Math 461/561 Week 5 Solutions

5.1

(i). Let \(v_1, v_2 \in V_\lambda \). Then

\[a(cv_1 + v_2) = c(a(v_1) + a(v_2)) = c\lambda(a)v_1 + \lambda(a) = \lambda(a)(cv_1 + v_2) \]

so \(cv_1 + v_2 \in V_\lambda \) and so it is a subspace.

(ii). It is obvious that \(V \) is the direct sum of the spans of the \(e_i \) as a vector space, so if we can show that \(\text{Span}\{e_i\} = V_\epsilon \) then we are done. It is clear that \(e_i \in V_\epsilon \). Now suppose \(v \) is not in the span of \(e_i \), so \(v = \sum a_k e_k \) where there is some \(a_s \neq 0 \) for \(s \neq i \). Consider the elementary matrix \(E_{ss} \). Then \(E_{ss} v = a_s e_s \) but \(\epsilon_i(E_{ss}) = 0 \) so \(v \not\in V_\epsilon \). Thus \(\text{Span}\{e_i\} = V_\epsilon \) as desired.

5.5

(i). The \(m = 1 \) case is obvious. For \(m \geq 2 \) we compute:

\[z^m = z(xy - yx) = xzy - zyx \]

since \(y \) commutes with \(z \).

Now \(\text{tr}(AB) = \text{tr}(BA) \) so \(\text{tr}(zyx) = \text{tr}(xzy) \). Thus \(\text{tr}(xzy - zyx) = 0 \) as desired.

(ii). Recall that if the eigenvalues of \(A \) are \(\{\lambda_i\} \) then the eigenvalues of \(A^k \) are \(\{\lambda_i^k\} \) and further that the trace of a matrix is the sum of the eigenvalues. Thus from part (i) we have:

\[\lambda_1^k + \lambda_2^k + \cdots + \lambda_n^k = 0 \]

for each \(k \geq 1 \). Now choose just the nonzero eigenvalues \(\mu_1, \mu_2, \ldots, \mu_t \) where \(\mu_i \) ha multiplicity \(m_i \). Then the equation above can be written as:

\[\sum_{i=1}^{t} m_i \mu_i^k = 0, k = 1, 2, 3, \ldots. \]

Consider this as a system of equations in the variables \(m_i \). It has corresponding matrix:

\[
A = \begin{bmatrix}
\mu_1 & \mu_2 & \cdots & \mu_t \\
\mu_1^2 & \mu_2^2 & \cdots & \mu_t^2 \\
\vdots & \vdots & \ddots & \vdots \\
\mu_1^t & \mu_2^t & \cdots & \mu_t^t
\end{bmatrix}
\]

This is known as a Vandermonde determinant and it is nonzero unless some \(\mu_i = \mu_j \) for \(i \neq j \). But we chose distinct \(\mu \)'s, so the determinant is nonzero. But (1) tells us \((1,1,\cdots,1)^T\) lies in the kernel, a contradiction. Thus there can be no nonzero eigenvalues for \(z \), so \(z \) is nilpotent.

5.6
(i) Since A is a Lie subalgebra, $[A, A] \subseteq A$ so $A \subseteq N_L(A)$. Suppose U is a subalgebra of L in which A is an ideal. Then $[U, A] \subseteq A$ which means, by definition, that U lies in the normaliser, and thus $N_L(A)$ is the largest subalgebra in which A is an ideal.

Finally to show $N_L(A)$ is a subalgebra, let $n_1, n_2 \in N_L(A)$ and let $a \in A$. Then:

$[[n_1, n_2], a] = [n_1, [n_2, a]] + [n_2, [a, n_1]].$

Notice $[n_2, a] \in A$ since $n_2 \in N_L(A)$, and so $[n_1, [n_2, a]] \in A$. Similarly $[n_2, [a, n_1]] \in A$ so $[n_1, n_2] \in N(A)$ and we have a subalgebra.

(ii) Now let $L := \mathfrak{gl}(n, \mathbb{C})$ and A be the subalgebra of all diagonal matrices. Now apply the invariance lemma to the subalgebra $N_L(A)$ and its ideal A. The lemma says that for each weight of A, the corresponding weight space is $N_L(A)$ invariant. However each standard basis vector is a common eigenvector for A so a matrix in $N_L(A)$ must preserve $\text{span}(e_i)$ for each i. This forces it to be a diagonal matrix, so $N_L(A)$ is just A.

6.1

(i) Let $x : V \to V$ be nilpotent. If $x = 0$ then any nonzero v will suffice. Otherwise choose the largest m so that $x^m = 0$ and $x^{m-1} \neq 0$. Any $v \neq 0$ in the image of x^{m-1} will do the trick.

(ii) Now let $U = \text{span}(v)$. Since $xU = 0$ we get a well-defined map $\pi : V/U \to V/U$ defined by $\pi(a + U) = x(a) + U$. Now by induction choose a basis $\{v_1 + U, \ldots, v_{n-1} + U\}$ in which π is strictly upper triangular. Now consider the basis $v, v_1, v_2, \ldots, v_{n-1}$ of V. Notice that $x(v_i)$ is a linear combination of $v_{i+1}, v_{i+2}, \ldots, v_n$ and v while $xv = 0$. So the matrix for x in this basis is indeed strictly upper triangular.

6.3 Let L be a complex Lie algebra. Show that L is nilpotent if and only if every 2-dimensional subalgebra of L is abelian.

Proof: Let L be nilpotent and suppose L has a 2-dimensional nonabelian subalgebra. By Theorem 3.1 we know it has a basis $\{x, y\}$ with $[x, y] = x$, so $[y, x] = -x$ and

$[y, [y, x]] = [y, -x] = x$

Clearly y is not ad-nilpotent, contradicting Theorem 6.3. Thus if L is nilpotent then every 2-dimensional subalgebra of L is abelian.

Conversely suppose every two-dimensional subalgebra is abelian. Let $x \in L$ and consider $\text{ad}x : L \to L$. Since the field is complex, the linear map $\text{ad}x$ has an eigenvector y, i.e. an element $y \in L$ such that $[x, y] = \lambda y$. If $\lambda \neq 0$, then (x, y) is a two-dimensional, nonabelian subalgebra. Thus $\lambda = 0$ is the only eigenvalue of $\text{ad}x$, so $\text{ad}x$ is nilpotent. By Engel’s theorem, L is nilpotent.
6.4 Let p be a prime and let F be a field of characteristic p. Let x and y be the $p \times p$ matrices given. One easily checks that xy has $1, 2, 3, \ldots, p-1$ on the superdiagonal, with all other entries 0. Similarly yx has $0, 1, 2, \ldots, p-2$ on the superdiagonal and $p-1$ in the lower left corner, so $[x, y] = x$. (Using that we are in characteristic p so $1 - p = 1$)

Thus x, y span a two-dimensional subalgebra L, which is solvable since $L' = \langle x \rangle$ and $L^{(2)} = 0$.

Since y is diagonal one easily sees it has the standard basis $\{e_1, e_2, \ldots, e_p\}$ as eigenvectors with eigenvalues $\{0, 1, 2, \ldots, p-1\}$. Clearly none of these are eigenvectors for x, so the conclusion of Proposition 6.6, and thus of Lie’s theorem, fails in characteristic p. The first part of 6.5 also fails.

Notice that $x \in L'$ and $x^p = Id$ so x is clearly not nilpotent.

6.5 (i) Let L be a solvable subalgebra of $gl(V)$ where V is a complex vector space. By Lie’s theorem, we can choose a basis of β of V so that every $x \in L$ has corresponding matrix $[x]_\beta \in b(n, \mathbb{C})$. We worked out in class that for any two matrices $A, B \in b(n, \mathbb{C})$, the bracket $[A, B] \in n(n, \mathbb{C})$. But any strictly upper triangular matrix corresponds to a nilpotent linear map, so every element of L' is nilpotent.

(ii). Suppose L is solvable and $F = \mathbb{C}$. Then $ad L$ is a solvable subalgebra of $gl(L)$. In particular, since $[ad x, ad y] = ad [x, y]$, we have by part (i) that $ad z$ is a nilpotent endomorphism of V for every $z \in L'$. This means every element of L' is ad-nilpotent. So by the second version of Engel’s theorem, L' is nilpotent. Conversely suppose L' is nilpotent. Then certainly L' is solvable, so $(L')^{(m)} = 0$ for some m. But $(L')^{(m)} = (L)^{(m+1)}$ so L is solvable.

6.6 Use Lie’s Theorem to give another proof of

Proposition 5.7 Let $x, y : V \to V$ be linear maps from a complex vector space V to itself. Suppose that x and y both commute with $[x, y]$. Then $[x, y]$ is a nilpotent map.

Proof: Think of x and y as elements of the Lie algebra $gl(V)$. Let $z = [x, y]$. By assumption

$$[x, z] = [y, z] = 0.$$

Thus the span $\langle x, y, z \rangle$ gives a subalgebra L of $gl(V)$. (at most 3-dimensional).

Notice $L' = \langle z \rangle$ so $L^{(2)} = 0$ and L is solvable. Then by 6.5(ii) above (which used Lie’s theorem) we see every element of L' is nilpotent, that is $z = [x, y]$ is nilpotent.

Prove a finite dimensional Lie algebra has a unique maximal nilpotent ideal.

Proof: Let I and J be nilpotent ideals. It is enough to show that $I + J$ is also nilpotent, then our ideal will be the sum of all nilpotent ideals of L. We claim by induction that:

$$(I + J)^{n+1} \subseteq I^{n+1} + J^{n+1} + \sum_{s=0}^{n} I^s \cap J^{n-s}.$$
The $n=0$ case is obvious:

$$(I + J)^1 = [I + J, I + J] = [I, I] + [I, J] + [J, I] + [J, J] \subseteq I^1 + J^1 + J \cap I.$$

Suppose then the result holds for $n = k - 1$.

$$(I + J)^{k+1} = [I + J, (I + J)^k] = [I, (I + J)^k] + [J, (I + J)^k] \subseteq [I, I^k + J^k + \sum_{s=0}^{k-1} I^s \cap J^{k-1-s}] + [J, I^k + J^k + \sum_{s=0}^{k-1} I^s \cap J^{k-1-s}]$$

by inductive hypothesis.

$$\subseteq I^{k+1} + J^{k+1} + \sum_{s=0}^{k} I^s \cap J^{k-s}$$

by expanding out.

Now suppose $I^s = J^t = 0$, since I and J are nilpotent. WLOG suppose $s \geq t$. Then $(I + J)^{2s+1} = 0$ since every term in (3) will have an I^l for $l \geq s$ or a J^w for $w \geq s \geq t$, and thus will be zero. Thus $I + J$ is nilpotent.