Name: **SOLUTIONS**

Math 141- Midterm Exam #1 - September 24, 2007

1. (15 points) True or false:

 a. A function which is continuous at \(x = a \) must also be differentiable at \(x = a \).

 b. It is possible for the graph of a function to have 3 vertical asymptotes.

 c. The intermediate value theorem applies to \(f(x) = 1/x \) on the interval \([-2,1]\).

 d. If \(\lim_{x \to 0} f(x) = \infty \) and \(\lim_{x \to 0} g(x) = \infty \) then \(\lim_{x \to 0} [f(x) - g(x)] = 0 \)

 e. If \(p(x) \) is a polynomial then \(\lim_{x \to 5} p(x) = p(5) \).

2. (20 points)

 a. Give the formal definition for \(\lim_{x \to a} f(x) = L \).

 For any \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that:

 if \(0 < |x - a| < \delta \) then \(|f(x) - L| < \varepsilon \).

 b. Use the definition to prove that

 \(\lim_{x \to 4} (3x - 7) = 5 \).

 Let \(\varepsilon > 0 \) be given. Choose \(\delta = \varepsilon/3 \).

 Suppose \(0 < |x - 4| < \delta \). Then

 \[
 |f(x) - L| = |3x - 7 - 5| = |3x - 12| = 3|x - 4| < 3 \delta = \varepsilon.

 Thus \(|f(x) - L| < \varepsilon \) as required.
3. (20 points) Evaluate the following limits. If the limit does not exist then write DNE.

a. \(\lim_{x \to -3} \frac{x^2 - 9}{x^2 + 2x - 3} \) = \(\lim_{x \to -3} \frac{(x+3)(x-3)}{(x+3)(x-1)} \) = \(\lim_{x \to -3} \frac{x-3}{x-1} \) = \(\frac{-6}{-4} = \frac{3}{2} \)

b. \(\lim_{x \to 0} \frac{|x|}{x} \)

\(\text{DNE} \)

DNE

c. \(\lim_{x \to -\infty} \frac{\sqrt{x^2 - 3}}{2x - 6} \)
 For \(x < 0 \), \(x = -\sqrt{x^2} \)
 \(= \lim_{x \to -\infty} \frac{\sqrt{x^2 - 3}}{x} = \lim_{x \to -\infty} \frac{-\sqrt{1 - 9/x^2}}{2 - 6/x} \)
 \(= (-1/2) \)

d. \(\lim_{x \to \infty} \frac{2x^2 - 8x + 11}{x^2 - 2} \)
 \(= 2 \)
4. (15 points) a. Neatly sketch the graph of a single function \(f(x) \) which has the following properties:

- \(\lim_{x \to 3^+} f(x) = 2 \), \(\lim_{x \to 3^-} f(x) = 0 \), \(f(3) = 1 \).
- \(f(x) \) is continuous from the right at \(x = 5 \) but not continuous from the left at \(x = 5 \).
- \(\lim_{x \to -\infty} f(x) = 4 \), \(\lim_{x \to -\infty} f(x) = -1 \).

b. Neatly sketch the graph of a single function \(g(x) \) which has the following properties:

- \(g(x) \) is continuous on \((-\infty, \infty)\)
- \(g'(6) = 0 \)
- \(g(x) \) is not differentiable at \(x = 1 \)
- \(g(x) \) has a vertical tangent line at \(x = -5 \).
5. (20 points) Let \(f(x) = 1/x \).

 a. *Use the definition of the derivative to prove that* \(f'(x) = -1/x^2 \).

 \[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{x - (x+h)}{x(x+h)h} = \frac{-h}{hx} = \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}
 \]

 b. Find the equation of the tangent line to \(y = 1/x \) at the point where \(x = 5 \).

 \[
 \text{slope} = -\frac{1}{25} = f'(5) \quad \text{point} = (5, \frac{1}{5})
 \]

 \[
 y - \frac{1}{5} = -\frac{1}{25} (x - 5)
 \]

6. (10 points) The graph of a function \(f(x) \) is given below. Use it to sketch the graph of the derivative \(f'(x) \) on the same axes.