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Irreducible Specht modules are signed Young modules
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Abstract

Recently Donkin defined signed Young modules as a simultaneous generalization of Young and twisted
Young modules for the symmetric group. We show that in odd characteristic, if a Specht module Sλ is
irreducible, then Sλ is a signed Young module. Thus the set of irreducible Specht modules coincides with
the set of irreducible signed Young modules. This provides evidence for our conjecture that the signed
Young modules are precisely the class of indecomposable self-dual modules with Specht filtrations. The
theorem is false in characteristic two.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Fayers recently determined [6] which Specht modules Sλ for the symmetric group Σd are irre-
ducible in characteristic p � 3, confirming a conjecture of James and Mathas. For λ p-restricted
or p-regular the answer was known, so the problem was for λ neither p-restricted nor p-regular.

It is easy to show that when p � 3, if λ is p-regular and Sλ is irreducible then Sλ is isomorphic
to the Young module Yλ. Similarly, if λ is p-restricted and Sλ is irreducible then Sλ is isomorphic
to the twisted Young module Yλ′ ⊗ sgn. However if λ is neither p-restricted nor p-regular then
Sλ cannot be a Young or twisted Young module. We will prove that these irreducible Specht
modules instead are signed Young modules.

In characteristic two, λ = (2,2) is the only partition [12] which is neither 2-restricted nor
2-regular and for which Sλ is irreducible. Furthermore the sign representation is trivial so signed
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Young modules are all Young modules, and one can easily check that S(2,2) is not a Young
module, so our main theorem does not hold in characteristic two. Thus for the remainder of the
paper we will assume k is a field of characteristic p � 3, and we emphasize that most of the
results are false without this assumption.

We write λ � d for λ = (λ1, . . . , λs) a partition of d . We also write |λ| = d . The Young
diagram of λ is:

[λ] = {
(i, j) ∈ N × N | j � λi

}
.

A partition λ is p-regular if there is no i such that λi = λi+1 = · · · = λi+p−1 > 0. It is
p-restricted if its conjugate partition, denoted λ′, is p-regular. We write � for the usual domi-
nance order on partitions.

The complex simple Σd modules are the Specht modules {Sλ | λ � d}. Simple kΣd modules
can be indexed by p-restricted partitions or by p-regular partitions. Both

{
Dλ := Sλ/ rad

(
Sλ

) | λ is p-regular
}

and

{
Dλ := soc

(
Sλ

) | λ is p-restricted
}

are complete sets of nonisomorphic simple kΣd modules. The two indexings are related by
Dλ ∼= Dλ′ ⊗ sgn, where sgn is the one-dimensional signature representation. We also recall that:

Sλ ⊗ sgn ∼= Sλ′ (1.1)

where Sμ denotes the dual of the Specht module Sμ.
For λ � d let Σλ be the usual Young subgroup. The set of Young modules {Yλ | λ � d} is ex-

actly the set of indecomposable summands of the permutation modules {Mμ := IndΣd

Σμ
k | μ � d}.

The modules Yλ ⊗ sgn are called twisted Young modules.
Suppose α = (α1, α2, . . . , αm) and β = (β1, β2, . . . , βn) where α � a and β � b and a+b = d .

Define the signed permutation module:

M(α | β) := IndΣd

Σα×Σβ
k � sgn.

Indecomposable summands of signed permutation modules are called signed Young modules.
Donkin has recently [3] classified the isomorphism classes of signed Young modules. They can be
indexed by pairs of partitions {(λ,μ) | |λ| + p|μ| = d} and are denoted Y (λ|pμ). As the notation
suggests, Y (λ|pμ) is a direct summand of M(λ | pμ) with multiplicity one. Notice that summands
of M(α | ∅) are ordinary Young modules and summands of M(∅ | β) are twisted Young modules,
so signed Young modules are a simultaneous generalization. They are all self-dual with Specht
filtrations.

Our main result is motivated by the fact that irreducible Specht modules in the p-regular (re-
spectively p-restricted) case are easily seen to be Young (respectively twisted Young) modules.
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Proposition 1.1.

(i) Sλ ∼= Sλ if and only if Sλ is irreducible.
(ii) Sλ ∼= Yλ if and only if λ is p-regular and Sλ is irreducible.

(iii) Sλ ∼= Yλ′ ⊗ sgn if and only if λ is p-restricted and Sλ is irreducible.

Proof. Irreducible kΣd modules are self-dual so one implication in (i) is trivial. For p > 2,
Specht modules are indecomposable and HomΣd

(Sλ, Sλ) ∼= k [10, 13.17, 13.18]. Any self-dual
module with these properties must be irreducible, as otherwise the obvious map onto the socle
would give a contradiction to the Hom condition. This proves (i).

To prove (ii) we will use the adjoint Schur functor G and some basic facts about the repre-
sentations of the Schur algebra. Since we will not use this theory again, we will not describe it
here, instead just citing the results we need. Suppose Sλ ∼= Yλ. Since Yλ is self-dual then Sλ is
irreducible by (i). Now Sλ ⊗ sgn ∼= Sλ′ so Sλ′ ∼= Yλ ⊗ sgn. Thus:

V (λ′) ∼= G(Sλ′) [8, 3.4.2]

∼= G
(
Yλ ⊗ sgn

)

∼= T (λ′) [8, 3.4.2],

where V (λ′) is a Weyl module and T (λ′) a tilting module, thus is self-dual. If V (λ′) is self-dual
then it must be irreducible and λ′ must be p-restricted (see, e.g., [14, p. 87]), so λ is p-regular.

Conversely suppose λ is p-regular and Sλ is irreducible, so Sλ ∼= Dλ. But Yλ has a Specht
filtration with submodule Sλ and subquotients Sμ with μ � λ. Thus [Yλ : Dλ] = 1. But Yλ is
indecomposable and self-dual so Yλ = Dλ = Sλ.

Since Sλ ⊗ sgn ∼= Sλ′ and Dλ ⊗ sgn ∼= Dλ′ , part (iii) follows by essentially the same argu-
ment. �

Proposition 1.1 tells us that an irreducible Sμ with μ neither p-restricted nor p-regular is
never a Young or twisted Young module. We will show they are signed Young modules. The
lemma is false in characteristic two, for example S(5,12) is a direct sum of two simple modules.

2. Rouquier blocks for symmetric groups

We will make considerable use of abacus combinatorics and the description of blocks of kΣd

by residue contents. Both are thoroughly described in the book [11]. Recently there has been
considerable interest in studying certain blocks of kΣd known as Rouquier blocks. These are
blocks with a special, very large, p-core relative to their p-weight. In particular a Rouquier
block of weight w has an abacus display in which the number of beads on runner i exceeds the
number on runner i − 1 by at least w − 1 for i = 1,2, . . . , p − 1. We will use only a few simple
properties of such blocks, so will not go into further detail here. For a more thorough description
of Rouquier blocks we refer the reader to [6]. The importance, for us, of Fayers’ work is his proof
that irreducible Specht modules induce to Rouquier blocks in a nice way. In particular:

Proposition 2.1. [6, Lemmas 3.1–3.3] Suppose λ � d and Sλ is irreducible. Then there exists
r � d and μ � r such that:
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(i) Sμ is irreducible.
(ii) Sμ lies in a Rouquier block.

(iii) ResΣr

Σd
Sμ has a direct summand which is filtered by copies of Sλ.

(iv) IndΣr

Σd
Sλ has a direct summand which is filtered by copies of Sμ.

To apply Proposition 2.1, we need to know the modules in parts (iii) and (iv) are actually
semisimple. This is easy in characteristic p > 3 where Ext1kΣd

(Sλ, Sλ) is known to be zero, but
this is not known if p = 3, so we take another approach:

Lemma 2.2. Let λ,μ � d . Let α, α̃ � a and β, β̃ � b with d = a + b. Then:

(i) [4, 6.3] Ext1kΣd
(Y λ,Yμ) = 0.

(ii) Ext1kΣd
(M(α | β),M(α̃ | β̃)) = 0.

(iii) Suppose |τ | + p|σ | = d . Then Ext1kΣd
(Y (τ | pσ),Y (τ | pσ)) = 0.

Proof. To prove (ii) we apply Mackey’s theorem to obtain a direct sum of terms of the form

Ext1Σa×Σb

(
Y τ �

(
Yσ ⊗ sgn

)
, Y ε �

(
Yω ⊗ sgn

))
.

These are all zero by the Kunneth formula and part (i). Then (iii) follows immediately from (ii).�
Lemma 2.3. To prove every irreducible Specht module is a signed Young module, it is sufficient
to prove it for irreducible Specht modules in Rouquier blocks.

Proof. Let Sλ and Sμ be as in Proposition 2.1 and suppose Sμ is known to be a signed Young
module. Then Lemma 2.1(iv) guarantees that IndΣr

Σd
Sλ is actually a direct sum of Sμ’s. Since

the collection of Young subgroups is closed under conjugation and intersection, it is immediate
from Mackey’s theorem that the collection of signed permutation modules, and hence of signed
Young modules, is closed under induction and restriction to and from Young subgroups. But Sλ is
a direct summand of ResΣr

Σd
IndΣr

Σd
Sλ, hence a direct summand of ResΣr

Σd
Sμ, and hence a signed

Young module. �
So we need to know which Specht modules in Rouquier blocks are irreducible. This is Fayers’

main result:

Proposition 2.4. [6, 4.1, 4.2] Let Sλ be in a Rouquier block B . Let λ have p-quotient
(λ(0), λ(1), . . . , λ(p − 1)). Then Sλ is irreducible if and only if λ(0) is p-restricted, λ(p − 1) is
p-regular, λ(i) = ∅ for 0 < i < p − 1, and both Sλ(0) and Sλ(p−1) are irreducible.

Let κ denote the p-core corresponding to B . It is an easy exercise with the abacus com-
binatorics that raising nodes on runners 0 and p − 1 as described in the previous proposition
corresponds to adding vertical and horizontal p-hooks respectively to κ . So Proposition 2.4 can
be restated as:
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Proposition 2.5. Let Sλ be irreducible in a Rouquier block B with p-core κ and p-weight w.
Then λ = λ̃ + pμ where λ̃ is p-restricted, μ is p-regular and Sμ is irreducible. Furthermore
(λ̃)′ = κ ′ + pτ where τ is p-regular and Sτ is irreducible.

Proof. The proposition is immediate from the observation above it about vertical and horizontal
p-hooks. The pμ corresponds to the horizontal p-hooks and the pτ to the vertical p-hooks. To
translate between the two descriptions, note that μ = λ(p − 1) and τ = λ(0)′. �

Henceforth fix the p-core κ � k. Since B is a Rouquier block with p-weight w we know each
runner on the abacus display of κ has at least w − 1 beads more than the previous one. Thus
there is a Rouquier block with p-core κ and weight i for 0 � i � w (and perhaps even larger
weights depending on the minimum difference in the number of beads on adjacent runners). We
will abuse notation and let eB denote the block idempotent for any of these blocks, i.e. the block
of Σk+pi with p-core κ . Multiplication by eB projects a module onto its direct summand lying
in the Rouquier block. Further we fix Sλ irreducible in B as in Proposition 2.5, so:

λ = λ̃ + pμ,

(λ̃)′ = κ ′ + pτ,

σ := κ + pμ. (2.1)

Then σ is p-regular, Sσ is irreducible and λ = (σ ′ + pτ)′. So σ is λ with the vertical p-hooks
stripped off and λ̃ is λ with the horizontal p-hooks stripped off.

If τ = ∅ then λ = σ is p-regular so Sλ ∼= Yλ by Proposition 1.1(ii). Thus we can assume
τ = (τ1, τ2, . . . , τs) with τs �= 0.

We need information about some Littlewood–Richardson coefficients. See [10] for a complete
description of the Littlewood–Richardson rule. We will only need a special case. Specifically:

Lemma 2.6. Let ρ � k +pv be in the Rouquier block with p-core κ and weight v. Let v + c � w,
so the block with p-core κ and weight v + c is also a Rouquier block. Then:

eB

(
Ind

Σk+pv+pc

Σk+pv×Σpc

(
Sρ � sgn

))

has a filtration by Specht modules Sε , where the ε which occur can all be obtained from ρ by
adding c vertical p-hooks, i.e. the abacus displays for ε and ρ agree except on runner 0.

Proof. The Specht module S1pc
is isomorphic to sgn, so the multiplicity of Sε is given by

Littlewood–Richardson coefficient c(ε;ρ,1pc). These coefficients are easy to calculate.
The 1pc guarantees that for each ε the coefficient c(ε;ρ,1pc) is either zero or one. The ε for

which it is one are exactly those obtained by adding pc nodes to distinct rows of ρ. Thus we
must determine which of these ε have p-core κ .

The p-core of ε is determined by its residue content (see [11] for a description of residue
content). In this case, for Sε to lie in B , there must be c nodes of each residue added to the
diagram of ρ. The key observation is that, since the p-weight of ρ is strictly less than w, the
abacus configuration implies that every addable node of ρ has the same residue, call it a. Since
we can add at most one node in each row, the only way to get an addable node of residue a +
1 (mod p) is to first add the p − 1 nodes directly above it. But we are required to add c nodes
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of each residue. We conclude that the only way to add pc nodes to distinct rows of ρ such that
there are c nodes of each p-residue is by adding c vertical p-hooks. We remark that not every
such ε occurs since there is the further requirement that no two of the added vertical p-hooks can
intersect the same row. �

We will have need for the special case of Lemma 2.6 where ρ is κ with only horizontal
p-hooks added on. In this situation only one ε can occur:

Lemma 2.7. Let ρ = κ + pμ be in Rouquier block of weight v = |μ| and let v + c � w so the
block with p-core κ and weight v + c is also a Rouquier block. Then:

eB

(
Ind

Σk+pv+pc

Σk+pv×Σpc

(
Sρ � sgn

)) ∼= S(ρ′+(pc))′ .

Proof. Notice that (ρ′ + (pc))′ is just ρ with pc nodes added to the first column. The result
follows from Lemma 2.6 and the observation that the second column of κ , and hence of ρ, has
exactly p − 1 fewer nodes than the first column. Thus to avoid two vertical p-hooks having a
node in the same row, the hooks must all be added to the first column. �
3. Ladders

In order to prove irreducible Specht modules are actually signed Young modules the last tool
we need is a result of James which guarantees each row in the decomposition matrix of Σd

contains a one. Let λ � d and recall that [λ] is the corresponding Young diagram. For r � 1
define the rth ladder to be the set:

{
(i, j) | i + (p − 1)j = p − 1 + r

} ⊂ N × N.

This ladder is the set of points in N × N that lie on the line joining (r,1) to (1,1 + r−1
p−1 ). Define

the p-regularization λR of λ to be the partition whose Young diagram is obtained from that of λ

by sliding all the nodes of [λ] as far as possible up their ladders. Notice that λR = λ if and only
if λ is p-regular. James showed:

Proposition 3.1. [9, Theorem A] Let λ � d . Then:

(i) λR � d is p-regular and λR � λ.
(ii) DλR

occurs in Sλ with multiplicity one.
(iii) If Dμ occurs in Sλ then μ � λR .

We also need a lemma which will give us information about dominance relations between λ,
μ, λR and μR . For r = 1,2, . . . , define lr (λ) to be the number of nodes of [λ] that lie in the r th
ladder. For λ,μ � d define μ 
 λ if the largest r for which lr (μ) �= lr (λ) satisfies lr (μ) > lr(λ).
Moving nodes up and down a ladder does not change the ladder numbers, so this is not a total
order. However two p-regular partitions with exactly the same ladder numbers are equal, thus 

is a total order on the set of p-regular partitions. Fayers showed:

Lemma 3.2. [5, 1.2] Suppose λ,μ � d are p-regular. If μ 
 λ then λ� μ.
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4. Main theorem

In order to prove irreducible Specht modules are signed Young modules, it remains by
Lemma 2.3 only to show that for Sλ irreducible in a Rouquier block that Sλ is a signed Young
module. To do so we employ an idea of Chuang, originally used in [2], of successively inducing
then truncating to the block with core κ . Recall our fixed partition notation from (2.1). Start with
Sσ := S0 and define:

S1 := eB

(
Ind

Σk+p|μ|+pτ1
Σk+p|μ|×Σpτ1

(
Sσ � sgn

))
.

Lemma 2.7 describes S1. Now we induce and truncate again. Define:

S2 := eB

(
Ind

Σk+p|μ|+pτ1+pτ2
Σk+p|μ|+pτ1×Σpτ2

(S1 � sgn)
)
.

Continue in this way, inducing and truncating until finally we get:

S := eB

(
IndΣd

Σd−pτs ×Σpτs
(Ss−1 � sgn)

)
.

Proposition 4.1. The module S is a direct summand of

IndΣd

Σk+p|μ|×Στ
Sσ � sgn.

S has a Specht filtration with exactly one copy of Sλ and the rest of the form Sε where εR 
 λR .
Furthermore the filtration can be chosen so Sλ is on top, i.e. there is a surjection from S to Sλ.

Proof. Since induction is transitive and each truncation just picks out a direct summand, S is
clearly a direct summand. The second part of the lemma follows from Lemma 2.6. If at each
stage of the induction you add a single vertical hook with pτi nodes to the ith-column you
obtain the single copy of Sλ; i.e. the Littlewood–Richardson coefficient:

c
(
λ;σ,1τ1,1τ2, . . . ,1τs

) = 1.

The other ε which occur all come from moving vertical p-hooks from λ to columns further to
the left. This can only shift nodes to higher ladders lr , and so εR 
 λR . Also note that λ � ε for
any such ε, so the filtration given by the Littlewood–Richardson rule can be chosen with Sλ at
the top. �

We can now prove our main theorem:

Theorem 4.2. Let Sλ be irreducible in a Rouquier block. Then Sλ is a signed Young module.
Consequently all irreducible Specht modules are signed Young modules.

Proof. Let λ, κ , σ , μ and τ be as in (2.1). Since σ is p-regular, Sσ is a Young module by
Proposition 1.1(ii). Thus

IndΣd
(
Sσ � sgn

)

Σk+p|μ|×Στ
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is a direct sum of signed Young modules, and in particular S is a direct sum of signed Young
modules. Now Sλ ∼= DλR

by Proposition 3.1. Also for Sε in the filtration of S

λR � εR

by Lemma 3.2. Thus none of the Sε have DλR
as a composition factor. So S is a self-dual module

with exactly one copy of DλR
which appears in the head. Thus DλR

appears in the socle as well,
and so must be a direct summand of S. Thus Sλ is a summand of S, so Sλ is a signed Young
module. �
5. Final remarks

An important motivation behind this research was to provide evidence for the following con-
jecture from [7]:

Conjecture 5.1. Let N ∈ mod kΣd be indecomposable and self-dual. Suppose N has a Specht
(and hence also a dual Specht) filtration. Then N is isomorphic to a signed Young module.

Self-dual (equivalently irreducible) Specht modules are the most obvious class of indecom-
posable self-dual modules with Specht filtrations! We remark that being indecomposable with
both a Specht and a dual Specht filtration is not sufficient to guarantee being a signed Young
module—there are examples in [7] of such modules which are not self-dual, and therefore not
signed Young modules. We have no conjecture on how to parameterize the set of all indecom-
posable kΣd modules with both Specht and dual Specht filtrations.

We now know that irreducible Specht modules are signed Young modules, and Donkin has pa-
rameterized the isomorphism classes of signed Young modules. Unfortunately we cannot answer
the obvious question:

Problem 5.2. Suppose Sλ is irreducible. For which μ, τ is Sλ ∼= Y(μ | pτ)?

We can handle a few special cases of Problem 5.2. If λ is p-regular and Sλ is irreducible
then Sλ ∼= Yλ = Y(λ | ∅). Twisted Young modules are of course signed Young modules, but the
labeling is a little trickier. It can be seen easily shown from recent work of Brundan and Kujawa
[1] on the Schur superalgebra that:

Proposition 5.3. [13] Let λ = τ + pμ with τ p-restricted. Let m(τ) be the Mullineux conjugate,
i.e. Dτ ⊗ sgn ∼= Dm(τ). Then:

Yλ ⊗ sgn = Y
(
m(τ) | pμ

)
.

Thus Proposition 5.3 together with Proposition 1.1(iii) gives the label as a signed Young
module for an irreducible Sλ when λ is p-restricted. The open case then is the same that was until
recently open for classifying irreducible Specht modules, namely when λ is neither p-regular nor
p-restricted.
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