Available online at www.sciencedirect.com -
SCIENCE@DIRECT" JOURNAL OF

Algebra

ELSEVIER Journal of Algebra 280 (2004) 295-312 _—
www.elsevier.com/locate/jalgebra

Fixed-point functors for symmetric groups
and Schur algebras

David J. Hemmet

Department of Mathematics, University Tifledo, 2801 W. Bancroft, Toledo, OH 43606, USA
Received 16 March 2004
Available online 2 July 2004

Communicated by Gordon James

Abstract

Let X¥; be the symmetric group. For ¢ m < d let F,;, be the functor which takes &;-
moduleU to the space of fixed pointg >, which is naturally a module foE,_,,. This functor
was previously used by the author to studyhemology of the symmsc group, but little is
known about it. This paper initiates a study &f,. First, we relate it to James’ work on row
and column removal and decomposition numbers for the Schur algebra. Next, we determine the
image of dual Specht modules, permutation and twisted permutation modules, and some Young
and twisted Young modules und&i,. In particular,, acts as first row removal on dual Specht
modulessS; with A1 =m and as first column removal on twisted Young and twisted permutation
modules corresponding to partitions with parts. Finally, we prove that determiniri, on the
Young modules is equivalent to determining ttecompositiomumbers for the Schur algebra.
0 2004 Elsevier Inc. All rights reserved.

1. Notation and preliminaries

We will assume familiarity with the representation theory of the symmetric gi&Gup
and of the Schur algeb&n, d) as found in [3,7,11]. Lek be an algebraically closed field
of characteristipp > 2. We writeA - d for A = (A1, ..., A,) a partition ofd andx = d for
a composition ofl. Let A*(n, d) denote the set of partitions dfwith at most: parts and
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let A(n, d) denote the set of compositionsdfvith at most: parts. We do not distinguish
betweem and its Young diagram:

A={G, ) eNxN|j<il}

A partition A is p-regular if there is noi such thath; =41 =---=Xj4,-1#0. Itis
p-restrictedif its conjugate partition, denoted, is p-regular. We write> for the usual
dominance order on partitions. Fbe= (A1, A2, ..., A,) we write A for A with its first row
removed, i.e.,

r=02, ... ) Hd—Ar
We write i for A with its first column removed, i.e.,
A=0a—12, -1, ... 0 —1Fd—r

The complex simpleX,;-modules are the Specht module®® | A - d}. Simplek X,-
modules can be indexed kyrestricted partitions or by-regular partitions. Both

{D* := $*/rad($") | 1 is p-regula  and {D; =sodS*) | » is p-restricted

are complete sets of nonisomorphic simplE;-modules. The two indexings are related
by D* = D, ® sgn where sgn is the one-dimensionajisature representation. We recall
that

S* ® sgn= Sy, (1.1)

whereS,, denotes the dual of the Specht modS§ite

We will also consider the Young moduld§™” | A I d}, the permutation modules
{M” | » € A(n,d)}, and their twisted versions obtained by tensoring with sgn. i$
p-restricted, therY* is the projective cover oD;. All these modules, and th&, d)-
modules below, are described in [11].

Let V = k" be the natural module for the general linear gr@ip, (k). ThenV®? is
a GL, (k) -module with the diagonal action andc&;-module by place permutation. The
Schur algebr&(n, d) is defined by

S(n,d) :=Ends, (V).

The actions ofGL, (k) and ¥; commute, so we get a mapL, (k) — S(n,d). This
map identifies the category mdtin, d) with the category of homogeneous polynomial
representations dsL, (k) of degreed.

For . € AT (n,d) we denote the irreduciblé(n, d)-module with highest weight
by L()). We also writeA(%) and V(i) (sometimes written’V/ (1) and H°(%)) for the
standard and costandard modules with highest weighespectively.P (1) will be the
projective cover ofL(1), I(1) the injective hull, andT (1) the correpondingtilting
module. Finally,s*(V) and A*(V) will be the symmetric and exterior powers.
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Let I (n,d) denote the set of afl-tuplesi = (i1, i2, ...,ig) With iy € {1,2,...,n}. The
symmetric group¥; acts on the right ot (n, d) by

iT = (in(l)y in(Z) LR i”(d))'

This action extends to an action éw, d) x I (n, d), and we write(i, j) ~ (k, 1) if k =i
andl =jx for somer € X;. Let 2 be a set of equivalence class representatives under
Recall [3] thatS(n, d) has a basig&; ;} indexed bys2. Fori € I(n,d) define the weight
of i by wt(i) = (A1, A2, ..., An) € A(n, d), wherei, is the number of times appears in.
Then¢; j is an idempotent, usually denotéd

1.1. The Schur and adjoint Schur functor
Henceforth assume > d. Let w = (19) € A(n,d) and lete denote the idempotent

&» € S(n,d). TheneS(n, d)e = kX,, and the Schur functaoF : mod-S(n, d) — mod4 X,
is defined byF(U) := eU. This is an exact, covariant functor with

F(Vw)=s*  Flaw)=S.  F(L®)=D;or0,
F(PG))=Y* F(I() =1, F(T)=r" @sgn (1.2)

The Schur functor admits a right adjoint functgr mod« X; — mod-S(n, d) defined
by

G(N) :=Homs, (V& N) = HoMesn,aye(eS(n, d), N).
The two definitions are equivalent sines(n,d)e = kX; and eS(n,d) = V®¢. The
moduleV®? is not injective as & X;-module. Thus the functd§ is only left exact, and
so has higher right derived functors

R'G(N) =Extz (V¥ N).

We now collect a few results abogt and R'G. Recall that we are assuming > 2
throughout:

Proposition 1.1.

() [10, 3.2]1G(Sy) = A()). In particular, G(k) = A(d).
(ii) [5,3.8.21G(Y*) = P(n).
(i) [10, 6.4] For p > 3, R1G(S;) =0.

1.2. Decomposition numbers, Spechitdtions, and dual Specht filtrations

We collect here material that will be used repeatedly in later sections. For a thorough
treatment see Martin’s book [11].
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We say ak X;-moduleU has aSpecht filtrationif it has a filtration with successive
quotients isomorphic to Specht modules. Similarly, we will dayhas adual Specht
filtration. For S(n, d)-modules we refer to Weyl filtration(by A(ur)’s) or agood filtration
(by V(w)'s). The multiplicities in a good or Weyl filtion are independent of the choice of
filtration. The same holds for Specht and dual Specht filtrations in kggdwhenp > 3
(but not forp = 2 or 3) by work in [5].

The Young module¥” are self-dual and are known to have both Specht and dual Specht
filtrations. If [Y# : S, ] denotes the multiplicity of, in a dual Specht filtration of * and
[A(}) : L(n)] denotes a decomposition number fgr, d), then a well-known reciprocity
theorem [11, p. 118] gives

[A) L] =[I(w) : V)] =[Y*: 8] =[r": 8] (1.3)

So knowledge of the decomposition numbers $or, d) is equivalent to knowledge of
multiplicities in dual Specht filtrations of &ung modules, a fact we will use repeatedly
later.

The category modx(n, d) is a highest weight category. In particulpp(2) : L(A)] =1
and[A (%) : L(n)] =0 unless. > . This triangular structuranithe decomposition matrix,
together with reciprocity (1.3), will be very useful to us, since it gives a triangular structure
to the matrix of filtration multiplicitiegY* : S,]. In particular, suppose we knowke ;-
module is a direct sum of Young modules. If we know the multiplicities in a dual Specht
filtration of the module, then we can datg@ne the multiplicities of the Young module
summands.

The permutation modulg/* is a direct sum of Young modules

M=y P Ky vt
U

The p-Kostka numbers; , are not known. However, Young's rule (see [7, Chapter 14])
gives a nice formula for the multiplicities in a Specht or dual Specht filtration/6f
Thus if we know the decomposition numbers &ir., d), then Young’s rule together with
reciprocity let us determine the-Kostka numbers.

2. Relating the fixed-point functor to James' idempotent

In [4] we proved some theorems on extensions between simple modules for the
symmetric group when the first row or column of the corresponding partitions is removed.
The proof used the fixed-point functor, which we now define. Throughout the paper we will
considerX,, as the subgroup of; fixing {m+1,m+2,...,d}andX;_,, as the subgroup
of X, fixing {1, 2, ..., m}. ThenX,;_,, commutes with¥,, < X;. So for ak X¥;-moduleU,
the space ot -fixed points is a¥;_,,-submodule of/. Thus we can define

Fm:mod4X; — mod«X,;_,,
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by

Fu(U) := U = Honys, (k, U) = Homy z, (M™1™™ ).
The proofs in [4] were motivated by, but did not really use, James’ work in [8]. In this
paper we will first relate James’ paper to the functyy. It will often be convenient to
think of 7, as first restricting ta¥,,, x X;_,, < X4, and then taking the largest subspace
on which X, acts trivially.

In order to describe James’ work, we need some more notation. £ 1< d and let
I*(n,d) be the subset of (n, d) consisting of thosel/-tuples withiy_,,+1 = ig—mt2 =
- =ig=1andiy # 1 for 1<k <d—m.James defined an idempotent X' & ;, the
sum being over distinct elemer#g with i € I*(n, d). James also defined

Si:=spar{&; |i.j € I"(n,d)} C S(n, d).

Then S, is a subalgebra ofS(n, d)n, and James proved [8] th&f = S(n — 1,d — m).
Thus we have the following (only partly commutative) diagram of functors, witeasd

G are as above whilg andg are the corresponding Schur and adjoint Schur functors for
the smaller symmetric groub,;—,,. Also we use7 to denote multiplication by followed

by restriction toS;.

f
mod-S(n, d) mod+« X,
l g
n-
J mod#.S(n, d)n Fon
resl
F
mod-S1 mod+«X;_,,
9

Our first theorem is that James’ functgris closely related to the fixed-point functay, .

Theorem 2.1. LetU € mod X, and let the functors be as in the diagram above. Then
FnU) ZF(T(GW))).

Proof. We begin the proof with a well-known lemma:

Lemma 2.2. Recall thatS(n, d) = End, 5, (V®?). Then

(i) V¥ =B, cnm.a) M askZa-modules.
(i) & j € S(n,d) corresponds to an element H\omkgd(M*, M™*) wherei = wt(i) and
= Wt(j).



300 D.J. Hemmer / Journal of Algebra 280 (2004) 295-312

(iii) &, corresponds to projection ont*.
(iv) n corresponds to projection onto

@ i
rEA(n,d)
A=m

Proof. To see (i), recall thatv®? has standard basig; := e, Ve, ® - ey |
i € I(n,d)}. Under this identification)/* is spanned by the basis vectges| wt(i) = A}.
Parts (ii) and (iii) are immediate from the description in [3, 2.6a] of the actio§; pf
on V®_ Part (iv) follows from (iii). O

To prove the theorem, ldf e mod4X,. Leti=m+1,m+2,...,d,1,1,...,1) €
I~*(n, d) and lete = & ;. Thene is an idempotentSie = kX;_,,, and the Schur functor
F is multiplication bye.

Now G(U) = Hornk;d(v®d, U) is aleftS(n, d)-module with action obtained from the
right action ofS(n, d) on V®¢. Thus the action of(n, d) (and hence ofyS(n, d)n and
of $1) is given by precomposing functions. That isfif: V®¢ — v®4 is in S(n,d) and
g:V® 5 UisinGU), thenfg=go f:V® - U.So Lemma 2.2(iv) gives

ngU) EHomkgd< b M. U),

rEA(n,d)
A=m

Buté is projection onta ™™™ so we get

&nG(U) = Homyz, (M™Y™ U= 7, ). O

3. Somegeneral propertiesof F,

In this brief section we collect a few general propertiesFaf which will be useful in
determining howF,, acts on specific modules. We first remark ti#at has a left adjoint
functorG,, : mod«X,;_,, — mod« X, given by

Gn(U):=Inds? o (k@ U).

The functorg,, is exact, butF,, is exact only whem: < p, and is left exact in general.
ThusF,, has higher right derived functors

R F(U) = Extyy, (M1, V).
A key fact in understanding,, is that R1F,, vanishes on dual Specht modules.

A closely related fact (that the first higher right derived functor of the adjoint Schur functor
G vanishes on dual Specht modules) played a key role in [5]. Some of the results below
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require the assumptiop > 3. This seems to be similar to what was observed in [5].
Specifically wherp = 3itis possible foH (X, ;) to be nonzero, and this has a dramatic
effect on the results.

Proposition 3.1. Let p > 3andx - d. ThenR1F,(S;) = 0.

Proof. We have

Rl]:m(S)\) = EXt]]('Ed (M(m,]_d*m)’ S)L) ~ EXt]:I(_Zd (S)\, M(m,ldﬂ"))'

But the permutation moduleg* are direct sums of Young modules, and ,@51(5*, YH)
is always zero whep > 3 [10, 6.4b], so the result follows.O

Proposition 3.1 is false whepm= 3. For example it/ =5 andm = 3, then

R F3(Ss)) = Extly, (k, Ressy (S17)) = Exthy, (k, sgn #0.

Finally we recall thatF,, was used in [4], where its image was determined on the modules
S*, S,, andD; if A1 <m < p, i.e., whenF,, is exact. In the case whem= A1 < p, the
functor 7, “removes the first row” froms*, S;, andD;, (i.e., mapss;, to S;, etc.). In the
general case considered here (witlarbitrary), we will see thaf,, acts as first row or first
column removal only on the twisted modules, namgly sgn,Y* ® sgn, and”/* ® sgn.

4. F,, ondual Specht modules
In this section we show thak,, behaves very nicely on dual Specht modulgsWe
will need the notions of semistandaxetableaux of typg: and the basis o#* given by

A-tabloids, which are described in the book [7]. First we need a lemma.

Lemma 4.1. The dimension aof-, (S,) is the number of semistandakdtableaux of type
(m, 147™). In particular, if .1 < m, thenZ,,(S;) = 0.

Proof. Since

Fon(S0) = Homys, (M2 8,) = Homy s, (8%, M 17™),
the result follows from [7, Theorem 13.13], where a basis for HQJ(S)‘,M“) is
described for arbitrary. and w. In particular, if A1 < m then there is no such tableau,

S0F,(S))=0. O

Thus we must consideF,,, (Sy) for A1 > m. The casé.1 = m follows from our work in
Section 2 together with work of James:

Theorem 4.2. LetA; =m. ThenF,, (S) = S;.



302 D.J. Hemmer / Journal of Algebra 280 (2004) 295-312

Proof. James showed in [8] thaf(A(1)) = A(X). So

Fn(8:) = F(T(G(S0)) by Theorem 2.1
F(J(AG)) by Proposition 1.1(j)
(a0)

C by(12) O

12

e 11
Cel]

In order to describeF,,(S;) in general, we must discuss skew diagrams and the
corresponding skew Specht modules. Suppose(i1, A2, ..., A) =d andu = (1, u2,
.., us) 1 fort <d. Supposeu; < A; for all i (wherep; is interpreted as O far > s).
Then theskew diagram.\ u is defined as

M= {0 ) eNXN|L1<i <, i <j < il

To each skew diagram there is associated a skew Specht mg/dtiland its dual, which

we denotes;, .. Their construction can be found in [9], where it is shown 8t has a
Specht filtration, and the filtration multiplicities are determined combinatorially. We will
not describe the details of the construction here, but we will need the following from the
paper of James and Peel.

Proposition 4.3 [9, Theorem 3.1]Let A + d. When restricted t&),, x X _,,, the module
$* has a chain of submodules with factors isomorphisfag $*\#, where each partition
B of m such that\\ 8 exists occurs exactly oncestf < A1 (SOA\(m) existy, the filtration
can be chosen so thaf ® $*\™ occurs on the top.

James and Peel constructed a filtratiobfbut of course taking duals gives a filtration

of S, by modulesSg ® Sy\ g With S,y ® S\ om) @s a submodule. We also need the following
well-known lemma.

Lemma 4.4 (7, 13.17].

k, ifx=(d),

Homg, (k, $;) = {0 otherwise.

(4.1)

We can now determing&,, (S,) in general.

Theorem 4.5. LetA - d. Then

Sa\m)» if A1 > m,
Fn(S2) =1 83, if Ay =m,
0, if A1 <m.

Furthermore, ifp > 3, thenF,, takes modules with dual Specht filtrations to modules with
dual Specht filtrations.
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Proof. Only the casé.; > m is not handled by Lemma 4.1 or Theorem 4.2. Itis clear from
the description ofF,, that one way to gef,, (U) is to first restrict to ¥, x X4_,,, and
then take the largest subspace on whigh acts trivially, which is aX;_,,-submodule.
But we know the filtration in Proposition 4.3 can be choser§gg ® Si.\ ) OcCcurs as a
submodule. Lemma 4.4 guarantees that no ofgisrhave anyX), fixed-points, so the first
part of result is immediate.

The second part follows by induction on the number of dual Specht modules in the
filtration. We know from the work of James and Peel tH#a1(S,) = S\ () has a dual
Specht module filtration. Now suppo&ehas a dual Specht filtration. Then we have

0—S,—-U—=N,
whereN has a dual Specht filtration. Applying, gives
0— Fu(Su) = Fu(U) = Fn(N) = RYFp(S,).

However if p > 3, thenRYF,,(S,) = 0 by Proposition 3.1(iii), and%,,(N) has a dual
Specht filtration by inductive hypothesis, $,(U) has a dual Specht filtration.O

We close this section with a few observations. First, the statement corresponding to
Lemma 4.4 is definitely false fas*. This will explain the much greater difficulty in de-
termining %, (S*). Also F,,(S5) = Homy, (M1~ s,y has a basis of semistandard
homomorphisms indexed by semistandarthbleau of type(m, 1¢—™). (See [7, Chap-
ter 13] for details.) These tableaux are in obvious bijection with the set of staatjand
tableaux, which index a basis 61\ ;). In this case the obvious bijection between the two
bases does not extend t& &, _,,,-homomorphism.

5. Fm on permutation and twisted per mutation modules

In [7, 13.19] James gives a basis for HopM*, M*) indexed by row-standara-
tableaux of typg:. So the dimension af;,, (M*) is known, and it is not hard to determine
the module structure.

Theorem 5.1.

Fu(M')= P M".

TE=d—m
TS Vi

Proof. SinceM* is a permutation module om-tabloids, a basis aof,, (M*) is given by

orbit sums ofu-tabloids under the action &,,,. It is easy to determine how,_,, acts on

these orbit sums. In particular, for= d — m, the summand/’ in the theorem has a basis
given by orbit sums of tabloids with exacttyelementsofm + 1, m +2,...,d} inrowi.

Is is elementary to check the permutation action on these orbit sums is exactly the action
on t-tabloids. O
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As an example of Theorem 5.1:

J-‘3(M321) — M3 @ M2O0g )20l gy py120 gy 7021 gy pr110
The analysis off;,, on twisted permutation modules is different. We begin with a lemma:

Lemmab5.2.

(i) sgn= s,

.. d ~ |k, ifxe A, d)hasd ones andh — d zeroes,
(i) Homes, (S©, M*) = {O otherwi(sne. :

(i) Reg! (M) = @ (M7)@dmy
teA(d,m)
T <A

wheredim M*\® is d!/(IT(A; — Ti)!).

Proof. Part (i) is well-known and (ii) is immediate from [7, 13.13]. Part (iii) can be
seen either from Mackey’s theorem drettly by considering the action df,, on A-tab-
loids. O

We can now determine how,, behaves on twisted permutation modules. In general,
the image is much smaller than on permutation modules. In particulangém parts then
Fm just sends\* ® sgn toM* ® sgn In general:

Theorem 5.3. For A - d we have

Fn(M* @ sgn) = @ MP ®sgn

pEd—m
Ai—1<pi <

In particular, if A has fewer tha}rm parts thanF,, (M* ® sgn = 0 and if » has exactlyn
parts, thenF,,(M* ® sgn = M* ® sgn

Proof.
Fn(M* ® sgr) = Homyz,, (k, M* @ sgn)
= Homy,, (S, M*)  sinces™ = sgn

= Homy s, <S(1'">, ) (Mf)ead‘m’”m) by Lemma 51(iii).  (5.1)

TEm
T KA
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By Lemma 5.2(ii), the onlyr which contribute to the direct sum in (5.1) are those
with m ones. For each such How;d(s(ld), M7) is one-dimensional. So we get a space
of dimension equal to that af7?, wherep = A\t hasi; — 1 < p; < A;. Each map in
(5.1) corresponds to a one-dimensional subspac¥‘ofon which X,, acts by the sign
representation, and the action Bf_,, is just its action oni*. Then it is just a matter of
checking that the action &f;_,, on these maps is the same as the actioM@n\We leave
this to the reader.

Whena has fewer tham parts, there is no sugh, soF;,(M* ® sgn = 0. Whenx has

exactlym parts, therk is the only suctp and 7, (M* ® sgn = M* @ sgn O

It is known thatG(M*) = $*(V) andG(M* ® sgn = A*(V). Thus an alternative way
to prove Theorems 5.1 and 5.3 would be to analyze how James’ idempotent acts on the
standard bases 6f (V) andA*(V), then apply Theorem 2.1. Combinatorially the analysis
is of similar difficulty to our proof.

Since we are discussing semistandard homomorphisms, we will take the opportunity
to observe that the tools being used in this paper give a very short proof of a theorem
originally proved by James via a long combinatorial argument. In [7, Chapter 13], James
constructed a basis for Hom(Mk, M*™) indexed by row-standarg-tableaux of typeu.

He then showed that those maps corresponding to semistandard tableaux, when restricted
to $* € M*, give a basis for Hom, (S*, M*). This indirectly shows that every element of
Hom x, (S*, M*) extends to a map om*. James remarked that he knew no direct proof

of this fact, so we give one below when> 3.

Proposition 5.4 [7, 13.15].Suppose > 3. Then every element bfomy s, (S*, M*) can
be extended to an elementtdbmy s, (M*, M*).

Proof. We have
0> S*> M - 00,
whereQ has a Specht filtration. Apply Hom, (—, M*) to the sequence to get
-+~ — Homy s, (M*, M*) 5> Homx, (S*, M*) > Ext}y, (Q. M*) — . (5.2)
But
dimy Extiy, (Q. M") = dimy Extz (M*, Q%)
< dimg Extiy, (V®4, 0*) by Lemma 2.2(i)

=dimyR*G(0%)
=0 by Proposition 1.1(iii)

sinceQ* has a dual Specht filtration. Thus the mamn (5.2) must be a surjection, and the
proposition follows. O



306 D.J. Hemmer / Journal of Algebra 280 (2004) 295-312

6. Fm on Young and twisted Young modules

Having determined how the fixed point functor acts on permutation modules and twisted
permutation modules, we now turn to their direct summands, namely the Young modules
Y* and twisted Young modules* ® sgn We will see, as in the previous section, that the
twisted case is better, in the sense that whéasm parts,f,, acts as first column removal
onY* ® sgn No such result holds faf;,(Y*). Indeed, we will show that determining all
the 7, (Y") is essentially equivalent to determining the decomposition matrix for the Schur
algebra, a very difficult problem indeed!

We begin with a lemma made easy by the calculations in the previous section.

Lemma6.1. F,,(Y") is a direct sum of Young modules faE,;_,, while F,, (Y* ® sgn is
a direct sum of twisted Young modulesf&,;_,,.

Proof. SinceY?* is a direct summand dff*, this is immediate from Theorems 5.1 and 5.3.
We can determiné, (Y* ® sgn precisely in some cases:

Theorem 6.2. Let p > 3. If A has fewer tham: parts, thenF,,(Y* ® sgn = 0. If A has
exactlym parts, then

Fu(Y* ®@sgn) = Y* @ sgn

Proof. From Lemma 6.1 we knowF,, (Y* ® sgn is a direct sum of twisted Young
modules. Twisted Young modules have filtrations by both Specht and dual Specht modules,
and the matrix giving the multiplicitiegy* : S.1 is triangular. Thus, if we can prove
Fm(Y* ® sgn has a filtration by dual Specht moeslwith the same witiplicities as in a

dual Specht filtration of* ® sgn, we can conclude that it is indeBd ® sgn So let

Y* ®@sgn=5" ®@sgn+ Y an (" @sgn) =Sy + Y aruSu, (6.1)
u>A U>A

where by the “sum” in (6.1), we mean the modules have filtrations with the factors listed
in the sum. Now, appealing to the second part of Theorem 4.5, it makes sense tGapply
to both sides of (6.1). Notice first thatifhas fewer tham parts, thenh” and all theu''s

in the sum have first row less than so the corresponding,’s are annihilated by-,,. So

Y* ® sgn has a filtration by dual Specht modules, all of which are annihilate,byAny

such module must be annihilated By,. So now assume hasm parts. Then applying;,

to (6.1) gives

Fu(Y*@sgn) =Sy + Y @S, (6.2)

wi=m
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Now suppose

Y @sgn=S"@sgn+ Y b; (ST @sgn) =S, + > by, So. 6.3)

T>A T>A

Sincer > i and’. has< m parts, therr has< m parts. Thus all the appearingin (6.3)
are of the formy for someu + d with w1 = m. This fact plus the observation thet= A’
for any A lets us rewrite (6.3) as

A
Y" ®sgn= Sy + Z b):;lS;?‘ (6.4)

ni=m

However by (1.3) the,, are decomposition numbers f8(x, d). Specifically,

ar=[AG) L]

But James proved in [8] that first column removal preserves decomposition humbers
(essentially just by tensoring with the determinant). Tays= b; ;1 SO the sums in (6.2)
and (6.4) coincide, as desiredd

We remark that ifs is p-restricted, then a twisted Young module is also a Young
module. In particulary* ® sgn= Y”® wherem(}) is the Mullineux map given by
Dj ® sgn= D,,(;). Thus we have determined hoW,, behaves on projective Young
modules. We are not sure whether the theorem holdspfer 3. The problem is that
applying %, to “sums” like (6.1) is not justified, sinc&'F,, may be nonzero on dual
Specht modules.

We also remark that Theorems 5.3 and 6.2 give a column removal theorgnkiustka
numbers, which is already known.

Theorem 6.3. Let A, u - d both haven parts. Then

[M#* Y ] =[M* Y.

Proof. As we mentioned, the result would follow from Theorems 5.3 and 6.2 sincé&for
a summand of\/#, A cannot have more parts than However, it is easier to recall the
well-known fact that thep-Kostka numbefM* : Y*] is the same as the dimension of the
w-weight space i (1), so tensoring with the determinant gives the resuit.

The row-removal version of Theorem 6.3 has been conjectured by Henke [6, Conjec-
ture 6.3].

We wish now to convince the readerathdetermining the multiplicities of Young
modules forZ,_,, in F,(Y*) is a very difficult problem by showing it is equivalent to
knowing the decomposition numbers for the Schur algebra.
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For the base case in the inductive proof of the main theorem of this section, we will
need to knowY* : S¢4)]. Recall from (1.3) that

[Y":Sw]=[V@d): L(w)].

These numbers are known from work of Doty. Let= (u1, u2, ..., us) - d. Define a
sequence of nonnegative integefgu) as follows. First write each; out in basep. Then
add them all together. Far> 1, leta; be the number that is “carried” to the top of the
p' column during the addition. For example, let= 3 andu = (5,5, 2). Then adding
5+ 5+ 2 base three gives

anda(n) = (2,1). Doty calls this thecarry patternof . Then we have the following
lemma.

Lemma 6.4 [1, Section 2.4]The multiplicity[V(d) : L(r)] is either one or zero. It is one
precisely whem is maximal among all partitions af with the same carry pattern as.

As an aside, we point out here that Doty’s work plus the work in [5] allows a
determination of which Young modules have a fixed point.

Proposition 6.5.
[Y”’ : S(d)] = dim; Homy x, (k, Y“).

Proof. We know[Y* : S(4)] = [A(d) : L(u)] (which is known by the previous lemma).
But

[A(d) : L] = dim Homs, a) (P (1), A(d))
= dimHom,.q)(P(n), G(k)) by Proposition 1.1(i)
=dimHom.x, (Y, k)

by the adjointness df andF. But Y* is self-dual so the result follows.O

Now we will show that determining;, (Y*) is essentially equivalent to determining the
decomposition numbers foi(n, d). Specifically:

Theorem 6.6. Let p > 3. Suppose we know the decomposition numberss farr) for
r < d. Then we can determing,, (Y*) for all m and all » - d. Conversely suppose we
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knowF;,(Y*) for all m and all partitionsa + r, for » < d. Then we can determine all the
decomposition numbers féi(n, r) for r <d.

Proof. First suppose we know aflA(x) : L(u)], or equivalently by (1.3), suppose we
know all the multiplicities[Y* : S, ] in dual Specht filtrations of the Young modules. We
will calculate 7, (Y*) inductively.Y @ = k so F,, (Y @) = Y@= Now assume we know
Fm (YY) for all T > u, we must determing,,, (Y*#).

We know how to writeF;,,(M*) as a direct sum of permutation modules. However,
Young's rule [7, Chapter 14] tells us the filtian multiplicities in a Secht filtration of any
permutation module, so we can write

fm(M“)z Z CunSh, (6.5)
A=d—m

where by the summation we again mean the module has a dual Specht filtration with the
factors in the sum. We also know

Mr =YD K (YF). (6.6)

T>u

where thep-Kostka numberk,,, can be determined from the decomposition numbers. So
we have a Specht series Bf, (M*). We also knowF,,(Y") for all > . So Egs. (6.5)
and (6.6) together with knowledge of ti#6,(Y™)’s let us calculate the Specht filtration
multiplicities in F,,(Y*). But we already know that,, (Y*) is a direct sum of Young
modules forkX,_,,, so the decomposition numbers §tn,d — m) let us determine
precisely which Young modules.

Conversely suppose we know,, (Y*) for all m, and for all x - r with r < d.
Inductively we can assume we know the decomposition numbers(far-) with r < d,
and we will obtain the decomposition numbers §ar, d). That is, we need to get all the
[Y*: S,]. We will proceed inductively ork.. Lemma 6.4 provides the base case of the
induction, i.e., give ugY'* : S¢4)]. Now assume we have calculatgd" : S, ] for all © and
for all A > t. We must determingr'* : S;]. We will actually simultaneously g¢t* : S, ]
for all o with o1 = 71. Write

Y= auSp+ D bupSp+ Y cupSp, (6.7)

p1<m1 p1=T1 p1>171

where we know théc,,,} by inductive hypothesis. Now appl§,, to (6.7) and use Theo-
rem 4.5 to get

Fn(¥") = Z bupSp + Z Cup(So\(r))- (6.8)

P1=T1 pP1>T1

The dual Specht filtration multiplicities in the right-hand sum in (6.8) are known since
James and Peel [9] give a dual Specht filtration of $hg-,). Also by assumption we
can write 7,,,(Y*) as a direct sum of Young modules, and we can then write out a dual
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Specht filtration for it, since we are assuming we know the decomposition numbers for
S(n,d — 71). Equating the multiplicities on both sides of (6.8) lets us solve for all the
{bup} With p1 = 71 as desired. O

It is elementary to carry out either of the computations described in the proof of the
theorem. In Appendix A we present the imagesydffor d = 10, p = 5 (where all the
decompositiomumbers are known) undé. It would be interesting to get a more explicit
relation between the data in Appendix A and decomposition numbers.

7. Fm on simple modules and Specht modules

Determining 7;,(D;) and F,,(S*) seems to be very diffiti Indeed, we suspect,
although cannot prove, that either or both problem may be as difficult as determining
decomposition numbers, similar to Theorem 6.6. The only thing we can say comes from
the following lemma:

Lemma 7.1 [2, Lemma 2.3].Let A be p-restricted. ThenG(D,) has simple socle
isomorphic toL (1).

Thus we have:
Proposition 7.2. Let A be p-restricted andhy = m. Then

(i) D; SsodF,(Dy)).
(i) If G(D;) is simple, therF,,(D;) = Dj.
(iii) [4,5.5] If m < p, thenF,,(D;) = Dj.

Proof. Parts (i) and (ii) are both immediate from Theorem 2.1 since James proved in [8]
that 7 (LO) = L(V). O

We have some evidence thatD, ) is simple about half the time, usually eith@¢D, )
or G(D, ® sgn is simple. A case wherg(D,) is known to be simple is ifD, is a
completely splittable module [10].

We cannot say much abof, (S*) either. In [4] it was shown that if; = m < p, then
Fm(8*) = §*. The corresponding statement to Theorem 4.5 is definitely false. That s, even
if A1 < m, it is possible forF,, (5*) to be nonzero. The filtration &* as aX,, x Zy_,
module given in Theorem 4.3 would not have any terms of the f§ffth® $*\("), But this
does not rule out,, fixed points since nontrivial Specht modulg can still have fixed
points. We renew our conjecture from [4]:

Conjecture 7.3. F,,(S*) has a Specht filtration as /a%,,-module.

Perhaps a better understanding of the filbragiven in Proposition 4.3 would be useful
to attack the conjecture. B# @ $*\# occurs in the filtration, it is known whethé? has
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a fixed point unde,,. The question is whether this fixed point “drops” to the bottom of
the filtration, and whether it takes all 6f\# with it, so to speak. This seems to be difficult
to determine.

Another possibility is to considef* as a subspace af*. We know precisely a basis for
Fm(M*) as a subspace of* so to determinéF;, (S*) we just need to knows* N F;, (M*).
But $* as a subspace of” is given by the kernel intersection theorem of James [7, 17.18].
However, it seems to be very hard to combinatorially determine the subsp#Ge bf’)
which lies in the intersection of the kernels.

Appendix A. Fs5 on Young modulesfor X1g

Below are the images of the Young modules fBYo under the functorFs in
characteristipp = 5. Young modules not listed are annihilated by the functor.

Fs Ylo)
]:5 Y8 ) 41 D Y32

J

(
(
(
(v®
(
(
(Y713) Y312 o r2?
(
(
(
(
(
(

Y312 ® Y221

J

YG ) (Y4l)®2 D Y32,

S

YG) Y32 Y221,

YGZ]_Z)

AL

2 3
Zl@YZl

A

Y614) Y213 @ Y15

A

Fs(r¥)=v®e v,

Y83t ) (Y32)692 o (Y312)€B2 o Y221’

AL

]-'5(Y541) (Y“) ® Y312
fs(Y5312) (Y312) @ Y213,
fs(Y5221) ~ Y221
]-'5(Y5213) (Y213)€B2 o Y15
Fo(ro) = (1)
.7:5(Y422) (Y41)€B2
]-'5(Y4321) Y312
]-'5(Y42212) Y213
.7:5(Y41 ) Yl5
]_—S(Y331) Y4

(

Y3222) y4Ll
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