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SPECHT FILTRATIONS FOR HECKE ALGEBRAS OF TYPE A

DAVID J. HEMMER and DANIEL K. NAKANO

Abstract

Let Hq (d) be the Iwahori–Hecke algebra of the symmetric group, where q is a primitive lth
root of unity. Using results from the cohomology of quantum groups and recent results about
the Schur functor and adjoint Schur functor, it is proved that, contrary to expectations, for
l �4 the multiplicities in a Specht or dual Specht module filtration of an Hq (d)-module are well
defined. A cohomological criterion is given for when an Hq (d)-module has such a filtration. Finally,
these results are used to give a new construction of Young modules that is analogous to the
Donkin–Ringel construction of tilting modules. As a corollary, certain decomposition numbers
can be equated with extensions between Specht modules. Setting q = 1, results are obtained for
the symmetric group in characteristic p �5. These results are false in general for p =2 or 3.

1. Introduction

1.1

Let k be an algebraically closed field of characteristic p � 0 and let G be a reductive
algebraic group over k. Twenty years ago, Donkin [7] first defined the notion
of when a rational G-module admits a good filtration, that is, a filtration with
successive quotients isomorphic to induced modules ∇(λ). Furthermore, he proved
a cohomological criterion which gives both a necessary and a sufficient condition for
when a rational G-module admits such a filtration. The filtration multiplicities in a
good filtration are easily shown to be well defined. The collection of indecomposable
modules with both a good filtration and a Weyl filtration are called tilting modules,
and there is exactly one for each dominant weight.

Now let G = GLn(k) be the general linear group over k, and let Σd be the sym-
metric group on d letters. It is well known that, for n� d, the representation theory
for G and Σd are related via the Schur and inverse Schur functors. Under the Schur
functor, injective (polynomial) representations for G are sent to Young modules,
induced modules are sent to Specht modules, and Weyl modules are sent to dual
Specht modules. By using the aforementioned results for reductive groups, Donkin
[8] showed that the Young modules admit both Specht and dual Specht filtrations.

However, for p = 2 and p = 3, there are examples (see [21, p. 126] or Subsec-
tion 3.2) which demonstrate that in general Specht filtration multiplicities are not
well defined. Even for Young modules, which are known to have Specht filtrations,
it was not known if the multiplicities were well defined. At first glance, it appears
that developing a theory of Specht filtrations for the symmetric groups similar to
the existing theory for reductive groups is a hopeless undertaking.
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1.2

In this paper we prove that these small examples are exceptional, and that for
p � 5 there is a theory of Specht and dual Specht filtrations with well defined
multiplicities. In fact, we will state our results in a more general framework using the
Hecke algebra Hq(d) of type A and the q-Schur algebra Sq(n, d). For n� d, one has a
Schur functor from Mod(Sq(n, d)) to Mod(Hq(d)). Tilting modules, Young modules,
Specht modules and dual Specht modules all have analogues in the quantum setting.
In Section 3 we prove that if q is an lth root of unity with l � 4, then there is a
notion of Specht and dual Specht filtrations with well defined multiplicities for
Hq(d). Using the (quantum) Schur functor and its adjoint, we give a cohomological
condition which provides necessary and sufficient conditions for an Hq(d)-module
to admit a Specht (respectively dual Specht) module filtration.

Finally we apply this theory to give a new construction of the Young modules
via extensions of Specht modules. The motivation for this construction is a
similar construction of the tilting modules. This construction allows us to equate
dimensions of certain extension groups between Specht modules to decomposition
numbers for the Hecke algebra.

2. Notation and preliminaries

2.1

Let q be a unit in k. The Hecke algebra Hq(d)=Hk,q(Σd) is the free k-module
with basis {Tw : w∈Σd}. The multiplication in the algebra is defined by the rule

TwTs =

{
Tws �(ws) > �(w)

qTws + (q − 1)Tw otherwise,

where s = (i, i+1)∈Σd is a basic transposition and w∈Σd. The function � : Σd −→
N is the usual length function.

Let l be the smallest integer such that 1 + q + . . . + ql−1 = 0. Notice that when
q = 1, then l = p is the characteristic of k. In this (classical) case we will use the more
traditional notation p for the characteristic of k when q = 1. When q is a primitive
jth root of unity, then l = j. We only consider the case where q is a root of unity
(so l <∞), since otherwise Hq(d) is semisimple. There are an automorphism # and
an antiautomorphism ∗ of Hq(d) defined by

T#
w = (−q)l(w)(Tw−1)−1,

T ∗
w = Tw−1 .

The maps # and ∗ are both involutions, and they will be used in the next subsection.

2.2

The representation theory of Hq(d) largely parallels that of kΣd. It was first
described by Dipper and James [5] and is thoroughly surveyed in [22]. We just
sketch it here.

Let Λ be the set of partitions of d. For each λ∈Λ there is a q-Specht module
of the Hecke algebra Hq(d), denoted by Sλ. A partition (λ1, λ2, . . . ) is called l-
restricted if λi −λi+1 � l− 1 for all i. The set of the l-restricted partitions of d will
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be denoted by Λres. A partition λ is called l-regular if its transpose λ′ is l-restricted.
We denote the set of all l-regular partitions of d by Λreg. If λ∈Λreg, then Sλ has a
unique simple quotient, which we denote by Dλ. The collection of modules Dλ for
λ∈Λreg is a complete set of non-isomorphic simple Hq(d)-modules.

For any Hq(d)-module M , we can define a dual module M∗ := Homk(M,k),
where the action of Hq(d) is given by (hf)(m) := f(h∗m). The simple modules Dλ

are self-dual and absolutely irreducible.
Let Λ(n, d) be the set of compositions of d into at most n parts. For λ∈Λ(n, d),

let Σλ be the corresponding Young subgroup of Σd, so that Σλ
∼=Σλ1×Σλ2× . . . .

There is also a corresponding parabolic subalgebra of Hq(d)

Hq(λ) := Hq(λ1) ×Hq(λ2) × . . .

generated by {Tw | w∈Σλ}. Set

xλ =
∑

w∈Σλ

Tw.

Define Mλ :=Hq(d)xλ. For a partition λ∈Λ, the module Mλ has a unique sub-
module isomorphic to the Specht module Sλ, and there is a unique indecomposable
direct summand of Mλ containing Sλ; this is the Young module Y λ. We have
Y λ ∼=Y µ if and only if λ = µ. For any α∈Λ(n, d), the module Mα is a direct sum
of such Young modules (see [21, 4.6]).

We remark that Hq(d) has two one-dimensional representations [22, 1.14], which
we denote k and sgn, given by

k(Tw) = ql(w) and sgn(Tw) = (−1)l(w). (2.2.1)

Of course, when q = 1 these specialize to the usual trivial and sign representations
of kΣd.

In general, the tensor product of two Hq(d)-modules is not an Hq(d)-module,
since Hq(d) is not a Hopf algebra. However, the automorphism # lets us define, for
each Hq(d)-module M , a new module M# with the same underlying vector space
and with action given by h ◦m := h#m. Since this specializes for q = 1 to tensoring
with the sign representation, we henceforth denote it by

M ⊗ sgn := M#.

The simple Hq(d)-modules can also be indexed by Λres. For λ∈Λres we denote
the corresponding simple module by Dλ. Then it is known that Dλ = soc(Sλ). The
relationship between these two parameterizations is given by

Dλ ∼= Dλ′ ⊗ sgn for any λ∈Λreg. (2.2.2)

We also make extensive use of the following [15, 6.7; 22, Exercise 3.14].

Sλ ⊗ sgn ∼= (Sλ′
)∗ := Sλ′ . (2.2.3)

In particular, (2.2.3) shows that tensoring with the sign representation turns Specht
modules into dual Specht modules, and vice versa.
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2.3

Henceforth, let n� d. The q-Schur algebra was introduced by Dipper and James
as follows:

A := Sq(n, d) = EndHq (d)


 ⊕

λ∈Λ(n,d)

Mλ


.

When q = 1, this is the classical Schur algebra S(n, d) studied in [14].
The representation theory of A was described in [6], and it parallels the S(n, d)-

theory. The simple A-modules are indexed by Λ, and we denote the simple A-module
with highest weight λ by L(λ). We also write ∆(λ) and ∇(λ) for the standard and
costandard A-modules with highest weight λ, respectively. Moreover, if λ∈Λ, let
P (λ) be the projective cover of L(λ) and let T (λ) be the corresponding tilting
module. These modules are described in detail in [21, Chapters 3, 4, 7].

Just as the classical Schur algebra has an involutory antiautomorphism corres-
ponding to the taking of matrix transposes, so does A [6]. Thus A-modules have
a contravariant dual, fixing simple modules, which we denote by Mτ .

Let e be the idempotent in A called φ1
w,w in [6]. Then eAe∼=Hq(d). The Schur

functor F is the covariant exact functor from Mod(A) to Mod(Hq(d)) defined on
objects by F(M)= eM. The duality τ and the usual duality ‘∗’ in Mod(Hq(d))
are compatible in the sense that e(Mτ )∼= (eM)∗ for any finite-dimensional
M ∈Mod(A). It is well known that F(L(λ)) is non-zero if and only if λ∈Λres,
in which case F(L(λ))∼= Dλ.

One has the following correspondences between A-modules and Hq(d)-modules
under F (see [9]).

F(∇(λ))= Sλ, F(∆(λ))= Sλ
∼= Sλ′⊗ sgn, F(P (λ))= Y λ, F(T (λ))= Y λ′⊗ sgn.

2.4. The inverse Schur functor G
Recall that A= Sq(n, d). The Schur functor F can be represented as a tensor

functor F(M)∼= eA⊗A M . The functor F admits a right adjoint functor G defined
by

G(N) := HomeAe(eA,N)
= HomHq (d)(V ⊗d, N),

where V ⊗d is the q-tensor space. The q-tensor space V ⊗d is defined in [6] as being
eA, but for an explicit construction, see [22, Exercise 3.19]. In particular,

V ⊗d ∼=
⊕

λ∈Λ(n,d)

Mλ.

The functor G is a right inverse to F , that is, F ◦G(N)∼= N , but not a two-sided
inverse. However, we do have the following.

Proposition 2.4.1 [12, 3.3]. Suppose that M ∈ Mod(A) has l-restricted socle.
Then there is an exact sequence of A-modules

0 −→ M −→ G ◦ F(M) −→ D −→ 0,

where D has no l-restricted composition factors.
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The functor G is only left exact, and so it has higher right derived functors

RjG(N) = Exti
Hq (d)(V

⊗d, N).

These functors seem to control a great deal of the relationship between the
cohomology theory of A and Hq(d). There is a nice spectral sequence relating these
two functors. Under suitable assumptions, these higher right derived functors allow
one to extend the adjointness to Ext1.

Theorem 2.4.2 [12, 2.2]. Let M ∈ Mod(A) and let N ∈ Mod(Hq(d)).
(i) There exists a first quadrant spectral sequence

Ei,j
2 = Exti

A(M,RjG(N)) ⇒ Exti+j
Hq (d)(F(M), N).

(ii) If either M/ rad M has only l-restricted composition factors, or if R1G(N)=
0, then

Ext1A(M,G(N)) ∼= Ext1Hq (d)(F(M), N).

2.5. Good and Weyl filtrations

In this subsection we collect some necessary results from the cohomology of
quantum groups. The standard reference here is [19] for the classical case. For
the quantum setting, the results are proved in [10].

An ascending chain
0 = M0 ⊂ M1 ⊂ M2 . . .

of submodules of an A-module M =
⋃

Mi is called a good filtration if each Mi/Mi−1

is isomorphic to some ∇(λi). Similarly, M has a Weyl filtration if the quotients are
isomorphic to ∆(λi). Since ∆(λ)τ ∼=∇(λ), a module M has a good filtration if and
only if Mτ has a Weyl filtration.

The first three parts of the following proposition are due to Donkin [7, 1.3], and
the last is due to Ringel [23, Corollary 4].

Proposition 2.5.1. Let V ∈ Mod(A). The following are equivalent.
(i) V admits a Weyl filtration.
(ii) Ext1A(V,∇(λ))= 0 for all λ∈Λ.
(iii) Exti

A(V,∇(λ))= 0 for all λ∈Λ and for all i > 0.
(iv) Exti

A(V, T (λ))= 0 for all λ∈Λ and for all i > 0.

Since V has a Weyl filtration exactly when V τ has a good filtration,
Proposition 2.5.1 also gives equivalent conditions for good filtrations, and we will
use this without comment. As far as we know, part (iv) cannot be strengthened to
require vanishing only of Ext1.

A crucial result in the cohomology theory for A is the following.

Exti
A(∆(λ),∇(λ)) ∼=

{
k i = 0, λ = µ
0 otherwise. (2.5.2)

Equation 2.5.2 allows one to conclude easily (see [19, II.4.16]) that the filtration
multiplicities in an A-module with a good filtration are well defined, and similarly
for a Weyl filtration. In particular, if V has a Weyl filtration, and if [V : ∆(λ)]
denotes the number of factors isomorphic to ∆(λ), then

[V : ∆(λ)] = dimk HomA(V,∇(λ)). (2.5.3)
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3. Specht and dual Specht filtrations

3.1

We define a Specht and dual Specht filtration analogously to that of a good or
Weyl filtration, namely, an Hq(d)-module N has a Specht filtration if we have

0 = N0 ⊂ N1 ⊂ N2 . . . ,

where N =
⋃

Ni and Ni/Ni−1 is isomorphic to some Sλi . Similarly, N has a dual
Specht filtration if the quotients are isomorphic to some Sλi

. We remark that (2.2.3)
shows that N has a Specht filtration if and only if N ⊗ sgn has a dual Specht
filtration.

3.2

We would like a theory of Specht filtrations that is like that of good filtrations.
Unfortunately, the result corresponding to (2.5.2) for the symmetric group is not
true; indeed Ext1kΣd

(Sλ, Sµ) can be nonzero. It has long been assumed that the fil-
tration multiplicities for Specht or dual Specht filtrations are not well defined, since
they are not well defined for p = 2 and p = 3. For example, when p = d = 2, the
two Specht modules S(2) and S(12) are both one-dimensional and are isomorphic.
Thus the two-dimensional regular representation has a filtration with two copies
of S(2), a filtration with one with a copy of S(2) and one copy of S(12), and a
filtration with two copies of S(12), so the multiplicities are not well defined. This
module is isomorphic to the Young module Y (12), providing an example of where
the multiplicities are not well defined, even for a Young module.

For p = 3 and d = 7, the Specht module S(32,1) has the obvious Specht filtration
(it is already a Specht module!). However, it also has a filtration

0 −→ S(5,12) −→ S(32,1) −→ S(2,15) −→ 0.

3.3

We first look at an important calculation involving the higher right derived
functors. The corresponding result for symmetric groups is in [11, 4.1], but the
proof does not generalize to the Hecke algebra setting. Let k and sgn be the one-
dimensional representations of Hq(d) from (2.2.1). Then we have the following
proposition.

Proposition 3.3.1. Let l � 4. Then the following hold.
(i) Ext1Hq (d)(k, sgn)= 0.
(ii) R1G(sgn)= 0.

Proof. (i) Without loss of generality, we may assume that l | d, because other-
wise the Nakayama rule [22, 5.38] implies that k and sgn are in different blocks.
Now S(d−1) ∼= k, so the usual branching rule [22, 6.2] shows that

M := IndHq (d)

Hq (d−1)k
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has a filtration with quotients being Specht modules S(d) and S(d−1,1). Since M is
self-dual, we have

M := IndHq (d)

Hq (d−1)k
∼=

k

D(d−1,1).

k

Now let

N :=
k

D(d−1,1)

and consider the short exact sequence

0 −→ k −→ M −→ N −→ 0.

This yields a long exact sequence of the form

. . . −→HomHq (d)(k, sgn)−→Ext1Hq (d)(N, sgn)−→Ext1Hq (d)(M, sgn)−→ . . . .

(3.3.2)

Since l �= 2, we know that HomHq (d)(k, sgn)= 0. Therefore Frobenius reciprocity
and the fact that l � | d − 1 imply that

Ext1Hq (d)(M, sgn) ∼= Ext1Hq (d−1)(k, sgn)= 0.

It follows from (3.3.2) that Ext1Hq (d)(N, sgn)= 0. Now consider the short exact
sequence

0 −→ D(d−1,1) −→ N −→ k −→ 0.

From this we obtain the exact sequence

0 −→ HomHq (d)

(
D(d−1,1), sgn

)
−→ Ext1Hq (d)(k, sgn) −→ 0.

However, HomHq (d)(D(d−1,1), sgn)= 0 since l �= 3; thus Ext1Hq (d)(k, sgn)= 0.

(ii) From part (i), we can conclude that

R1G(sgn) ∼= Ext1Hq (d)(V
⊗d, sgn)

∼=
⊕

σ∈Λ(n,d)

Ext1Hq (d)(M
σ, sgn)

∼=
⊕

σ∈Λ(n,d)

Ext1Hq (σ)(k, sgn). (3.3.3)

Now we apply the Kunneth formula to each Ext1Hq (σ)(k, sgn). Since every term
in the expansion will include an Ext1Hq (t)(k, sgn) for some t � d, part (i) implies
that R1G(sgn)= 0.

Henceforth, assume that n = d. Recall that Sλ ⊗ sgn ∼= Sλ′ . Part (i) of the next
result generalizes [2, 2.4], although the proof is closer to that given in [11, 4.2].

Theorem 3.3.4. Let l � 4 and λ ∈ Λ.
(i) Ext1Hq (d)(k, Sλ′) = 0.
(ii) R1G(Sλ ⊗ sgn)= 0.
(iii) R1G(Y λ ⊗ sgn)= 0.
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Proof. (i) Putting M = ∆(λ) and N = sgn into the spectral sequence from
Theorem 2.4.2(i) gives

Ei,j
2 = Exti

Sq (n,d)(∆(λ), RjG(sgn)) ⇒ Exti+j
Hq (d)(S

λ′ ⊗ sgn, sgn).

From [12, Theorem 5.2(i)], G(sgn)= δ, where δ is the determinant representation.
Thus the spectral sequence yields an exact sequence [12, 2.2]

0 −→ Ext1Sq (n,d)(∆(λ), δ) −→ Ext1Hq (d)(k, Sλ′) −→ HomSq (n,d)(∆(λ), R1G(sgn)).
(3.3.5)

However, Exti
Sq (n,d)(∆(λ), δ) = 0 for i > 0 since δ∼=∇(1d), and R1G(sgn)= 0 by

Proposition 3.3.1(ii), so (3.3.5) proves (i).

(ii) The proof of (ii) is similar to (3.3.3), and it is modelled on [20, 6.4]:

R1G(Sλ ⊗ sgn) ∼= Ext1Hq (d)(V
⊗d, Sλ′)

∼=
⊕

σ∈Λ(n,d)

Ext1Hq (d)(M
σ, Sλ′)

∼=
⊕

σ∈Λ(n,d)

Ext1Hq (σ)(k, Sλ′). (3.3.6)

Now we use the fact [18] that Sλ′ has a filtration with factors of the form Sµ1 ⊗
. . . ⊗ Sµt

when restricted to Hq(σ). Thus the Kunneth formula and part (i), when
applied to (3.3.6), complete the proof.

(iii) The proof of (iii) follows from (ii), because Y λ ⊗ sgn admits a dual Specht
module filtration.

The restrictions on l in Theorem 3.3.4 cannot be improved. Indeed, for l = 3 and
for d small, R1G(S(d) ⊗ sgn) may be nonzero in the classical symmetric group case
[11, 4.1].

3.4

Part (i) of the following lemma is due to James [16, 2.8] in the classical case, and
it follows from the same argument in the quantum case [9, Section 4.3]. Part (ii) is
immediate from the adjointness of F and G.

Lemma 3.4.1. Let λ ∈ Λ and let N ∈ Mod(Hq(d)). Then the following hold.
(i) ∆(λ) has l-restricted socle.
(ii) G(N) has l-restricted socle.
(iii) T (λ) has l-restricted socle.

Proof. Only (iii) needs to be proved, and it follows since T (λ) is well known
to have a filtration by Weyl modules. Any module with a Weyl filtration will have
l-restricted socle. This follows from (i) because, given a short exact sequence

0 −→ V −→ T −→ U −→ 0,

soc(T ) embeds in soc(U) ⊕ soc(V ).

The following theorem (the motivation for which is [20, 3.1, 3.2]) shows that
the functor G is well behaved on dual Specht and twisted Young modules. We
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remark that Theorem 3.4.2 and Corollary 3.8.2 first appeared in [13, Theorem 7.6,
Proposition 7.5; 4, Theorem 5.2.4] with fewer restrictions on l. Their approach uses
base changes. We provide alternative proofs of these results to make the exposition
more self-contained.

Theorem 3.4.2. Suppose that l � 4. Then the following hold.
(i) G(Y λ′ ⊗ sgn) ∼= T (λ).
(ii) G(Sλ′ ⊗ sgn) ∼= ∆(λ).

Proof. (i) First we will show that G(Y λ′ ⊗ sgn) has a good filtration. A similar
exact sequence to (3.3.5) gives an injection.

0 −→ Ext1Sq (n,d)(∆(µ),G(Y λ′ ⊗ sgn)) −→ Ext1Hq (d)(Sµ, Y λ′ ⊗ sgn).

However, Y λ′
is a summand of V ⊗d; therefore,

Ext1Hq (d)(Sµ, Y λ′ ⊗ sgn) ↪→ Ext1Hq (d)(Sµ, V ⊗d ⊗ sgn)
∼= Ext1Hq (d)(V

⊗d, Sµ ⊗ sgn)

= R1G(Sµ ⊗ sgn)
= 0.

Therefore, by Proposition 2.5.1 , G(Y λ′ ⊗ sgn) has a good filtration.
By Lemma 3.4.1 , T (λ) has l-restricted socle. Thus, by Proposition 2.4.1, there

exists an exact sequence of the form

0 −→ T (λ) −→ G(Y λ′ ⊗ sgn) −→ X −→ 0,

where X has no l-restricted composition factors. Because the modules T (λ) and
G(Y λ′ ⊗ sgn) have good filtrations, it follows that X must have a good filtration.
Consequently, X = 0 because each ∇(µ) has an l-restricted head.

(ii) Since ∆(λ) has an l-restricted socle, Proposition 2.4.1 yields a short exact
sequence of the form

0 −→ ∆(λ) −→ G(Sλ′ ⊗ sgn) −→ X −→ 0.

We will prove that ∆(λ) and G(Sλ′ ⊗ sgn) have the same composition factors with
the same multiplicities to show that X = 0. We have

[G(Sλ′ ⊗ sgn) : L(µ)] = dimk HomHq (d)(Y µ, Sλ′ ⊗ sgn) by [12, 2.6]
= dimk HomHq (d)(Sλ′ , Y µ ⊗ sgn)
= dimk HomSq (n,d)(∆(λ′),G(Y µ ⊗ sgn)) by adjointness
= dimk HomSq (n,d)(∆(λ′), T (µ′))
= [T (µ′) : ∇(λ′)] by (2.5.3)
= [∆(λ) : L(µ)] by reciprocity.

3.5

Despite the failure of (2.5.2) for symmetric groups, we will show that Specht
filtration multiplicities are well defined, as long as l � 4. The key observation is
that G is a two-sided inverse to F on modules with Weyl filtrations. We begin with
the following theorem.
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Theorem 3.5.1. Let l � 4 and let N ∈ Mod(Hq(d)). Then there is a one-to-one
correspondence between dual Specht module filtrations of N and Weyl filtrations
of G(N).

Proof. The Schur functor F is exact and F(∆(λ))= Sλ. Since F(G(N))= N , it
is clear that a Weyl filtration of G(N) induces a dual Specht filtration of N via F .
We prove the converse by induction on the length of the filtration. Thus suppose
that N has a dual Specht filtration; we show that G(N) has a Weyl filtration.

Theorem 3.4.2(ii) proves the case where N ∼=Sµ. Now suppose that we have

0 −→ Sµ −→ N −→ U −→ 0,

and assume by induction that G(U) has a Weyl filtration. Applying G gives

0 −→ G(Sµ) −→ G(N) −→ G(U) −→ R1G(Sµ).

However, R1G(Sµ)= 0 by Theorem 3.3.4(ii), so G(N) has a Weyl filtration.

3.6

Theorem 3.5.1 allows us to translate Proposition 2.5.1 into a criterion for an
Hq(d)-module to have a dual Specht filtration in terms of A-cohomology.

Theorem 3.6.1. Let l � 4 and let N ∈ Mod(Hq(d)). The following are
equivalent.

(i) N has a dual Specht module filtration.
(ii) Ext1A(G(N),∇(λ))= 0 for all λ∈Λ.
(iii) Exti

A(G(N), T (λ))= 0 for all λ∈Λ and for all i > 0.

Of course N has a dual Specht filtration if and only if N ⊗ sgn has a Specht
filtration, so Theorem 3.6.1 also yields a criterion for Specht filtrations. That is, we
have the following theorem.

Theorem 3.6.2. Let l � 4 and let N ∈ Mod(Hq(d)). The following are
equivalent.

(i) N has a Specht module filtration.
(ii) Ext1A(G(N ⊗ sgn),∇(λ))= 0 for all λ∈Λ.
(iii) Exti

A(G(N ⊗ sgn), T (λ))= 0 for all λ∈Λ and for all i > 0.

3.7

It is well known that a Young module for kΣd is a p-modular reduction
of a unique characteristic zero module, and so it has a well defined ordinary
character. For λ, µ∈Λ, let (Y λ : Sµ) denote the multiplicity of the complex character
corresponding to Sµ in the character of Y λ. Then Y λ is known to have a Specht
filtration with each Sµ appearing (Y λ : Sµ) times. This is the filtration induced
by F from the good filtration of I(λ), the injective hull of L(λ). Although this is
often denoted by [Y λ : Sµ], this notation is ambiguous, since we saw in Subsection
3.2 that Young modules can have Specht filtrations with different multiplicities.
The following theorem, which is immediate from (2.5.3) and Theorem 3.5.1, proves
that for l � 4, filtration multiplicities in Specht and dual Specht filtrations are well
defined for any Hq(d)-module. In particular, for kΣd there is no ambiguity when
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p � 5, that is, [Y λ : Sµ] = (Y λ : Sµ) is well defined. Thus we can define [N : Sλ] as
the multiplicity of Sλ in any dual Specht filtration of N .

Theorem 3.7.1. Let l � 4 and suppose that N ∈ Mod(Hq(d)) has a dual Specht
filtration and that M ∈ Mod(Hq(d)) has a Specht filtration. Then the filtration
multiplicities are well defined. Specifically,

[N : Sλ] = dimk HomA(G(N),∇(λ)).

Similarly, for Specht filtrations,

[M : Sλ] = dimk HomA(G(N∗),∇(λ)).

3.8

Theorem 3.5.1 and Proposition 2.4.1 show that on the category of modules with
Weyl filtrations, G is a two-sided inverse to F . Namely we have the following
theorem.

Theorem 3.8.1. Let l � 4. Suppose that M ∈ Mod(A) has a Weyl filtration.
Then M ∼=G(F(M)).

Proof. Since M has a Weyl filtration, we can apply Proposition 2.4.1 to M to
obtain

0 −→ M −→ G(F(M)).

However, M and G(F(M))) both have Weyl filtrations with the same multiplicities,
so they must be isomorphic.

This result lets us determine G on Young modules.

Corollary 3.8.2. Let l � 4. Then G(Y λ) = P (λ).

Thus we can determine G on Young, twisted Young and dual Specht modules,
because these modules all have dual Specht filtrations. However, G(Sλ) is not
known.

3.9

In [20], some conditions were given for when

Exti
A(M,N) ∼= Exti

eAe(eM, eN).

Theorem 3.8.1 gives such a stability result for A and Hq(d) extensions of modules
with Weyl and dual Specht filtrations. Namely we have the following corollary.

Corollary 3.9.1. Let l � 4. Suppose that N2 ∈ Mod(A) has a Weyl filtration.
Then

Ext1A(N1, N2) ∼= Ext1Hq (d)(F(N1),F(N2)).

Proof. This is immediate from Theorem 2.4.2 and Theorem 3.8.1, since N2 =
G(F(N2)) and R1G(F(N2))= 0.
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In the classical case, an induction argument on the Sylow subgroups of Σd allows
us to extend the stability of Ext1 in Corollary 3.9.1 to higher Ext. The details can
be found in [20], but we note the result here.

Corollary 3.9.2. Let p � 5, and suppose that N2 ∈ mod(S(n, d)) has a Weyl
filtration. Then, for 0 � i � p − 2,

Exti
S(n,d)(N1, N2) ∼= Exti

kΣd
(F(N1),F(N2)).

4. A new construction of Young modules

4.1

Since F(T (λ))= Y λ′ ⊗ sgn, one might expect Young modules, or twisted Young
modules, to play a role similar to that of tilting modules. In Mod(A), the
tilting modules are exactly those modules with both good and Weyl filtrations.
Young modules have both Specht and dual Specht filtrations, but they are not the
only modules that do. For example, any simple Specht module has both a dual
Specht and a Specht filtration, but simple Specht modules are not always Young
modules. Still there are parallels, and in this section we show how the results from
the last section lead to a new, cohomological, construction of Young modules, for
which the motivation is a similar construction of tilting modules. First we need a
result similar to [20, 6.4(b)].

Proposition 4.1.1. Let l � 4 and λ, µ∈Λ. Then Ext1Hq (d)(S
µ, Y λ) = 0.

Proof. Since R1G(Sµ)= 0, the proposition is immediate from Theorems 2.4.2
and 3.4.2(ii). Namely,

Ext1Hq (d)(S
µ, Y λ) ∼= Ext1Hq (d)(Y

λ, Sµ)
∼= Ext1A(P (λ),∆(µ)) = 0.

We remark that [20, 6.4(b)(iv)] claims incorrectly that Ext1kΣd
(Y µ, Sλ)= 0 (the

argument given actually proves that Ext1kΣd
(Sλ, Y µ)= 0). For example, in [3], the

nonprojective Young modules of defect 2 are determined. From those results, we
calculate that, for p = 5 and d = 13,

Ext1kΣ13

(
Y (7,2,2,1,1), S(6,3,2,1,1)

)
�= 0.

4.2

We also need another proposition, for which the motivation is [20, 3.3c]. Let �
denote the usual dominance order on partitions [17, 1.4.5].

Proposition 4.2.1. Let l � 4, and suppose that µ �� λ. Then Ext1Hq (d)(S
µ, Sλ)

= 0.

Proof.

Ext1Hq (d)(S
µ, Sλ) ∼= Ext1Hq (d)(S

µ ⊗ sgn, Sλ ⊗ sgn)
∼= Ext1Hq (d)(Sµ′ , Sλ′)
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∼= Ext1A(∆(µ′),G(Sλ′)) by Theorem 2.4.2
∼= Ext1A(∆(µ′),∆(λ′)) by Theorem 3.4.2(ii).

However, Ext1A(∆(µ′),∆(λ′))= 0, since λ′ ��µ′, by [19, II, 2.14].

4.3

We can now begin the construction of the Young module Y λ. We will follow
the description of the Ringel–Donkin construction of T (λ) as presented in [1].
Henceforth, assume that l � 4 and fix λ 
 d. Define W0 = Sλ. Choose λ1 minimal
with respect to � such that

t1 = dimk Ext1Hq (d)(S
λ1 , Sλ) �= 0.

Let W1 denote the corresponding extension:

0 −→ Sλ −→ W1 −→ (Sλ1)⊕t1 −→ 0.

Notice that λ1 � λ by Proposition 4.2.1. Now choose λ2 minimal such that

t2 = dimk Ext1Hq (d)(S
λ2 ,W1) �= 0.

Let W2 denote the corresponding extension:

0 −→ W1 −→ W2 −→ (Sλ2)⊕t2 −→ 0.

We remark that λ1 ��λ2 by Proposition 4.2.1 and the minimality of λ1. Continue
in this way to construct a module Wλ with a filtration

0 ⊂ Sλ = W0 ⊂ W1 ⊂ . . . ⊂ Wr = Wλ,

where

Wi/Wi−1
∼= (Sλi )⊕ti .

It is clear from the construction that λi−1 �� λi; that is, at each step, the new
partition will not be � any of the previous partitions. However, there are only
finitely many partitions of d, so the process must terminate. We conclude that Wλ

is finite-dimensional and
Ext1Hq (d)(S

τ ,Wλ) = 0 ∀ τ ∈Λ. (4.3.1)

At this point in the corresponding construction of T (λ), one could conclude
immediately from (4.3.1) that T (λ) has a Weyl filtration. However, we do not have
an analogue of (2.5.2) for the Hecke algebra, so instead we must exploit the functor
G to study Wλ.

4.4

Having constructed the module Wλ, we will now prove that it is isomorphic to the
Young module Y λ. First we recall a basic lemma from [15, 13.17] for the symmetric
group and [22, Section 4.1, Exercise 4.11] for the Hecke algebra.

Lemma 4.4.1. Let l � 3.

(i) If λ ��µ, then HomHq (d)(Sλ, Sµ) = 0.
(ii) HomHq (d)(Sλ, Sλ)∼= k.

Next we show that Wλ is indecomposable.

Proposition 4.4.2. Wλ is indecomposable.
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Proof. We prove that Wi is indecomposable by induction. W0 = Sλ is inde-
composable whenever l � 3 by Lemma 4.4.1(ii), so the induction begins. Assume
that Wt is indecomposable for all t < i. We will prove that Wi is indecomposable
by showing that the only idempotent in EndHq (d)(Wi) is the identity.

Therefore choose an idempotent f ∈EndHq (d)(Wi). By construction, we have a
short exact sequence

0 −→ Wi−1 −→ Wi
π−→ (Sλi )⊕ti −→ 0, (4.4.3)

where π is the natural projection.
If f(Wi−1), �⊂ Wi−1, then π ◦ f would be a nonzero map from Wi−1 to (Sλi )⊕ti ,

which would contradict Lemma 4.4.1(i). Thus f |Wi−1 is an idempotent in
EndHq (d)(Wi−1). However, Wi−1 is indecomposable by inductive hypothesis, so
f |Wi−1 is the identity map.

Define
φ := f − 1 : Wi −→ Wi.

Since Wi−1 ∈ ker φ, we get an induced map

φ : (Sλi )⊕ti −→ Wi,

where φ = 0 if and only if φ = 0. Consider the long exact sequence resulting from
applying HomHq (d)((Sλi )⊕ti ,−) to (4.4.3). By construction of the Wi, the induced
map

HomHq (d)((Sλi )⊕ti , (Sλi )⊕ti ) −→ Ext1Hq (d)((S
λi )⊕ti ,Wi−1)

is an isomorphism.
Thus any map in HomHq (d)((Sλi )⊕ti ,Wi) comes from a map in HomHq (d)((Sλi )⊕ti ,

Wi−1), that is, has image in Wi−1. In particular, Im φ ⊂ Wi−1, so Im(f−1) ⊂ Wi−1.
However, f |Wi−1 is the identity, so

f − 1 = f ◦ (f − 1) since f is the identity on Im(f − 1)
= f ◦ f − f

= f − f

= 0.

Thus f is the identity map, as desired.

4.5

In this subsection we prove some nice homological properties of Wλ, which we
will apply to show that it has a Specht filtration.

Lemma 4.5.1. Let l � 4.

Ext1Hq (d)(V
⊗d,Wλ) = 0 = Ext1Hq (d)(V

⊗d,Wλ ⊗ sgn).

Proof. Use (4.3.1) and the well known fact that both V ⊗d and V ⊗d ⊗ sgn have
Specht filtrations.

Corollary 4.5.2. Let M ∈ mod(A).
(i) 0= R1G(Wλ)= R1G(Wλ ⊗ sgn).
(ii) Ext1A(M,G(Wλ))∼= Ext1Hq (d)(F(M),Wλ).
(iii) Ext1A(M,G(Wλ ⊗ sgn))∼= Ext1Hq (d)(F(M),Wλ ⊗ sgn).
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Proof. Part (i) is a restatement of Lemma 4.5.1. Parts (ii) and (iii) then follow
from Theorem 2.4.2.

4.6

In order to show that Wλ is a Young module, we first show that it has a dual
Specht filtration.

Lemma 4.6.1. Wλ has a dual Specht filtration.

Proof. From (4.3.1), we have

0 = Ext1Hq (d)(S
τ ,Wλ) ∀ τ ∈Λ

= Ext1Hq (d)(Sτ ′ ,Wλ ⊗ sgn)

= Ext1A(∆(τ ′),G(Wλ ⊗ sgn)) by Corollary 4.5.2(iii).

Thus G(Wλ ⊗ sgn) has a good filtration by Proposition 2.5.1, so Wλ ⊗ sgn has a
Specht filtration and so Wλ has a dual Specht filtration.

We just observed in proving Lemma 4.6.1 that G(Wλ⊗sgn) has a good filtration.
However, Wλ has a Specht filtration by construction, so Wλ⊗sgn has a dual Specht
filtration. Thus G(Wλ ⊗ sgn) has a Weyl filtration by Theorem 3.5.1. Therefore
G(Wλ ⊗ sgn) has both a good and a Weyl filtration; thus it is a tilting module.
Since F ◦ G = Id, the module Wλ ⊗ sgn must be isomorphic to Y µ ⊗ sgn for some
µ. However, the Specht filtration of Wλ implies that µ= λ, that is, we have shown
the following.

Theorem 4.6.2. Wλ ∼= Y λ.

4.7

We remark that this construction works just as well if we start with Sλ and build
the dual Specht filtration of Y λ down from the top. Furthermore, this construction
allows us to equate certain decomposition numbers with extensions between Specht
modules. Specifically, we have the following theorem.

Theorem 4.7.1. Let l � 4. Fix λ and set

L :=
{
µ : Ext1Hq (d)(S

µ, Sλ) �= 0
}
.

Let Lmin be all the elements of L minimal with respect to �. Then, for any µ∈Lmin,

[Y λ : Sµ] = dimk Ext1Hq (d)(S
µ, Sλ).

Proof. This is clear from the construction of Wλ and the observation that, for
µ1, µ2 ∈Lmin, µ1 and µ2 are incomparable, so

0 = Ext1Hq (d)(S
µ1 , Sµ2) = Ext1Hq (d)(S

µ2 , Sµ1).

That is, putting the Sµ1 on top of Sλ first, or putting the Sµ2 on first, will result
in the same module Wλ.

By the well known reciprocity law,

(Y λ : Sµ) = [Sµ : Dλ] = [∆(µ) : L(λ)],

so Theorem 4.7.1 really does equate certain decomposition numbers and extensions
between Specht modules.
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