Question: What is area? Answer/Defn: Area of rectangle = \(L \times W \).

Property: If a set is a union of 2 disjoint pieces, area should add

\[
\text{Area}(A \cup B) = \text{area } A + \text{area } B
\]

What if they have 1-dimensional intersection?

\[
\text{Area triangle} = \frac{1}{2} b h
\]

What if boundary is a fractal?

Problem: Find area under \(y = x^2 \) and above \([0, 1]\)

Idea: Similar to how we got slope of tangent line by approximation w/ secant lines.

Approximate w/ rectangles, take a limit.
\[f(x) = x^2 \]

- Divide \([0, 1]\) into intervals
- Each has base \(1/4\)
- Heights: \(f(1/4) = 1/16\)
 \(f(1/2) = 1/4\)
 \(f(3/4) = 9/16\)
 \(f(1) = 1\)

Area \(\approx \frac{1}{4} \left(f(1/4) + f(1/2) + f(3/4) + f(1) \right) \)

\[= \frac{1}{4} \left(\frac{1}{16} + \frac{1}{4} + \frac{9}{16} + 1 \right) = \frac{1}{4} \left(\frac{30}{16} \right) = \frac{30}{64} = \frac{15}{32} \]

15/32 is an overestimate.

Could use left endpoints.

\[A \approx \frac{1}{4} \left(f(0) + f(1/4) + f(1/2) + f(3/4) \right) \]

\[= \frac{1}{4} \left(0 + \frac{1}{16} + \frac{1}{4} + \frac{9}{16} \right) \]

\[L_4 = \frac{1}{4} \left(\frac{1}{16} \right) = \frac{1}{32} \]

\[R_8 = \frac{1}{8} \left(f(1/8) + f(3/8) + \ldots + f(7/8) \right) \approx \]
\[R_n = \frac{1}{n} \left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \ldots + \left(\frac{n}{n} \right)^2 \]

\[= \frac{1}{n^3} \left(1 + 2^2 + 3^2 + \ldots + n^2 \right) \]

Facts

\[\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} = \frac{n^2 + n}{2} \]

\[\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]

\[= \frac{1}{n^3} \left(\frac{n(n + 1)(2n + 1)}{6} \right) \]

\[\lim_{n \to \infty} R_n = \frac{2}{6} = \frac{1}{3} \]

Other Options

- midpoint
- lower & upper sums

More generally

\[\text{Area} = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x + \ldots + f(x_i) \Delta x \]

\[x_i \in i^{\text{th}} \text{ interval} \]