Lecture 5
Review Limit laws
- Many functions can sub in \(x=a \) in domain
- 1-sided versions, proofs in App

Example: \(\lim_{x \to 0} x^2 \sin \left(\frac{1}{x} \right) \)
- Since \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \) DNE. Limit laws do not apply.

Need another tool.

Idea

\[
\begin{align*}
\text{Squeeze Theorem} \\
\text{Suppose } f(x) &\leq g(x) \leq h(x) \text{ for } x \text{ in a neighborhood of } a \ (\text{except } a)
\end{align*}
\]

Suppose \(\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L. \)

Then \(\lim_{x \to a} g(x) = L. \)

Proof: Suppose \(\epsilon > 0 \) is given. Choose \(\delta_1 \) so \(0 < |x-a| < \delta_1 \Rightarrow |f(x) - L| < \frac{\epsilon}{2} \)

Choose \(\delta_2 \) so \(0 < |x-a| < \delta_2 \Rightarrow |g(x) - L| < \frac{\epsilon}{2} \)

Smaller of \(\delta_1 \) or \(\delta_2 \) will work for \(g(x) \).
Remarks

- Don't need \(g(\alpha) \) squeezed between \(\pm h \) for all \(x \), only in a neighborhood of \(\alpha \).
- Choice of squeezing functions is key.

\[\lim_{x \to 0} x^2 \sin(1/x) = 0 \]

Proof

\[-1 \leq \sin(1/x) \leq 1 \text{ for all } x \neq 0 \]
\[-x^2 \leq x^2 \sin(1/x) \leq x^2 \text{ for all } x \neq 0 \]

But \(\lim_{x \to 0} -x^2 = \lim_{x \to 0} x^2 = 0 \) \]

\[\lim_{x \to 0^+} \sqrt{x} e^{\sin(1/x)} \]

between \(\frac{1}{e} \) and \(e \)

Later \(\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1 \) for \(\theta \) near 0.
Continuity

Informal: Precise: if \(f(x) \) is continuous it can sketch graph without picking up pencil.
- Small changes in \(x \) produce "small" changes in \(f(x) \).

Example
\[f(x) = x^2 \]
continuous for all \(-\infty < x < \infty \)

\[f(x) = \begin{cases} \frac{|x|}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \]
Not continuous at \(x=0 \)

Definition
A function \(f(x) \) is **continuous at** \(x=a \) if \(\lim_{x \to a} f(x) = f(a) \).

Remark
- \(f(a) \) defined
- \(\lim_{x \to a} f(x) \) exists
- They are equal.

If not, say \(f(x) \) is **discontinuous at** \(x=a \) or has a discontinuity at \(x=a \).

Examples

1. Polynomials are continuous on \((-\infty, \infty) \).

2. Rational Functions are continuous on their domains.
 \[\frac{x}{x^2 + 1} \]
 cont on \((-\infty, \infty) \) U \(0, \infty \)

3. \(e^x, \sin x, \cos x \) continuous on \((-\infty, \infty) \).

4. \(\tan x \) etc., continuous on domain.

5. Physical Quantities usually continuous.
Types of discontinuities

1. \(f(x) = \frac{x^2-2}{x-2} \)
 \[\lim_{x \to 2} f(x) = \frac{0}{0} \]
 but \(f(2) \) not defined,
 \[\lim_{x \to 2} |f(x)| \text{ exists but } \not\in \mathbb{R} \]
 \(1 \& 2 \text{ have removable discontinuities at } x = 2 \]
 \(\text{limit exists but is not } = f(2) \)

2. \(f(x) = \frac{|x|}{x} \)
 \[\text{has a jump discontinuity at } x=0 \]
 \(\text{limits from left & right exist but are } \neq \)

3. \(f(x) = \frac{1}{x} \)
 \[\text{has an infinite discontinuity at } x=0 \]
Ex \[y = \sqrt{x} \]

Def: \(f(x) \) is continuous from right at \(x = a \) if

\[
\lim_{x \to a^+} f(x) = f(a)
\]

Def: Continuous on a closed interval.