determin-
istic configurations that generate the maximum second-order
PMD. Specifically, we let . The
magnitude of describes the rate at which PMD is added by
the birefringent sections. In this continuum limit, for the case
of polarization scramblers, one obtains (after factoring out a
common rotation R )

(30a)

(30b)

We want to write these equations in the frame of reference
defined by the analogs of (29). (This frame ro-

tates with the first- and second-order PMD vectors.) To this end,
we introduce the rotated quantities T T and

T . Written in the new frame of reference, both (30a)
and (30b) have an additional term in the RHS: and

, respectively, where T T . Requiring
that implies
and , and requiring implies

. Omitting primes for simplicity,
we then obtain the following system of equations:

(31a)

(31b)

(31c)

where are now the components of with respect to
the reference frame .

The goal is now to find the function that maximizes
SOPMD. Considering first for simplicity only the case when

is independent of (i.e., constant biasing direction), the
solution of (31) is

(32)

The choice that maximizes second-order PMD is now easily
found to be and , with ,
which splits the difference between the growth of first-order
PMD and SOPMD. We refer to directions with zero com-
ponent as in-plane biasing. Similar calculations can be done to
find the choices that maximize the PCD or the depolarization.
For the depolarization, the solution is the same, which suggests
that the total second-order PMD is maximized by the depolar-
ization. For the PCD, the solution is

, where and ,
which suggests that the maximum value of PCD is obtained with
off-plane biasing.

We strongly emphasize, however, that solutions with constant
biasing directions do not generate the maximum SOPMD. For-
tunately, (31) can be solved exactly for any choice of function

: the exact solution is

(33a)

(33b)

(33c)

where

(33d)

Starting with this (33), the choice of that maximizes the
magnitude of SOPMD can now be found using calculus of
variations (seeAppendix III). The result is that the maximum
SOPMD is obtained for in-plane contributions

(34)

with, for the case of equal-length sections (namely, for
), a linearly varying angle profile

(35)

with . (The solution for the case of nonequal-length
sections can be obtained easily from this one; see Appendix III.)
With multiple biasing strengths, this biasing choice generates
region 3 in Fig. 5. We refer to this choice, which yields the
largest values of , as pure second-order biasing.

In many practical situations, a more complete coverage of
the plane is needed. In this case, intermediate bi-
asing choices must also be used in addition to pure first- and
second-order biasing. These intermediate choices can be ob-
tained by using the calculus of variations to maximize a linear
combination of and , as obtained from (33). The resulting
form of is the same as previously, except that the value of
the final angle now varies between 0 and , the particular
value depending upon the specific linear combination of first-
and second-order PMD being maximized. A selection of an-
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Fig. 5. Regions of the (j��� j; j��� j) plane targeted by the various biasing
methods. Region 1 corresponds to first-order biasing (� = 0), region 2 to pure
second-order biasing (� = �=2), and regions 3, 4, and 5 to � = �=4;
3�=4, and �, respectively. The dashed line shows the much smaller region
obtained with unbiased runs. As in Fig. 3, 50 sections with 0.5-ps DGD each
and polarization scramblers were used.

gles, together with the resulting regions in the plane,
is shown in Fig. 5. (Note region 1 is the result for the case of
biasing the DGD.) The advantage of using multiple biasing—as
opposed to just pure first- or second-order biasing or no biasing
at all—is evident. Each value of generates samples lying
in a region that emanates in a roughly radial fashion from the
location where the joint pdf is maximum. Together, a set of an-
gles can be used to cover the entire plane.

When birefringent waveplates are used, the differential con-
tributions are confined to the equatorial plane of the
Poincaré sphere. In this case, there is no full theory. Neverthe-
less, in the limited cases for which the optimization can be done
(single steps of optimizing the DGD or the second-order PMD),
the result is that one should use the projection onto the equatorial
plane, which is the strategy that we adopt here: the appropriate
biasing directions are obtained by projecting the vectors de-
termined previously onto the equatorial plane. We have found
this to work extremely well in practice, i.e., with roughly the
same degree of efficiency as for polarization scramblers, where
the full theory is available.

C. Biasing Distributions and Maximum SOPMD

For both PMD generation models, once the deterministic bi-
asing direction has been selected, the biasing
distribution for the random orientation of is chosen as
described in Section III. That is, for the case of polarization
scramblers, the angle between and is biased to-
ward zero (as before), but the remaining degrees of orientation
degrees of freedom are uniformly distributed. Note that, as a re-
sult, when random angles are selected, is likely to have
a component off the plane, meaning that PCD will be
generated. For the case of birefringent waveplates, the biasing is
done by choosing the angle between and the projection
of onto the equatorial plane to be biased toward zero.

It should be emphasized that, even though the actual biasing
directions must be calculated dynamically for each MC sample
(since they depend on the orientation of the first- and second-
order PMD vectors up to that point), the determination of the bi-
asing direction relative to the local coordinate system was done
once and for all. Although the calculations are a bit compli-
cated, the final result (namely, linear profiles for the angle
with different target values) is quite simple, can be easily imple-
mented, and provides an effective recipe for simulating trans-
mission effects characterized by large values of PMD.

One way to evaluate the effectiveness of a biasing scheme (or
of a PMD generation method) is to evaluate the maximum PMD
that it can produce. For a device with equal-length birefrin-
gent sections, the exact solution of the continuum model allows
us to obtain an approximate value for the maximum SOPMD.
More precisely, by evaluating the exact solution of the con-
tinuum model with pure first-order or pure second-order bi-
asing [i.e., substituting (34) with or into (33)],
we obtain and , respec-
tively. Obviously, however, the maximum DGD for a device
with a finite number of equal-length birefringent sections is

, where is the number of sections and
is the DGD of each section. Thus, we can eliminate the product

and obtain an approximation for the maximum SOPMD
as . With 50 birefringent sections and
polarization scramblers, the approximate formula for the max-
imum SOPMD is within 0.7% of the actual value (determined by
numerical optimization). If constant biasing directions are used
instead, the maximum attainable value of second-order PMD, in
the continuum limit, is , i.e., 20% less.

D. Asymptotic Efficiency and PCD

The algorithms that we have constructed to obtain targeted
values of first- and/or SOPMD appear to be asymptotically ef-
ficient in almost all cases. This is evidenced by the numerical
results, which show that the number of MC samples that are nec-
essary to achieve a small variance does not grow rapidly as the
simulations are pushed further into the tails of the pdfs. We be-
lieve this to be the case because the continuum approximation to
the PMD concatenation equations appears to characterize their
behavior with relatively high accuracy for most cases of interest.
We conjecture that it might be possible to justify this claim in a
more precise way, but we have not done so. On the other hand,
while the solutions with provide an optimal bi-
asing choice within the framework of constant directions, they
do not result in asymptotically efficient methods. This is easily
verified, for example, by trying to evaluate the pdf of SOPMD
further and further out into the tails.

The situation appears to be different for the PCD: although
we have found an optimal biasing in the context of constant bi-
asing directions, we have not so far been able to do the same
in the more general case. Numerical evidence shows that the
solution for constant biasing directions is not optimal. Numer-
ical optimization also suggests, however, that the configurations
that produce the largest PCD are ones that are near the solution
given by (34) and (35) with . In this particular situa-
tion, first increases as (or the number of sections) increases
and then decreases until it becomes close to zero at the end. At
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the same time, increases monotonically. Thus, near the last
section, a situation arises where is relatively large and is
very small. In this situation, because is small, it is relatively
easy for small variations (which arise because the sections’ ori-
entations are still being chosen randomly), to perturb so that
it points in the direction of . In this case, large PCD results.
Thus, the largest PCD values seem to arise when is small and

is large. This method of generating large PCD appears to
be reasonably efficient.

V. EXAMPLES AND APPLICATIONS

The techniques described in the Sections III and IV have
two main applications: the calculation of PMD statistics—most
notably for PMD emulators, where few analytical results
exist—and the calculation of PMD-induced transmission
effects, such as pulse broadening, power penalties, and outage
probabilities. Here, we demonstrate how the techniques can be
applied by discussing a few specific examples.

A. Numerical Calculation of Probability Densities

We first discuss the basic strategy that can be used to set up
the numerical simulations. Suppose it is desired to construct the
pdf of some quantity. This is usually done with MC simulations
and sorting the results into bins. The desired result is more than a
single quantity; more precisely, we are trying to simultaneously
estimate all the integrals

(36)

where is the quantity of interest, , with being
the bin size, and . The integrals in (36) are of the
same type as (1); thus, we can apply the IS techniques presented
in Section II. It is clear, however, that in general no single bi-
asing distribution can efficiently generate all the possible values
of (e.g., see Fig. 3 for the DGD). Thus, we need to resort to
multiple IS, using the distributions described in Section III-D
with different values of biasing angles and biasing strengths.
Therefore, the procedure is as follows:

1) choose a set of biasing directions (values of ) and
biasing strengths (different values of );

2) perform a predetermined number of MC simulations for
each direction and biasing strength;

3) sort the results of all the MC samples into bins, keeping
track of the likelihood ratio for each sample, and combine
the individual samples using one of the weighting strate-
gies presented previously.

In all of the results presented here, we have used the balance
heuristic.

For concreteness, in the following, we consider a specific sce-
nario, namely, PMD generation resulting from the concatena-
tion of 50 birefringent sections with 0.5 ps of DGD per section
(corresponding to a mean DGD of 3.26 ps) and employing ei-
ther polarization scramblers or rotatable waveplates.

B. Probability Densities of First- and Second-Order PMD

As explained previously, in the case of polarization scram-
blers, the evolution of the PMD vector is equivalent to a 3-D

Fig. 6. Importance-sampled pdf of the DGD for 50 sections with 0.5-ps DGD
each and with polarization scramblers (squares) or birefringent waveplates
(circles). Solid curve: Maxwellian distribution with mean DGD of 3.26 ps;
dashed line: exact (linear scale) and asymptotic (logarithmic scale) solutions
from [34]. Bottom inset: the pdfs on a linear scale. Top inset: the coefficient of
variation. A total of 2� 10 MC realizations were used.

random walk, and an exact solution is available for the pdf (ei-
ther in terms of an integral or as a Fourier series) that can be
used to verify the accuracy of the importance-sampled MC sim-
ulations [34], [35]. For moderate values of the DGD and for
numbers of sections not too small, the pdf is well ap-
proximated by a Maxwellian distribution

(37)

where . The degree of agreement, of course, im-
proves as the number of sections is increased [35].

To our knowledge, no closed-form expression exists for the
pdf of the DGD in the case of birefringent waveplates or for the
pdf of the SOPMD of a concatenation of finite-length sections,
with or without polarization scramblers. An expression exists,
however, for the pdf of the magnitude of SoPMD for an optical
fiber in the long-length regime [1], i.e., as the number of sections
goes to infinity and the DGD per section goes to zero, namely

(38)

where is the square of the average DGD.
Fig. 6 shows the pdf of the DGD, obtained with pure first-

order biasing, while Fig. 7 shows the pdf of second-order PMD,
obtained with the pure second-order biasing technique. In both
cases, the biasing strengths were used, with
200 000 realizations each. The individual samples are combined
by sorting the values of DGD and/or second-order PMD ob-
tained from all of the simulations into 80 bins and adjusting
the contribution of each individual sample for the bias using
the weights and likelihood ratios, as explained previously. The
solid lines show the analytical pdfs in the long-length regime
[36], while the dashed lines in Fig. 6 show exact and asymptotic
solutions from [34] for the case of scramblers. For illustration
purposes, we also show the coefficient of variation, that is, the
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Fig. 7. Pdf of second-order PMD for a concatenation of 50 sections with 0.5-ps
DGD each, using scramblers (squares) or waveplates (circles). The solid lines
show the pdf for real fiber, from [36]. Bottom inset: the pdf on a linear scale. Top
inset: the coefficient of variation. As in Fig. 6, a total of 2�10 MC realizations
were used.

ratio of the standard deviation to the estimated value. The es-
timated standard deviation for the probability in each bin was
calculated using the method described in Section II.

The numerically calculated pdf of the DGD for the case
of scramblers agrees extremely well with the exact solution
(dashed line under the squares). In all cases, the accuracy of
the numerical results improves as the number of samples (and
the number of bins) is increased. It should be noted, however,
that extremely good results are obtained with the 2 000 000
MC samples employed here, as evident in Fig. 6. In particular,
a good approximation is achieved even for probabilities well
below ; to obtain comparable accuracy with straightfor-
ward MC simulations at this probability level, at least
samples would be required. Thus, in this situation, IS provides
a speed-up of more than ten orders of magnitude.

For both scramblers and waveplates, the pdfs deviate signifi-
cantly from the real fiber distributions in the tails, since here the
PMD is generated by an emulator with finite number of birefrin-
gent sections, which by necessity has finite maximums for both

and . Similarly, such a device has unaccessible regions
in the ( plane. The emulator should be chosen so that
these regions where the pdfs are not close to those of real fiber
are unimportant for determining the outage probability of the
systems to be tested. We also note that the finite value of the bire-
fringence correlation length suggests that the DGD distribution
in fiber might also deviate from Maxwellian in the tails. In this
case, however, the equivalent number of waveplates—which can
be estimated from measurements of the fiber autocorrelation
length [37]—is very large for typical communications distances,
which indicates that the deviations from the continuum limit, if
they happen, would occur at extremely low probability levels.

The emulator with rotatable sections yields better agreement
with real fiber than the emulator with polarization scramblers,
with regard to the distributions of both first- and second-order
PMD. Note, however, that a concatenation of a small number of
equal-length, rotatable birefringent sections is not a good model

Fig. 8. Contour plots of the joint pdf for a concatenation of 50 sections with
0.5-ps DGD each and polarization scramblers. The contours are at 10 with
n = 30; 25; 20;15;10;8; 6; 5; 4; 3; 2:5; 2:25;2; 1:75, and 1:5. A total of 10
MC realizations were used.

for real fiber due to artificial periodicities of the PMD vector’s
autocorrelation function (ACF) in the frequency domain [27],
[38] (not shown here). Using nonequal section lengths can re-
solve this problem and produces an emulator with both good
properties in the frequency domain [27]–[29], [34]–[39]. On
the other hand, in [13], it was shown that PMD emulators with
nonequal section lengths yield a worse agreement with the tails
of the real fiber distributions of first- and second-order PMD
than do emulators with equal section lengths. Therefore, when
using nonequal section lengths, a larger number of sections must
be used in order to obtain a comparable degree of tail approx-
imation. One way to obviate this problem is to use PMD em-
ulators with randomly varying sections lenghts which follow a
Maxwellian distribution [40]. In this case, it is possible to ob-
tain a very good degree of tail approximation with a very small
number of sections and at the same time avoid the artificial
periodicities of the ACF even when the mean lengths are the
same [13]. The application of IS techniques to PMD genera-
tion devices employing Maxwellian-distributed length sections
is described elsewhere [13].

C. Joint Distribution of First- and Second-Order PMD

It is also possible to use these methods to determine the joint
pdf of first- and second-order PMD. When combined with mea-
surements of receiver performance, the joint pdf can be used to
estimate the total outage probability due to PMD [41].

In the long-length regime, the characteristic function of first-
and second-order PMD was derived in [1] based on a physical
model of fiber birefringence. To our knowledge, however, no
exact analytical expression exists for the joint pdf. (An approx-
imate pdf is available [1], but only for the case where second-
order PMD is a small perturbation compared with first-order.)
Similarly, the joint pdf for PMD emulators with a finite number
of sections is not known analytically.

The joint pdf can be calculated with MC simulations, how-
ever. Fig. 8 shows the joint pdf of the magnitude of first- and
second-order PMD (a two-dimensional reduction of the full 3-D
joint pdf of first- and second-order PMD [1]) for an emulator
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with polarization scramblers, as calculated with the multiple bi-
asing technique. The joint pdf confirms why the optimal first-
and second-order biasing methods are the correct ones to use if
one is only interested in first- or SOPMD statistics, respectively.
As seen from Fig. 8, for any fixed value of DGD (a vertical slice
in Fig. 8), the maximum of the pdf occurs in a zone that falls
within region 1 in Fig. 5. Similarly, for any given second-order
PMD (a horizontal slice in Fig. 8), the maximum of the pdf oc-
curs in a zone falling within region 2 in Fig. 5. The multiple
biasing method, of course, is not limited to just these particular
combinations of first- and second-order PMD but is able to pro-
duce any combination of the two.

D. Outage Probabilities

The end goal of the methods that have been discussed here is
not merely to produce PMD statistics, of course, but rather to
accurately estimate the probability of PMD-induced transmis-
sion penalties and system outages. The methods outlined here
can accomplish this goal as long as PMD-induced power penal-
ties are correlated with either the DGD or both the DGD and the
second-order PMD. Several studies indicate that this is indeed
the case [12], [14], [43].

To perform such calculations, it is necessary to transmit a
sequence of pulses. Thus, the full frequency-dependent Jones
matrix of the fiber must be evaluated. However, it is straightfor-
ward to use the multiple IS techniques described in this work
with the concatenation equations in Jones space, rather than
Stokes’ space [3]. The application of the algorithms described
here requires prescribing the orientation of the individual PMD
vectors of all sections and, in the case of birefringent wave-
plates, the rotation angles. Once this information is known, the
Jones matrix of each birefringent section can be immediately
reconstructed using (20). One can then determine the full
input–output transfer matrix in Jones space—which is needed
for pulse propagation—by simply multiplying the individual
transmission matrices of the individual sections. Alternatively,
it is possible to use the algorithms to guide the construction of
Jones matrices for each birefringent section and then, rather
than combining them together, use them separately as the
coarse-step part of a more complete fiber propagation model
[30], e.g., including chromatic dispersion and nonlinear effects.

The simplest implementation of the method in this context is
to bias at one particular frequency, such as the central frequency
of the channel of interest, but to construct the Jones matrices at
all frequencies. The PMD will only be large within the fiber’s
autocorrelation bandwidth [42]. If large PMD is desired at sev-
eral frequencies, one can bias at each of these frequencies, one
at a time. This will not typically make the PMD simultaneously
large at two widely separate frequencies, however, such an event
has a probability that is roughly the square of the probability
of the PMD being large at any single frequency. If one specifi-
cally wants the PMD to be large at several frequencies simulta-
neously, it is possible to use birefringent sections with identical
lengths and a specified free-spectral range to artificially make
the DGD spectrum periodic.

Regardless of the specific implementation used, once large
PMD has been generated and its effects upon pulse propagation
has been simulated, the last step is to use the PMD-distorted
pulses as the input to a receiver model [14], [43]. As long as

the receiver’s performance is correlated with the PMD, large
PMD will tend to generate large penalties [41]. Throughout
the process, the likelihood ratios will keep track of the biasing
used to generate these large penalties, and thus the result will
be rare PMD-induced penalties with, automatically, their asso-
ciated probabilities. This procedure has been used in [14] and
[43]–[45]. Because the details of its implementation have been
better described elsewhere, we will not repeat them here.

E. Experimental Implementation

Experimental PMD emulators employing a concatenation
of birefringent elements have been built [31]–[33], and it is
possible that an emulator could be constructed to use the im-
portance-sampled algorithms described in Sections III and IV.
Essentially, in order for it to be possible to use the algorithm,
it is necessary that the emulator be stable, repeatable, and pre-
dictable. The biggest difficulty associated with an experimental
implementation of the algorithms is the requirement that the
orientation of the PMD vector and its frequency derivative
be known after each birefringent section. One possible way
of doing this would be to monitor the PMD vector after each
birefringent section; such an implementation would obviously
be prohibitively cumbersome and expensive.

If the PMD vector is not monitored, then the next alternative
is for each element of the emulator to be sufficiently well char-
acterized that the PMD vector can be calculated if the orienta-
tions of the different birefringent elements is specified. Here, the
problem is that the differential phase retardations in the
Müller matrix R must then be known, otherwise the Müller
matrix will rotate the PMD vector to an unknown location on the
Poincaré sphere, and it will then be impossible to properly de-
termine the preferential orientation of the next differential PMD
vector. As mentioned previously, each beat length of a birefrin-
gent section generates a 2 retardation. Because sections with
significant DGDs will be many beat lengths long, this means
that the section lengths must be precise to within a small fraction
of a beat length and that these sections lengths must be stable
with respect to temperature and other environmental fluctua-
tions. Fortunately, it has been demonstrated that it is possible to
satisfy all of these constraints experimentally [46]. Finally, we
should note that a hardware PMD emulation device that makes
use of multiple IS through variance scaling (a limited version of
IS that works for a small number of birefringent sections) has
been recently demonstrated and used in experiments to charac-
terize system behavior [19].

APPENDIX I
STRATIFIED IMPORTANCE SAMPLING

As mentioned in Section II, several strategies are possible for
choosing the weights in multiple IS. In Section II-E, we pre-
sented the balance heuristic, which is the choice we used in
this work. Other weighting choices (such as the cutoff heuristic
or the power heuristic, for example) are discussed in [23] and
[24]. Here, we present another strategy, which is not discussed
in those references and which was used in [14]. First, we recall
the maximum heuristic from [23] and [24]

if
otherwise

(39)
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where, as before, is proportional to the ex-
pected number of hits from . Here, samples from the th
distribution are used only in the region where .
This strategy is conceptually simple; it does not tend to work as
well as the balance heuristic [23], however. Intuitively, this is
because too many samples are thrown away.

A similar strategy is stratified IS, which is a variant of strati-
fied MC [6]. In this case, one partitions the event space into a
number of disjoint subsets . For example, the dis-
joint sets could be chosen by prescribing specific ranges of a
control variable ; that is, ,
with and . The weights
are then chosen according to

if
otherwise

(40)

Thus, each distribution only contributes to the estimator
when the samples it generates fall in a predetermined region of
sample space. This strategy was used in studies of PMD com-
pensation [14]; in this case, the control variable was the total
DGD. Note, however, that unlike the maximum heuristic, this
choice might not use the distribution with in any
given region of sample space.

APPENDIX II
LIKELIHOOD RATIOS FOR CORRELATED SECTIONS

The algorithms described in Sections III and IV work by se-
lecting the angles for the st section with respect to
a biasing direction , which depends upon the value of the
PMD vector and its frequency derivative after the th section

and , respectively. These values depend on the orien-
tations of all the previous sections and in particular upon the
angles . Thus, although the different angles are in-
dependent of one another, the choice of each successive PMD
vector depends upon the previous choices. Because they
are not independent of one another, it is not immediately clear
that the overall likelihood ratio should be simply the product of
the individual likelihood ratios for each section. Nevertheless,
we show here that this is the case.

Suppose we have a set of random samples .
In our case, the ’s are the individual PMD vectors of each sec-
tion, i.e., . Using recursively the law of conditional
probabilities, namely , we can express
the joint probability distribution as

(41)

Thus, even if the random variables are not independent and one
cannot factor the joint pdf as
(i.e., into the product of individual distributions), it is still pos-
sible to write the joint pdf as a product if each random variable
is selected using a conditional probability distribution.

This is precisely the situation for the algorithms described
in Sections III and IV, since the choice of the individual PMD
vector for each new section depends on the previous PMD vec-
tors only through the value of the total PMD vector and its
frequency derivative up to that point. That is, the process is a

Markov chain: the transitional probabilities only depend upon
the current state of the system, not on the details of its history;
in other words, the system is memoryless. Once the orientation
of the total PMD vector and its derivative have been determined
(and with them the preferential biasing direction ), is
chosen relative to by selecting the distribution for the angle

to be either (25) (for scramblers) or (26) (for waveplates).
Since both the unbiased and biased cases can be constructed
in this way, both the numerator and denominator of the overall
likelihood ratio can be factored, and therefore the overall likeli-
hood ratio can be expressed as product of individual likelihood
ratios, as shown in (24).

APPENDIX III
DETERMINISTIC MAXIMUM OF SECOND-ORDER PMD FOR THE

CONTINUUM EQUATIONS

As mentioned in Section IV-B, the choice of that maxi-
mizes the magnitude of second-order PMD can be found using
calculus of variations on the exact solution of the continuum
model (i.e., (33)). First, note that can be scaled out of the
equations by making the change of variable :
the result is the same equations, where now . Thus,
the case of equal-length sections can be considered without
loss of generality, and all other cases can be obtained from
it using a simple distance scaling. Second, note that, from
(31), . Thus,

does not directly contribute to increase the magnitude of
second-order PMD; rather, as seen from (31b) and (31b), (31c),
it induces a rotation of about . Since the maximum
under such a rotation occurs when , we expect the
maximum second-order PMD to be generated for ,
i.e., when lies in the - plane. Thus, we look for the
choice of such that, to first order, when

. For simplicity, we only present the
calculations in the special case and for
in-plane contributions, in this case

(42)

In this framework, it is easy to show that, when
, it is , where

(43)

where now . In order for the RHS of
(43) to be zero for all , it is necessary that the integrand
be zero, i.e.,

(44)

Substituting and differentiating (44) twice, we then get
, and by substituting back into (44), we can fix

the integration constants

(45)
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with . Thus, the maximum growth of second-order
PMD is obtained for in-plane contributions with a linearly
varying angle profile. The same solution, namely the in-plane
linearly varying angle profile with , is obtained
in the more general scenario in which all three components of

are nonzero [13]. The calculations in this case, however,
are considerably more involved, and thus for brevity they will
not be reported here.

A similar calculation is possible in the case where one wants
to maximize a linear combination of first- and second-order
PMD. In this case, the solution is similar, the only difference
being that the linearly varying angle profile has a different final
target value, namely

(46)

with varying from 0 to . Furthermore, by integrating (33)
using the above choice for , it is possible to explicitly de-
termine the final values of first- and second-order PMD that are
obtained. Finally, we reiterate that these calculations have been
generalized to the case where all three components of are
nonzero, and to PMD emulators where the section lengths are
also random [40], in which case they allow us to determine the
most likely configurations that result in any value of first- and/or
second-order PMD [13].
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