
Algebra
Colloquium
c© 2012 AMSS CAS

& SUZHOU UNIV

Algebra Colloquium 19 (Spec 1) (2012) 777–786

A Combinatorial Approach to Specht

Module Cohomology∗

David J. Hemmer
Department of Mathematics, University at Buffalo, SUNY

244 Mathematics Building, Buffalo, NY 14260, USA

E-mail: dhemmer@math.buffalo.edu

Received 15 October 2009
Revised 24 February 2010

Communicated by C. Bessenrodt

Abstract. For a Specht module Sλ for the symmetric group Σd, the cohomology Hi(Σd,Sλ)
is known only in degree i = 0. We give a combinatorial criterion equivalent to the non-
vanishing of the degree i = 1 cohomology, valid in odd characteristic. Our condition
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1 Introduction

For a finite group G and a G-module M defined over a field k, computing coho-
mology groups with coefficients in M , Hi(G,M) = Exti

G(k, M), is often difficult.
For the symmetric group even the i = 1 case is unknown for important classes
of modules like Specht modules or irreducible modules. For M a Specht module
and i = 1 we describe a straightforward combinatorial condition equivalent to the
nonvanishing of this cohomology group. We hope this approach may be useful in
resolving some conjectures about these cohomology groups, discussed in Section 6.
We would like to acknowledge the referee for several useful suggestions on an earlier
version of this paper.

For a partition λ of d, let Sλ denote the corresponding Specht module for the
symmetric group Σd and let Sλ be its dual. (For descriptions of these modules
and general information on symmetric group representation theory see [5].) In even

∗Research of the author was supported in part by NSF grant DMS-0808968.
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778 D.J. Hemmer

characteristic every Specht module is a dual Specht module and the problem of
computing cohomology seems more difficult. Further, our combinatorial description
below is false in characteristic two, so we will mostly focus on the case of odd
characteristic.

There has been some success understanding Hi(Σd, Sλ) for small i. In [1] (where
only odd characteristic is considered), it is shown that the cohomology vanishes in
degrees 1 ≤ i ≤ p− 3. For p = 3 a complete description was given for i = 1, 2.

For Specht modules only i = 0 is completely understood. In [5, Theorem 24.4],
James computes the invariants H0(Σd, S

λ) = HomkΣd
(k, Sλ). The module Sλ is a

submodule of the transitive permutation module Mλ, and HomkΣd
(k, Mλ) is one-

dimensional. So to compute HomkΣd
(k, Sλ) one needs to know whether the one-

dimensional fixed-point space in Mλ lies in Sλ or not. James’ proof is essentially
combinatorial, using the kernel intersection theorem (Corollary 17.18 in [5] and
Theorem 2.1 below) to test if the fixed point lies in Sλ. The solution involves
determining when certain binomial coefficients are divisible by p. A similar theme
arises below in Section 5.

We generalize James’ work as follows. First we prove that any nonsplit exten-
sion of Sλ by the trivial module is isomorphic to a submodule of Mλ. Then using
the kernel intersection theorem, we prove a combinatorial condition on a vector
u ∈ Mλ that is equivalent to the subspace 〈Sλ, u〉 being the nonsplit extension we
desire. Next we apply the result to do some computations. The novelty here is that
we can compute cohomology in a purely combinatorial way, without understanding
projective resolutions, and that we end up with an explicit basis for the correspond-
ing nonsplit extension. Finally we suggest some general conjectures that may be
attacked with this result, and indeed which formed the motivation for this paper.

2 Semistandard Homomorphisms and the Kernel Intersection Theorem

In this section we describe the kernel intersection theorem. A composition of d
is a sequence (λ1, λ2, . . . ) of nonnegative integers that sum to d. If the λi are
nonincreasing we say λ is a partition of d, and write λ ` d. Denote by [λ] the
Young diagram for λ: [λ] = {(i, j) ∈ N×N | j ≤ λi}. A λ-tableau is an assignment
of {1, 2, . . . , d} to the boxes in [λ]. The symmetric group acts transitively on the
set of λ-tableau. For a tableau t its row stabilizer Rt is the subgroup of Σd fixing
the rows of t setwise. Say t and s are equivalent if t = πs for some π ∈ Rs. An
equivalence class is called a λ-tabloid, and the class of t is denoted by {t}. The
vector space with the set of λ-tabloids as a basis is the permutation module Mλ. If
λ = (λ1, λ2, . . . , λs), there is a corresponding Young subgroup Σλ

∼= Σλ1×· · ·×Σλs

≤ Σd. The stabilizer of a λ-tabloid {t} is clearly a conjugate of Σλ, so we have

Mλ ∼= IndΣd

Σλ
k. (1)

Since Mλ is a transitive permutation module, it has a one-dimensional fixed-point
space under the action of Σd. Let fλ ∈ Mλ denote the sum of all the λ-tabloids, so
fλ spans this fixed subspace.

The Specht module Sλ is defined explicitly as the submodule of Mλ spanned by
certain linear combinations of tabloids, called polytabloids. In characteristic zero
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A Combinatorial Approach to Specht Module Cohomology 779

the Specht modules {Sλ | λ ` d} are a complete set of nonisomorphic simple Σd-
modules. James gave an alternate description of Sλ inside Mλ as the intersection
of the kernels of certain homomorphisms from Mλ to other permutation modules.

Let λ = (λ1, λ2, . . . ) ` d and let ν = (λ1, λ2, . . . , λi−1, λi +λi+1−v, v, λi+2, . . . ).
James defined [5, Definition 17.10] the module homomorphism ψi,v : Mλ → Mν by

ψi,v({t}) =
∑{{t1} | {t1} agrees with {t} on all except row i and i + 1,
and row i + 1 of {t1} is a subset of size v in row i + 1 of {t}}.

Notice that every ν-tabloid in ψi,v({t}) has coefficient at most one. James
proved:

Theorem 2.1. (Kernel Intersection Theorem) [5, 17.18] Suppose λ ` d has r
nonzero parts. Then

Sλ =
r⋂

i=2

λi−1⋂
v=0

ker(ψi−1,v) ⊆ Mλ.

Given a linear combination of tabloids u ∈ Mλ, Theorem 2.1 gives an explicit
test for whether u ∈ Sλ. If u = fλ, then u spans the one-dimensional fixed-point
space in Mλ. Applying the test in this case let James determine when H0(Σd, S

λ)
is nonzero, as follows. For an integer t let lp(t) be the least nonnegative integer
satisfying t < p lp(t). James proved:

Theorem 2.2. [5, 24.4] H0(Σd, S
λ) is zero unless λi ≡ −1 mod p lp(λi+1) for all i,

in which case it is one-dimensional.

3 Nonsplit Extensions Inside Permutation Modules

It is immediate that HomkΣd
(k, Sλ) is “determined by” Mλ, since Sλ ⊆ Mλ. In

this section we prove, in odd characteristic, that Ext1kΣd
(k, Sλ) is also determined

completely by the structure of Mλ. First a lemma:

Lemma 3.1. Let λ ` d.
(a) HomkΣd

(k, Mλ) ∼= k.
(b) For p > 2, HomkΣd

(Sλ,Mλ) ∼= k.
(c) For p > 2, Ext1kΣd

(k, Mλ) = 0.

Proof. Parts (a) and (c) follow from (1) and the Eckmann-Shapiro lemma, since
Ext1kΣd

(k, k) = 0 in odd characteristic. Part (b) is [5, Corollary 13.17]. 2

The next result says that, for p > 2, any nonsplit extension of Sλ by the trivial
module embeds in Mλ.

Theorem 3.2. Suppose p > 2 and suppose there is a nonsplit short exact sequence:

0 → Sλ → U → k → 0. (2)

Then U is isomorphic to a submodule of Mλ.
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780 D.J. Hemmer

Proof. Apply HomkΣd
(−,Mλ) to (2) to obtain a long exact sequence. From Lemma

3.1 we get:

0 → k → HomkΣd
(U,Mλ)

f→ HomkΣd
(Sλ,Mλ) ∼= k → 0. (3)

Thus, the map f in (3) is surjective. So the embedding of Sλ into Mλ lifts to a
map f̃ : U → Mλ which is faithful on Sλ. Thus, f̃ must also be injective, otherwise
the sequence (2) would be split. 2

Remark 3.3. Theorem 3.2 is false in characteristic 2. Indeed, the case λ = (2) ` 2
is a counterexample. The Specht module S(2) is trivial and there is a nonsplit
extension of k by k which clearly is not a submodule of the one-dimensional module
M (2).

Remark 3.4. Lemma 3.1(b) and (c) hold with Mλ replaced by the Young module Y λ

(which is the unique indecomposable direct summand of Mλ containing the Specht
module Sλ). Thus, Theorem 3.2 could be “strengthened” to say that U is isomorphic
to a submodule of Y λ. However, there is no known combinatorial description of Y λ

as a submodule of Mλ. Not even the dimension of Y λ is known. So at present we
have no way to use the strengthened version to compute cohomology.

Remark 3.5. If p > 3 then Ext1kΣd
(sgn, k) = 0, and hence Ext1kΣd

(sgn,Mλ) = 0.
An argument as in Theorem 3.2 would imply any nonsplit extension of Sλ by the
sign module appears as a submodule of Mλ. However, there are no such extensions
as

Ext1kΣd
(sgn, Sλ) ∼= H1(Σd, Sλ′) = 0

by [1]. More generally, one could ask if a nonsplit extension of Sλ by an irreducible
module must embed in Mλ. In the case where λ is p-restricted the answer is always
yes, as the Young module Y λ is injective. The general problem seems to remain
open.

Theorem 3.2 tells us that Mλ completely controls H1(Σd, S
λ). In particular,

H1(Σd, S
λ) is nonzero precisely when such a U exists inside Mλ. Constructing such

a U is equivalent to finding a vector u 6∈ Sλ such that the subspace 〈Sλ, u〉 gives
the desired module. Necessary and sufficient conditions on such a u are given next.

Theorem 3.6. Let p > 2 and λ ` d. Then Ext1kΣd
(k, Sλ) 6= 0 if and only if there

exists u ∈ Mλ with the following properties:
(a) For each ψi,v : Mλ → Mν appearing in Theorem 2.1, ψi,v(u) is a multiple of

fν , at least one of which is a nonzero multiple.

(b) There does not exist an a 6= 0 such that all the ψi,v(afλ − u) are zero.

If so then the subspace spanned by Sλ and u is a submodule that is a nonsplit
extension of Sλ by k.

Proof. Suppose Ext1kΣd
(k, Sλ) 6= 0. From Theorem 3.2 we can find a submodule

U of Mλ that is a nonsplit extension of Sλ by k. Choose u ∈ Mλ such that U is
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A Combinatorial Approach to Specht Module Cohomology 781

spanned by u and Sλ. Since Sλ is in the kernel of all the ψi,v’s, and U/Sλ ∼= k, we
have for σ ∈ Σd that σ(u) = u + v for some v ∈ Sλ. Applying ψi,v we get

σ(ψi,v(u)) = ψi,v(u) for all σ ∈ Σd,

so ψi,v(u) is a multiple of fν . But u 6∈ Sλ so not all the multiples are zero, and
thus (a) above holds for u. To see (b) holds, suppose there is an a 6= 0 such that
ψi,v(afλ − u) = 0 for all ψi,v. This means afλ − u ∈ Sλ by the kernel intersection
theorem. If afλ ∈ Sλ then so is u, a contradiction. Otherwise, fλ ∈ U but fλ 6∈ Sλ

and so U ∼= Sλ ⊕ k, a contradiction to U being a nonsplit extension.
Conversely, suppose such a u exists. For any σ ∈ Σd, notice that:

ψi,v(σ(u)− u) = σψi,v(u)− ψi,v(u) = 0

by (a). Thus, σ(u) − u ∈ Sλ, so U := 〈Sλ, u〉 is a submodule of Mλ such that
U/Sλ ∼= k. Condition (b) ensures that U is not a direct sum of Sλ and the one-
dimensional trivial submodule of Mλ. 2

Remark 3.7. When fλ 6∈ Sλ then U = Sλ ⊕ 〈fλ〉 is a submodule such that U/Sλ ∼=
k, which is a split extension of Sλ by k. The condition on u given by (b) in
the theorem ensures that the submodule 〈u, Sλ〉 is not this split extension. In
particular, condition (b) is implied by condition (a) when fλ ∈ Sλ, i.e., for the λ
where HomkΣd

(k, Sλ) 6= 0. These λ are given by Theorem 2.2.

Remark 3.8. The choice of u in the theorem is far from unique. Given a u that
works any other vector of the form u + v for v ∈ Sλ will also work. Thus, there is
some strategy involved in the choice of u for proving theorems.

4 Two Small Examples

In this section we give two small examples to illustrate Theorem 3.6. In the next
section we obtain general results that generalize these examples. For a two-part
partition λ = (λ1, λ2), a λ-tabloid is entirely determined by the entries of its second
row, and we will represent them by just the last row, with a bar over to reflect the
equivalence relation. For example the tabloid

{t} =
{

1 5 2
3 4

}

will be denoted by 34. For λ = (d) the unique λ-tabloid will be denoted by ∅.
Example 4.1. Let p = 3 and λ = (3, 3) ` 6. Define u ∈ M (3,3) by:

u = 134 + 135 + 136 + 145 + 146 + 156 + 234 + 235 + 236
+245 + 246 + 256− 123− 124− 125− 126.

(4)

One easily checks that:

ψ1,0(u) = (12− 4)∅ ≡ −f(6),

ψ1,1(u) = (6− 4)(1 + 2) + (6− 1)(3 + 4 + 5 + 6) ≡ −f(5,1),

ψ1,2(u) = − 4(12) + (3− 1)(13 + · · ·+ 56) ≡ −f(4,2).
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782 D.J. Hemmer

Thus, u satisfies condition (a) of Theorem 3.6. Since f(3,3) 6∈ S(3,3) we must also
check condition (b). In fact,

ψ1,1(af(3,3) − u) = (−a− 1)f(6), ψ1,0(af(3,3) − u) = (a− 1)f(5,1).

There is no such a 6= 0 which makes both these zero. Thus, condition (b) holds and
we conclude:

Proposition 4.2. In characteristic three, H1(Σ6, S
(3,3)) 6= 0. Further, the subspace

of M (3,3) spanned by S(3,3) and u from (4) is a submodule that is a nonsplit extension
of S(3,3) by k.

Example 4.3. Next, consider λ = (8, 3) in characteristic 3. Let

u =
∑

{{t} ∈ M (8,3) | 1, 2, and 3 appear in the first row of {t}}. (5)

One easily checks that:

ψ1,0(u) =
(
8
3

)
f(6) ≡ −f(6),

ψ1,1(u) =
(
7
2

)
(4 + · · ·+ 11) ≡ 0,

ψ1,2(u) =
(
6
1

)
(45 + 46 + · · ·+ 10 11) ≡ 0.

So u satisfies condition (a) in Theorem 3.6. Since f(8,3) ∈ S(8,3) by Theorem 2.2,
condition (b) does not need to be checked (see Remark 3.7).

Thus, we have:

Proposition 4.4. In characteristic three, H1(Σ11, S
(8,3)) 6= 0. Further, the sub-

space of M (8,3) spanned by S(8,3) and u from (5) is a submodule that is a nonsplit
extension of S(8,3) by k.

Example 4.3 has the same flavor as the proof of [5, Theorem 2.2, pp. 101–102],
in that knowing the congruence class of binomial coefficients modulo p is important,
specifically knowing that

(
7
2

)
and

(
6
1

)
are both zero modulo three. The two examples

in the next section are more general results, generalizing the previous two examples
and illustrating this theme.

5 Two More General Examples

The examples in this section are already known, in the sense that H1(Σd, S
(λ1,λ2))

is known in odd characteristic by the work in [4]. However, the proof there uses
the work of Erdmann on the special linear group SL2(k) and Schur functor tech-
niques. The proofs here are purely combinatorial and completely contained within
the symmetric group theory. Moreover, the extensions constructed with Theorem
3.6 come equipped with an explicit basis and a description of the Σd-action, which
is new even for these cases.

At several times we will need to know when a binomial coefficient is divisible by
p. This is easily determined from the following well-known result of Kummer:
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A Combinatorial Approach to Specht Module Cohomology 783

Proposition 5.1. [6, p. 116] The highest power of a prime p that divides the
binomial coefficient

(
x+y

x

)
is equal to the number of “carries” that occur when the

integers x and y are added in p-ary notation.

Our first general example is the case λ = (pa, pa) for a ≥ 1. We first define the
element u ∈ M (pa,pa) and then show (when p > 2) that it satisfies (a) and (b) of
Theorem 3.6. For 0 ≤ i ≤ pa − 1 define:

vi =
∑ {{t} ∈ M (pa,pa) | Exactly i of {1, 2, 3, . . . , pa − 1}

lie in row two of {t}}. (6)

Recall that for a two-part composition µ = (µ1, µ2) we are denoting µ tabloids in
Mµ by the entries in the second row. For example,

1, 2, 3, . . . , t, pa, pa + 1, . . . , pa + s− t− 1

is an element of M (2pa−s,s).
It is straightforward to compute ψ1,s(vi):

Lemma 5.2. Let vi be as in (6). Then:
(a) ψ1,0(vi) =

(
pa−1

i

)(
pa+1
pa−i

)∅.
(b) For 1 ≤ t ≤ s < pa, the coefficient of

1, 2, 3, . . . , t, pa, pa + 1, . . . , pa + s− t− 1 ∈ M (2pa−s,s)

in ψ1,s(vi) is
(
pa−1−t

i−t

)(
pa−s+t+1
pa−s+t−i

)
.

Proof. Part (a) is just a count of the number of tabloids that appear in the sum
defining vi. There are

(
pa−1

i

)
choices for the row two entries from {1, 2, . . . , pa− 1}

and then
(
pa+1
pa−i

)
for the remaining entries from {pa, pa + 1, . . . , 2pa}.

For part (b) we count the (pa, pa)-tabloids in the sum defining vi that contribute
to that coefficient when plugged into ψ1,s. Such a tabloid must have {1, 2, . . . , t}
in the second row, so there are

(
pa−1−t

i−t

)
choices for the remaining i− t entries from

{1, 2, . . . , pa − 1} and then
(
pa−s+t+1
pa−s+t−i

)
for the remaining entries from {pa, pa + 1,

. . . , 2pa}. 2

Remark 5.3. Lemma 5.2(b) gives the coefficient in ψ1,s(vi) of a tabloid containing
in its second row precisely {1, 2, . . . , t} from among {1, 2, . . . , pa − 1} and {pa + 1,
pa +2, . . . , pa + s− t−1} from among {pa +1, pa +2, . . . , 2pa}. However, it is clear
from the definition of vi that any tabloid in M (2pa−s,s) with second row containing
exactly t entries from {1, 2, . . . , pa − 1} and s− t entries from {pa, pa + 1, . . . , 2pa}
will have the same coefficient. Thus, Lemma 5.2(b) gives a complete description of
ψ1,s(vi).

We now define the u that, together with S(pa,pa), will give the nonsplit extension.
Define:

u =
pa−1∑
m=0

(m + 1)vm ∈ M (pa,pa). (7)
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784 D.J. Hemmer

We will show that u satisfies condition (a) of Theorem 3.6 by first showing ψ1,0(u)
6= 0 and then showing ψ1,s(u) = 0 for s ≥ 1.

Lemma 5.4. For u as in (7), we have ψ1,0(u) = ∅.
Proof. By Proposition 5.1 and Lemma 5.2(a) we have ψ1,0(vi) = 0 for all i 6∈
{0, pa − 1}. Thus, ψ1,0(u) = ψ1,0(v0) + paψ1,0(vpa−1) =

(
pa−1

0

)(
pa+1

pa

)∅ = ∅. 2

Next we show ψ1,i(u) = 0 for all i ≥ 1.

Definition 5.5. For 1 ≤ t ≤ s < pa, let As,t be the coefficient of

1, 2, 3, . . . , t, pa, pa + 1, . . . , pa + s− t− 1 ∈ M (2pa−s,s) (8)

in ψ1,s(u). The tabloid in (8) above is just our canonical representative among the
(2pa−s, s)-tabloids with second row containing t entries from {1, 2, . . . , pa−1} and
s − t entries from {pa, pa + 1, . . . , 2pa}. Knowing the coefficients of these tabloids
gives all the coefficients, see Remark 5.3.

From Lemma 5.2(b) we have:

As,t =
pa−1∑
m=t

(m + 1)
(

pa − 1− t

m− t

)(
pa − s + t + 1

m + 1

)
. (9)

The next two lemmas combined will prove that all the As,t, s ≥ 1 are divisible by p.

Lemma 5.6. For 1 ≤ s < pa, As,s−1 ≡ 0 mod p.

Proof. When t = s− 1 the second binomial coefficient in each term of (9) is
(

pa

m+1

)
,

which is congruent to zero except for the last term m = pa − 1, in which case the
(m + 1) in front is zero. 2

Lemma 5.7. For 1 ≤ t ≤ s < pa, we have:

As,t −As,t−1 =
(

2pa − s− 1
pa − 1

)
≡ 0 mod p.

Proof. Apply the identity
(
pa−s+t+1

m+1

)
=

(
pa−s+t

m

)
+

(
pa−s+t

m+1

)
to the second binomial

coefficient in (9). Expand out and collect terms to obtain:

As,t = (t + 1)
(
pa−t−1

0

)(
pa−s+t

t

)

+
∑pa−2

w=t

[
(w + 1)

(
pa−t−1

w−t

)
+ (w + 2)

(
pa−t−1
w−t+1

)] (
pa−s+t

w+1

)

+ pa
(
pa−t−1
pa−t−1

)(
pa−s+t

pa

)
.

(10)

Finally, replace each (w + 1)
(
pa−t−1

w−t

)
+ (w + 2)

(
pa−t−1
w−t+1

)
in (10) by

(w + 1)
(

pa − t

w − t + 1

)
+

(
pa − t− 1
w − t + 1

)
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and subtract off

As,t−1 =
pa−1∑

w=t−1

(w + 1)
(

pa − t

w − t + 1

)(
pa − s + t

w + 1

)

to obtain

As,t −As,t−1 =
∑pa−1

w=t

(
pa−t−1

w−t

)(
pa−s+t

w

)
=

(
2pa−s−1

pa−1

)
by [2, 5.23]

≡ 0 by Proposition 5.1.

The last congruence is clear from Proposition 5.1. Expanding pa − 1 in p-ary
notation, all the digits are p− 1. Thus, adding anything nonzero in p-ary notation
will always result in at least one “carry”. 2

Theorem 5.8. Let k have characteristic p ≥ 3. Then H1(Σ2pa , S(pa,pa)) 6= 0 for
any a ≥ 1.

Remark 5.9. As mentioned earlier, we know this nonzero cohomology group is
exactly one-dimensional, but this does not follow from our proof. However, our
proof gives an explicit basis for the nonsplit extension, which is new even in this
case.

Indeed, we apply Theorem 3.6 to the u defined in (7). Lemmas 5.6 and 5.7 imply
that all the As,t are congruent to 0 when s ≥ 1, and thus ψ1,s(u) = 0 for s ≥ 1.
Together with Lemma 5.4, we see that u satisfies part (a) of Theorem 3.6. Finally,
note that

ψ1,pa−1(f(pa,pa)) =
(

pa + 1
1

)
f(2pa−1,1) 6= 0

but ψ1,pa−1(u) = 0, so condition (b) is also satisfied.

Remark 5.10. Notice that the u in (4) is not the same as that in (7) for the case
pa = 3, illustrating Remark 3.8. Of course, the difference between the two lies in
S(3,3).

Example 4.3 generalizes directly. Specifically, we have:

Theorem 5.11. Let λ = (pb − 1, pa) for a < b and let

u =
∑

{{t} ∈ Mλ | 1, 2, . . . , pa appear in the first row of {t}}.

Then u satisfies Theorem 3.6, and thus H1(Σpb+pa−1, S
λ) 6= 0.

Proof. We leave the details to the reader. As in the λ = (8, 3) case all the ψ1,s vanish
on u except ψ1,0. The verification is much more straightforward than the previous
example, and does not require any identities involving binomial coefficients. 2

6 Further Directions

For a partition λ = (λ1, λ2, . . . ) ` d define pλ = (pλ1, pλ2, . . . ) ` pd. In [3] we
proved the following:
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Theorem 6.1. [3, Theorem 6.5.7] Let λ ` d and let p > 2. Then there is an

isomorphism: H1(Σpd, S
pλ) ∼= H1(Σp2d, S

p2λ).

The proof using a lot of algebraic group machinery, and does not produce an
explicit map between the two cohomology groups, i.e., given a nonsplit extension
of Spλ by k as Σpd-modules, we can not obtain a corresponding Σp2d-extension of
Sp2λ by k. The following problem was the motivation for this paper:

Problem 6.2. Suppose H1(Σpd, S
pλ) 6= 0 and suppose one has constructed a u ∈

Mpλ satisfying Theorem 3.6. Describe a general method to construct a ũ ∈ Mp2λ

corresponding to an element in H1(Σp2d, S
p2λ) and realizing the isomorphism in

Theorem 6.1.

Problem 6.3. It is known [3, Prop. 5.2.4] that for λ 6= (d), if H0(Σd, S
λ) 6= 0 then

H1(Σd, S
λ) 6= 0. For each such λ (given by Theorem 2.2) construct a u.

The following is an easy consequence of Theorem 2.2:

Lemma 6.4. Suppose λ = (λ1, λ2, . . . , λs) ` d and suppose a ≡ −1 mod p lp(λ1).
Then

H0(Σd, S
λ) ∼= H0(Σd+a, S(a,λ1,λ2,... ,λs)). (11)

This leads to the following.

Problem 6.5. Does the isomorphism in (11) hold for Hi for any other i > 0?

Perhaps the i = 1 version of Problem 6.5 can be attacked using Theorem 3.6,
i.e., given a u that works for λ, produce one that works for (a, λ1, λ2, . . . , λs). At
this point we have had success only in very small examples.
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