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Abstract. Let Sðmjn; dÞ be the Schur superalgebra whose supermodules correspond to the
polynomial representations of the supergroup GLðmjnÞ of degree d. In this paper we determine
the representation type of these algebras (that is, we classify the ones which are semisimple,
have finite, tame and wild representation type). Moreover, we prove that these algebras are in
general not quasi-hereditary and have infinite global dimension.

1 Introduction

1.1 A central problem in the study of finite-dimensional algebras is to understand
the structure of the indecomposable modules. As a first step one would like to know
how many indecomposable modules a given algebra admits. Any finite-dimensional
algebra can be classified into one of three categories: finite, tame, or wild represen-
tation type. A finite-dimensional algebra A has finite representation type if A has
finitely many indecomposable modules up to isomorphism. If A is not of finite type
then A is of infinite representation type. Algebras of infinite representation type are
either of tame representation type or of wild representation type. For algebras of tame
representation type one has a chance of classifying all the indecomposable modules
up to isomorphism.

There has been much progress in the past ten years in determining the represen-
tation type of important classes of finite-dimensional algebras. The Schur algebras
and the q-Schur algebra are finite-dimensional algebras which arise in the represen-
tation theory of the general linear groups and symmetric groups. A complete classi-
fication of the representation type of these algebras was given by Doty, Erdmann,
Martin and Nakano [10], [11], [13], [14]. These algebras are fundamental examples of
quasi-hereditary algebras (or equivalently highest weight categories) which were in-
troduced by Cline, Parshall and Scott [8]. The blocks for the ordinary and parabolic
BGG category O for finite-dimensional complex semisimple Lie algebras are other
important examples of highest weight categories. Results pertaining to the represent-
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ation type for these blocks were obtained independently by Futorny, Nakano and
Pollack [16], and Brüstle, König and Mazorchuk [6] for the ordinary category O and
more recently for the parabolic category O by Boe and Nakano [3]. For quasi-
hereditary algebras the projective modules admit filtrations by certain standard
modules. This information allows one to determine the structure of the projective
modules which in turn can lead to an expression of the algebra via quiver and rela-
tions. In many cases this information can be used to determine the representation
type of the algebra.

Other important classes of finite-dimensional algebras are quasi-Frobenius alge-
bras, where all projective modules are injective. These algebras all have infinite global
dimension (except when the algebra is semisimple). For group algebras, restricted
enveloping algebras and Frobenius kernels, homological information involving the
theory of complexity and support varieties can be used to deduce information about
the representation type of these algebras. For Hecke algebras of type A, the repre-
sentation type of the blocks was given by Erdmann and Nakano in [15]. Ariki and
Mathas [2] classified the representation type for Hecke algebras of type B using Fock
space methods. Ariki [1] recently has extended this classification to Hecke algebras of
classical type.

The main result of this paper is a complete classification of the representation
type for the Schur superalgebras Sðmjn; dÞ. These algebras are of particular interest
because the category of Sðmjn; dÞ-supermodules is equivalent to the category of
polynomial representations of degree d for the supergroup GLðmjnÞ. Also, as with
the classical Schur algebra, there is a Schur–Weyl duality between Sðmjn; dÞ and the
symmetric group Sd (see [5]). We shall show that in most cases Sðmjn; dÞ is not quasi-
hereditary, contrary to a recent conjecture of Marko and Zubkov. Since the Schur
superalgebras are not quasi-hereditary the aforementioned filtration techniques can-
not be used. In order to obtain information about the basic algebra for certain Schur
superalgebras we will compute the endomorphism algebras of direct sums of signed
Young modules. This will entail knowing the structures of certain signed Young
modules, which is of independent interest from the viewpoint of the representation
theory of symmetric groups.

1.2 We review below the results for the ordinary Schur algebra Sðm; dÞ, although
the proof for Sðmjn; dÞ does not rely on these results. The representation type of
Sðm; dÞ was determined in [10]1, [11], [13].

Theorem 1.2.1. Let Sðm; dÞ be the Schur algebra over k where char k ¼ pd 0.

(a) Sðm; dÞ is semisimple if and only if one of the following holds:
(i) p ¼ 0;

(ii) d < p;
(iii) p ¼ 2, m ¼ 2, d ¼ 3.

1The statement that Sð2; 11Þ for p ¼ 2 has tame representation type was inadvertently
omitted from the original statement of the theorem [10, Theorem 1.2(A)]. We thank Alison
Parker for pointing this out to us.
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(b) Sðm; dÞ has finite representation type if and only if one of the following holds:
(i) pd 2, md 3, d < 2p;

(ii) pd 2, m ¼ 2, d < p2;
(iii) p ¼ 2, m ¼ 2, d ¼ 5; 7.

(c) Sðm; dÞ has tame representation type if and only if one of the following holds:
(i) p ¼ 3, m ¼ 3, d ¼ 7; 8;

(ii) p ¼ 3, m ¼ 2, d ¼ 9; 10; 11;
(iii) p ¼ 2, m ¼ 2, d ¼ 4; 9; 11.

(d) In all other cases not listed above, Sðm; dÞ has wild representation type.

The classification of the representation type of the q-Schur algebras Sqðm; dÞ can
be found in [14, Theorem 1.4(A)–(C)].

1.3 Throughout this paper we will assume that k is an algebraically closed field
of characteristic pd 0. The following theorem summarizes our results on the Schur
superalgebras.

Theorem 1.3.1. Let Sðmjn; dÞ be the Schur superalgebra over k where char k0 2.

(a) Sðmjn; dÞ is semisimple if and only if one of the following holds:
(i) char k ¼ 0;

(ii) d < p;
(iii) m ¼ n ¼ 1 and pF d.

(b) Sðmjn; dÞ has finite representation type but is not semisimple if and only if one of

the following holds:
(i) pc d < 2p;

(ii) m ¼ n ¼ 1 and pjd.

(c) In all other cases not listed above, Sðmjn; dÞ has wild representation type.

We should remark that in characteristic two Sðmjn; dÞ is equal to the ordinary
Schur algebra Sðmþ n; dÞ, and its representation type is classified by Theorem 1.2.1.

2 Comparing module categories for superalgebras

2.1 Recall that k denotes our fixed ground field. All objects defined over k (algebras,
modules, superalgebras, supermodules, etc.) are assumed to be finite-dimensional as
k-vector spaces.

A superspace is a Z2-graded k-vector space V ¼ V0 lV1. Given a homogeneous
element v of a superspace V , we write v A Z2 for the degree of v. If V and W are
superspaces, then HomkðV ;WÞ is naturally a superspace with HomkðV ;WÞ

0
(resp.

HomkðV ;WÞ
1
) consisting of all linear maps which preserve (resp. reverse) grading.

A superalgebra is a Z2-graded associative k-algebra A ¼ A
0
lA

1
which sat-

isfies ArAs JArþs for all r; s A Z2. An A-supermodule is a Z2-graded A-module
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M ¼ M0 lM1 which satisfies ArMs JMrþs for all r; s A Z2. An A-supermodule

homomorphism is a linear map f : M ! N which satisfies f ðamÞ ¼ ð�1Þ f aaf ðmÞ
for all homogeneous a A A and all m A M. The given condition makes sense only for
homogeneous elements and it will be used later for such elements without comment.
The general case is obtained by linearity. Note that if M and N are A-supermodules,
then HomAðM;NÞ is naturally a superspace just as in the previous paragraph.

We can define the parity change functor P on the category of A-supermodules
as follows. On an object M we let PM ¼ M as a vector space, but we switch the
Z2-grading by setting ðPMÞr ¼ M

rþ1
for r A Z2. The action of A is defined via

a:m ¼ ð�1Þaam for homogeneous a A A and m A M. On a morphism f , Pf is the
same linear map as f . We refer the reader to [4, Section 2] for further discussion of
general results on superalgebras, supermodules, etc.

Throughout the remainder of this subsection we assume that char k0 2. Given a
superalgebra A there are three obvious module categories to consider:

(i) the category A-smod of all A-supermodules and all (not necessarily graded)
A-supermodule homomorphisms;

(ii) the underlying even category of A-smod where we take the objects of A-smod
but only the even (i.e. grading-preserving) homomorphisms;

(iii) the category A-mod of all A-modules.

Observe that an A-supermodule is indecomposable or irreducible regardless of
whether we view it as an object of the category A-smod or its underlying even
category. If M and N are indecomposable A-supermodules and f : M ! N is an
A-supermodule isomorphism, write f ¼ f

0
þ f

1
with fr A HomAðM;NÞr for r A Z2.

By considering the Z2-grading it is straightforward to verify that f0 � f1 : M ! N is
also an isomorphism. Using this one can show that the map MlPM ! NlPN

given by

ðm; nÞ 7! ð f
0
ðmÞ þ f

1
ðnÞ; f

1
ðmÞ þ f

0
ðnÞÞ

is in fact an even isomorphism of A-supermodules. Consequently, by the graded ver-
sion of the Krull–Schmidt theorem, we see that M is isomorphic to either N or PN

by an even isomorphism. The above discussion proves that the category A-smod is
semisimple, finite, tame, or wild if and only if its underlying even category is semi-
simple, finite, tame, or wild, respectively. We use this observation without comment
in what follows. The remainder of this section is devoted to studying the relationship
between the representation type of these categories and the category A-mod.

Given a superspace V , let d : V ! V be the linear involution defined by
dðvÞ ¼ ð�1Þvv, where v A V is homogeneous. In particular, the involution d : A ! A

is an algebra homomorphism and defines an action of Z2 on A. Consequently, we
can define the smash product of kZ2 and A as follows. Set

B ¼ kZ2 nk A
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as a vector space. Identify kZ2 with k½x�=ðx2 � 1Þ. Then the product in B is given
by

ðxr n aÞðxs n bÞ ¼ xrþs n d sðaÞb; ð2:1:1Þ

where r; s A f0; 1g and a; b A A. We identify kZ2 and A as subalgebras via kZ2 n 1
and 1nA, respectively. Note that since char k0 2, x acts semisimply on any kZ2-
module with eigenvalues G1. The following result is proven in [26, Theorem 1.4b].

Proposition 2.1.2. The category of B-modules is isomorphic to the underlying even

category of A-supermodules.

Proof. Let M be an A-supermodule. We define an action of kZ2 on M via xm ¼ dðmÞ.
It is straightforward to verify that this makes M into a B-module. Conversely, if M
is a B-module, then we can view it as an A-module by restriction. To obtain a Z2-
grading we set M0 (resp. M1) to be the 1 (resp. �1) eigenspace of x acting on M. One
can verify that this Z2-grading makes M into an A-supermodule. It is straightforward
to verify that a morphism in one category restricts or extends to a morphism in the
other category. r

2.2 There is an involution z : B ! B given by xr n a 7! ð�1Þrxr n a for r A f0; 1g
and a A A. We can twist a B-module M by z to obtain a new B-module which we
denote by M z. Namely, M z ¼ M as a vector space but with the action of B given by
b:m ¼ zðbÞm for all b A B and m A M. Note that M z is indecomposable if and only if
M is indecomposable.

Since A is a subalgebra of B, we have a restriction functor resBA : B-mod ! A-mod,
and an induction functor indB

A : A-mod ! B-mod given by

indB
A N ¼ BnA N

for any A-module N. Note that

indB
A NG 1nNl xnN ð2:2:1Þ

as A-modules. If M is a B-module, then we have

MlM z G indB
A resBA M: ð2:2:2Þ

Since x acts semisimply on M and M z, it su‰ces to define the isomorphism on
eigenvectors m A M, m 0 A M z of eigenvalue e; e 0 A fG1g, respectively. Then the map
MlM z ! indB

A resBA M is given by

ðm;m 0Þ 7! ð1 þ exÞnmþ ð1 � e 0xÞnm 0:

To verify that the map is B-linear, one uses the observation that if a A A is an
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eigenvector for the action of x with eigenvalue a and m A M is an eigenvector for
the action of x with eigenvalue b, then am is an eigenvector with eigenvalue ab.

Proposition 2.2.3. Let M be an indecomposable B-module. Then M is either in-

decomposable as an A-module or the direct sum of two indecomposable A-modules.
Furthermore, every indecomposable A-module N is a direct summand of indB

A N as

A-modules.
On the other hand, if M is an indecomposable B-module which contains N as a direct

summand, then M is unique up to isomorphism and twisting by z.

Proof. Let M be an indecomposable B-module and let

M ¼ M1 l � � �lMk ð2:2:4Þ

be a decomposition of M into indecomposable A-modules. By using (2.2.2) and ap-
plying indB

A one has

MlM z G indB
A M1 l � � �l indB

A Mk.

Since the left-hand side is a decomposition as indecomposable B-modules, by the
Krull–Schmidt theorem it follows that (2.2.4) cannot have more than two direct
summands.

Now let N be an indecomposable A-module. By (2.2.1) we see that N is a direct
summand of indB

A N. On the other hand, if M is an indecomposable B-module which
contains N as a direct summand, then indB

A MGMlM z contains indB
A N. If

indB
A N is indecomposable, then either MG indB

A N or MG ðindB
A NÞz. If indB

A N is
decomposable, then indB

A NGMlM z. This proves the desired result. r

As is well known, if M is an irreducible A-supermodule then as an A-module M is
either irreducible or the direct sum of two irreducibles. Combining the previous result
with Proposition 2.2.3 shows that this behaviour extends to indecomposables.

2.3 We can now prove the main result of this section: the representation type of A
as a superalgebra coincides with that of A as an algebra.

Theorem 2.3.1. The category A-smod is semisimple, finite, tame, or wild if and only if

the same is true for A-mod.

Proof. By Proposition 2.1.2 it su‰ces to consider the category B-mod rather than
A-smod.

Semisimple type. That A-smod is semisimple if and only if B-mod is semisimple is
already known. See, for example, [4, Section 2] or [26, Theorem 1.4c].

Finite type. It is clear from Proposition 2.2.3 that A-mod has finitely many in-
decomposables if and only if B-mod does.
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Tame type. Suppose that A-mod has tame representation type. Let t be an in-
determinate and d a positive integer. Then there are indecomposable A-modules
Dd;1; . . . ;Dd; rd and indecomposable A�k½t�-bimodules Ed;1; . . . ;Ed; sd which are
free as right k½t�-modules so that any indecomposable A-module of dimension d

either is isomorphic to Dd; i for some i, or is isomorphic to Ed; i nk½t� L for some i and
some irreducible k½t�-module L. Observe that the proof of Proposition 2.2.3 applies
verbatim to indecomposable A�k½t�-bimodules. Consequently, we can choose
indecomposable B-modules ~DDd;1; . . . ; ~DDd; rd and indecomposable B�k½t�-bimodules
~EEd;1; . . . ; ~EEd; sd (which are free as k½t�-supermodules) where ~DDd; i contains Dd; i as a
direct summand as A-modules and ~EEd; i contains Ed; i as a direct summand as A�k½t�-
bimodules.

Let M be an indecomposable B-module and N an indecomposable direct sum-
mand of M as an A-module. If NGDd; i for some d and i, then by the uniqueness
statement in Proposition 2.2.3 it follows that MG ~DDd; i or MG ð ~DDd; iÞz. On the other
hand, say NGEd; i nk½t� L for some d, i, and irreducible k½t�-module L. Since Ed; i

is a direct summand of ~EEd; i, we have that NGEd; i nk½t� L is a direct summand of
~EEd; i nk½t� L. However, by [10, Lemma 2.2] we know ~EEd; i nk½t� L is indecomposable. By
uniqueness again we have MG ~EEd; i nk½t� L or MG ð ~EEd; i nk½t� LÞz ¼ ð ~EEd; iÞz nk½t� L.
Therefore, if A-mod is tame, then B-mod is tame.

Wild type. Suppose that A-mod has wild representation type. By [10, Theorem 2.2]
and Proposition 2.2.3 it follows that B-mod has wild representation type. r

3 Results on the Schur superalgebra

3.1 The Schur superalgebra. Fix non-negative integers m, n, and d, and fix a super-
space V with fixed basis v1; . . . ; vmþn and Z2-grading given by setting vi ¼ 0 for
i ¼ 1; . . . ;m and vi ¼ 1 for i ¼ mþ 1; . . . ;mþ n. The tensor space Vnd is then
naturally Z2-graded by setting the degree of vi1 n � � �n vid to be vi1 þ � � � þ vid for
1c i1; . . . ; id cmþ n. The symmetric group Sd acts on Vnd on the right via

vi1 n � � �n vij n vijþ1
n � � �n vid ð j jþ 1Þ :¼ ð�1Þvij vijþ1 vi1 n � � �n vijþ1

n vij n � � �n vid

for 1c i1; . . . ; id cmþ n and each 1c j < d.
The Schur superalgebra is defined to be

Sðmjn; dÞ ¼ EndSd
ðVndÞ;

with the Z2-grading given by setting Sðmjn; dÞ0 (resp. Sðmjn; dÞ1) to be the set of all
degree-preserving (resp. degree-reversing) maps. Observe that when p ¼ 2 the above
action coincides with the usual permutation action and so Sðmjn; dÞ ¼ Sðmþ n; dÞ.

We also note that Sðmjn; dÞGSðnjm; dÞ as superalgebras. Namely, suppose
that t : f1; . . . ;mþ ng ! f1; . . . ;mþ ng is given by tðiÞ ¼ i þ n if i ¼ 1; . . . ;m and
tðiÞ ¼ i �m if i ¼ mþ 1; . . . ;mþ n. Fix a superspace ~VV with fixed basis
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~vv1; . . . ;~vvmþn and Z2-grading given by setting ~vvi ¼ 0 for i ¼ 1; . . . ; n and ~vvi ¼ 1 for
i ¼ nþ 1; . . . ;mþ n. Define a linear map t : Vnd n sgn ! ~VVnd via

tðvi1 n � � �n vid n 1Þ ¼ ð�1Þðd�1Þvi1þðd�2Þvi2þ���þvid�1~vvtði1Þ n � � �n~vvtðid Þ;

where vi1 ; . . . ; vid are elements of our fixed homogeneous basis for V . It is straight-
forward to verify on simple transpositions that in fact t is a kSd -module isomorphism
(cf. the proof of [5, Theorem 6.4]). Consequently we have

Sðmjn; dÞ ¼ EndSd
ðVndÞGEndSd

ðVnd n sgnÞGEndSd
ð ~VVndÞ ¼ Sðnjm; dÞ;

and the isomorphisms preserve the Z2-grading.
We now introduce certain modules which will be crucial in later calculations.

Given a tuple of integers g ¼ ðg1; . . . ; gtÞ we denote the integer g1 þ � � � þ gt by jgj. Let

Lðmjn; dÞ ¼ fðl1; . . . ; lm j m1; . . . ; mnÞ A Zmþn j li; mi d 0 for all i and jlj þ jmj ¼ dg:

We write ðljmÞ for an element of Lðmjn; dÞ.
In general, given a sequence g ¼ ðg1; . . . ; gtÞ of non-negative integers summing to d,

let

Sd ¼ Sg1
� Sg2

� � � � � Sgt

viewed as a subgroup of Sd in the natural way with Sg1
acting as permutations of the

first g1 letters, Sg2
acting as permutations of the next g2 letters, and so on.

Given ðljmÞ A Lðmjn; dÞ we define the signed permutation module MðljmÞ as

MðljmÞ ¼ indSd

Sl�Sm
kr� sgn;

where k denotes the trivial module for Sl1
� � � � � Slm and sgn denotes the one-

dimensional sign representation for Sm1
� � � � � Smn .

By definition, a Sd -module is a signed Young module if for some non-negative in-
tegers m and n and for some ðljmÞ A Lðmjn; dÞ it is a direct summand of MðljmÞ.
Signed permutation modules and signed Young modules were first considered by
Donkin [9]. Finally we observe the well-known fact that

Vnd G 0
ðljmÞALðmjn;dÞ

MðljmÞ ð3:1:1Þ

as kSd -modules.

3.2 We begin by collecting a few preliminary results.

Proposition 3.2.1. Let S be a finite-dimensional algebra containing an idempotent e, so
that eSe is a subalgebra of S.
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(a) Every indecomposable eSe-module is a summand of the restriction to eSe of some

indecomposable S-module.

(b) If eSe has infinite representation type then so does S.

(c) If eSe has wild representation type then so does S.

Proof. (a) Let N be an indecomposable eSe-module. Let U ¼ SneSe N. Then U is a
non-zero S-module and we have

U G eU l ð1 � eÞU

as eSe-modules. But eU GN. Now if U is written as a direct sum of indecomposable
S-modules then an easy argument with the Krull–Schmidt theorem gives the result.

(b) This is clear from (a). If S has only finitely many indecomposable modules then
(a) implies that eSe does as well.

(c) This statement follows from the argument of [10, Theorem 2.2]: the authors
show that if A is tame and the statement of (a) holds for an arbitrary algebra A then
so is each subalgebra B. r

3.3 One can now apply the previous result to the situation of Sðmjn; dÞ. This allows
us to descend from the superalgebra Sðm 0jn 0; dÞ to Sðmjn; dÞ for mcm 0, nc n 0.

Corollary 3.3.1. Let mcm 0 and nc n 0. The following assertions hold:

(a) if Sðmjn; dÞ has infinite representation type then so does Sðm 0jn 0; dÞ;

(b) if Sðmjn; dÞ has wild representation type then so does Sðm 0jn 0; dÞ.

Proof. Recall that Lðmjn; dÞ is the set of pairs ðljmÞ where l and m are compositions
with jlj þ jmj ¼ d and l has at most m parts, m has at most n parts. Thus Lðmjn; dÞ is
naturally a subset of Lðm 0jn 0; dÞ. Recall that

Sðm 0jn 0; dÞGEndkSd

�
0

ðljmÞ ALðm 0jn 0;dÞ
MðljmÞ

�
:

So if e denotes the projection onto the direct sum of all MðljmÞ with ðljmÞ A Lðmjn; dÞ
then clearly eSðm 0jn 0; dÞeGSðmjn; dÞ, and we can apply Proposition 3.2.1 to prove
the result.

3.4 The classical (and infinitesimal) Schur algebra Sðn; nÞ has a natural one-
dimensional representation corresponding to the determinant for GLðnÞ. This allows
one to embed the module category for Sðn; dÞ into that of Sðn; d þ nÞ, which can be
used to study representation type (e.g. [12, Theorem 2.2]). Unfortunately the analogue
of the determinant representation for the supergroup GLðmjnÞ, the one-dimensional
Berezinian representation, is not polynomial and so it does not give a natural one-
dimensional Sðmjn;mþ nÞ-module.
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We instead use the existence of a one-dimensional representation for Sð2j1; pÞ.
Namely, let Lð0; 0jpÞ denote the one-dimensional supermodule which is the Frobenius
twist of the one-dimensional GLð2Þ � GLð1Þ-module Lð0; 0Þr�Lð1Þ (see [5, Remark
4.6]). Since the polynomial representations of GLðmjnÞ correspond with the repre-
sentations of the supermonoid MðmjnÞ one can follow the arguments given in [12,
Propositions 2.1, 2.2] by replacing the determinant representation with Lð0; 0jpÞ to
deduce the following result.

Proposition 3.4.1. If the algebra Sð2j1; dÞ has wild representation type then so does

Sð2j1; d þ cpÞ for any c A N.

3.5 We will assume familiarity with basic modular representation theory of the
symmetric group. In the next section we will prove the main result of the paper.
Surprisingly, we will use virtually no representation theory of the superalgebra. How-
ever, we will need to know that Young modules Y ða;b;1 cÞ are in fact signed Young
modules when c < p and m ¼ 2, n ¼ 1.

Proposition 3.5.1. Let 1c c < p. Then the Young module Y ða;b;1 cÞ is a summand of the

signed permutation module Mða;bjcÞ.

Proof. Since c < p we have

Mð1 cÞ G kSc G indSc

S1 c
kG 0

l‘c
ðS lÞdimS l

: ð3:5:2Þ

But the Specht module S l has dimension greater than one except when l ¼ ð1cÞ or
l ¼ c. Thus using (3.5.2) we obtain that

Mða;b;1 cÞ GMða;b; cÞ lMða;bjcÞ 0
l‘c;l0ð1 cÞ; ðcÞ

indSd

Sa�Sb�Sc
ðkr�kr�S lÞdl ; ð3:5:3Þ

with each dl > 1. Since Y ða;b;1 cÞ occurs exactly once as a direct summand of Mða;b;1 cÞ

and HomSd
ðY ða;b;1 cÞ;Mða;b; cÞÞ ¼ 0, the result follows from (3.5.3). r

3.6 The significance of Proposition 3.5.1 is that it gives us a Young module Y l as
a summand of the tensor space Vnd , even though l has more than three parts and
mþ n ¼ 3. We need information about one other special signed Young module for
the p ¼ 3 case.

Proposition 3.6.1. Suppose that p does not divide a. Then

Mða;0jpÞ GSðaþ1;1 p�1Þ lSða;1 pÞ:

The two Specht modules in the decomposition are both irreducible and

Sða;1 pÞ GDða;2;1 p�2Þ:
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Proof. The Specht module decomposition follows from Young’s rule (see [20, p. 51]).
The irreducibility of the ‘hook’ Specht modules when pF d is well-known work of
Peel [27]. Finally, which irreducible module corresponds to Sða;1pÞ can be calculated
directly, or obtained as a special case of James [19, Theorem A]. r

4 Proof of the main result

In this section we prove Theorem 1.3.1. One of the main ideas will be to identify a
subalgebra eSe with kQ=I for some quiver Q. Then we can use Gabriel’s theorem,
since if the separated quiver is not a Dynkin or Euclidean diagram then the algebra is
of wild type.

4.1 Sð1j1; dÞ. If n ¼ 0 or m ¼ 0 the superalgebra Sðmjn; dÞ is isomorphic to the
Schur algebra Sðm; dÞ, and so the smallest non-trivial case for us is the superalgebra
Sð1j1; dÞ. This has been studied by Marko and Zubkov:

Proposition 4.1.1 [23, Proposition 2.1]. Let S ¼ Sð1j1; dÞ. If p does not divide d then S

is semisimple. If p divides d then S has d þ 1 pairwise non-isomorphic one-dimensional

modules, labelled by the weights 0; 1; . . . ; d. The algebra is basic, connected, and has

left regular representation given as follows.

SS ¼
0
1 l

1
0 2

1
l

2
1 3

2
l � � �l

r� 1
r� 2 r

r� 1
l

r

r� 1 ð4:1:2Þ

From here it is easy to obtain the quiver. In particular, for md 1 we define an
algebra ~AAm to be the algebra kQ=I where Q is the quiver with mþ 1 vertices

and I is the ideal generated by the relations

aiaiþ1 ¼ 0; biþ1bi ¼ 0; a1b1 ¼ bmam ¼ 0;

biai ¼ aiþ1biþ1 for 1c icm� 1:

The quiver for ~AAm is the same as the quiver for Erdmann’s algebra Amþ1 defined
in [13, (3.1)], with one additional relation, namely bmam ¼ 0. We will see in Section
5 that this extra relation is crucial because it makes the algebra have infinite global
dimension.

Theorem 4.1.3. When p divides d the algebra Sð1j1; dÞ is isomorphic to the algebra ~AAd

and has finite representation type.
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Proof. The proof of the algebra isomorphism is essentially the same as in [13,
Proposition 3.2], and so we do not give it here. The algebra ~AAm is a three nilpotent
algebra, but the only indecomposable modules of radical length three are projective.
Hence, the representation type of ~AAm is the same as the representation type of ~AAm

modulo its radical squared (which is two nilpotent). The separated quiver is a disjoint
union of two copies of the Dynkin diagram Amþ1, and hence by Gabriel’s theorem
the algebra is of finite type. r

4.2 Sðmjn; dÞ, ðd < 2pÞ. We first consider the case where pc d < 2p. It turns out
that this case is essentially the same as for the Schur algebra Sð2; dÞ. Recall that
the summands of the signed permutation modules MðajbÞ are called signed Young
modules. We recall the following theorem of Donkin.

Theorem 4.2.1 [9, (2.3(6))]. Let m; nd d. The isomorphism classes of indecomposible

signed Young modules are labelled by the set

Lþþðmjn; dÞ :¼ fðl j pmÞ j jlj þ pjmj ¼ dg

where l and m are partitions.

Following [9], we write Y ðljpmÞ for the indecomposible signed Young module labelled
by ðl j pmÞ A Lþþðmjn; dÞ:

We wish to show that for d < 2p the signed Young modules are exactly the ordinary
Young and twisted Young modules. To begin we will show that the non-projective
signed Young modules are all distinct.

Given a partition l ‘ d, let l0 denote the transpose partition of l. For l ‘ d p-
regular we let mðlÞ be the Mullineux conjugate of l, so that Dl n sgnGDmðlÞ. It is
well known that the Young module Y mðlÞ 0 is the projective cover of Dl, a fact that
we will use several times below.

Proposition 4.2.2. If the Young module Y l is isomorphic to a twisted Young module

Y m n sgn, then l is p-restricted, in which case l ¼ mðm 0Þ 0.

Proof. Applying the adjoint Schur functor to Y l and Y m n sgn (see [18, Theorems
3.4.2, 3.8.2]) tells us that PðlÞGTðm 0Þ. But the tilting modules are self-dual, so that
PðlÞ is self-dual and hence has simple socle LðlÞ. But Vðm 0Þ is a submodule of Tðm 0Þ
and the socle of Vðm 0Þ is Lðmðm 0Þ 0Þ, so that l ¼ mðm 0Þ 0 is p-restricted. r

For d < 2p it is clear that the p-singular partitions are exactly those of the form
ðm1 þ p; m2; . . .Þ for m a partition of d � p. Thus the number of signed Young modules
for d is the total number of partitions of d plus the number of p-singular partitions,
which by Proposition 4.2.2 is precisely the number of Young and twisted Young
modules. We have shown the following result.

Proposition 4.2.3. For pc d < 2p the signed Young modules are exactly the set of
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Young modules Y l together with the non-projective twisted Young modules Y m n sgn
where m is p-singular.

We also remark that the non-projective Young modules are actually irreducible
and are in distinct blocks. Symmetric group blocks of defect 1 are well understood
and we have the following. Let t ‘ d � p and let B be the block of kSd with p-core t.
Let

l1 ¼ ðt1 þ p; t2; . . . ; tsÞq l2 q � � �q lp ¼ ðt; 1pÞ

be the p partitions of d with p-core t.
Let m ¼ t 0 þ ðpÞ. Then m is p-singular and an easy calculation shows that

Y m n sgnGDlp�1 , i.e. this is the non-projective twisted Young module in the block.
So the signed Young modules in the block are

Y l1 GDl1; Y l2 G
Dl1

Dl2

Dl1

; Y li G
Dli�1

Dli Dli�2

Dli�1

;

Y lp G
Dlp�1

Dlp�2

Dlp�1

; Y m n sgnGDlp�1;

ð4:2:4Þ

where 3c i < p. Thus the basic algebra for Sðmjn; dÞ is a direct sum of two-sided
ideals which either are semisimple (corresponding to blocks of kSd of defect 0) or are
isomorphic to

EndkSd

�
0
p

i¼1

Y li l ðY m n sgnÞ
�
: ð4:2:5Þ

The quiver and relations for the algebra in (4.2.5) correspond to ~AAp, which we saw
earlier is of finite type. So we can now prove the first half of Theorem 1.3.1.

Theorem 4.2.6. Let Sðmjn; dÞ be the Schur superalgebra where 0c d < 2p.

(a) Sðmjn; dÞ is semisimple if and only if one of the following holds:
(i) char k ¼ 0;

(ii) d < p;
(iii) m ¼ n ¼ 1 and pF d.

(b) Sðmjn; dÞ has finite representation type but is not semisimple if and only if one of

the following holds:
(i) pc d < 2p;

(ii) m ¼ n ¼ 1 and pjd.
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Proof. (a) If d < p or char k ¼ 0 then kSd is semisimple, and hence so is the algebra
Sðmjn; dÞ :¼ EndkSd

ðVndÞ. Part (iii) follows by Proposition 4.1.1.
(b) The calculation above shows that when maxðm; nÞd 2 and pc d < 2p the

algebra Sðmjn; dÞ has finite representation type (and is not semisimple). The same is
true for Sð1j1; dÞ when pjd by Proposition 4.1.1. r

4.3 Sð2j1; dÞ, ðdd 2pÞ.
Now we begin to show that for dd 2p the algebra Sð2j1; dÞ has wild type. By

Proposition 3.4.1 it will su‰ce to prove this for 2pc d < 3p. Recall that

Sð2j1; dÞGEndkSd

�
0

ðl1;l2jm1Þ ALð2j1;dÞ
Mðl1;l2jm1Þ

�
:

In each case we will find some collection fYig of indecomposable signed Young
modules such that the algebra EndkSd

ðlYiÞ is of wild type. But this will imply that
Sð2j1; dÞ is of wild type by Proposition 3.2.1.

To show that the algebra EndkSd
ðlYiÞ has wild type we will show, in each case,

that it is isomorphic to an algebra kQ=I where Q is a quiver and I is an ideal con-
tained in the ideal generated by paths of length at least two. In each case the sepa-
rated quiver of Q will not be a union of Dynkin or extended Dynkin diagrams, which
by Gabriel’s theorem means that the algebra is of wild type. The main di‰culty will
be to make an appropriate choice of the fYig.

Our proof will split into three cases, each following the same strategy. First we
handle the case 2pc d < 3p� 2. Then we handle d ¼ 3p� 2 and d ¼ 3p� 1 sepa-
rately. That this happens is not surprising, as the blocks of defect 2 are slightly
di¤erent in the three cases; see for instance [29, Table 1]. Essentially everything is
understood for symmetric group blocks of defect 2. The decomposition numbers are
all known by [28]. The structure of the projective indecomposable modules can be
determined from [29]. Finally, Chuang and Tan [7] have determined the structure of
the non-projective Young modules. Thus we just need to select signed Young modules
judiciously to get a quiver of wild type. We will not give the details of determining the
module structures we need; they can be found in the works cited above.

Recall that if l is a p-regular partition of d, we write mðlÞ for the Mullineux con-
jugate of l, so that Dl n sgnGDmðlÞ and the Young module YmðlÞ 0 is the projective
cover of Dl.

4.4 Sð2j1; dÞ, ð2pc d < 3p� 2Þ. Let d ¼ 2pþ t for 0c t < p� 2. Using the
Chuang–Tan notation we have the following partitions in the principal block of Sd :

lð0Þ ¼ ð2pþ tÞ; lð1Þ ¼ ð2p� 1; tþ 1Þ; lð2Þ ¼ ð2p� 2; tþ 1; 1Þ; lð�Þ ¼ ðpþ t; pÞ:

If we let s ¼ ðpþ t; p� 1; 1Þ then s is p-restricted and Y s is the projective cover
of Dlð1Þ . Using i to denote DlðiÞ we have the following Loewy structures [7, Theorem
2.4]:
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Y lð0Þ G 0; Y lð1Þ G
0
1
0
; Y lð2Þ G

1
0 2

1
; Y lð�Þ G

1
0 �

1
;

Y s G

1
� 0 2
1 m 1
� 0 2

1

:

ð4:4:1Þ

Since all partitions above have third part 0 or 1 and since by Proposition 3.5.1
Y ða;b;1Þ is a summand of Mða;bj1Þ, all modules in (4.4.1) are signed Young modules for
m ¼ 2, n ¼ 1. Consider the quiver L given below:

Let U be the direct sum of the five modules in (4.4.1). We have

Theorem 4.4.2. (a) The algebra EndkS2pþt
ðUÞ is isomorphic to the algebra kL=I where

I is in the ideal generated by paths of length 2. In particular it is of wild represen-

tation type.

(b) The superalgebra Sð2j1; dÞ has wild representation type for 2pc d < 3p� 2.

Proof. (a) The signed Young modules making up U have the same structure as the
modules Ei for 1c ic 5 in [13, Proposition 3.10], and the determination of the
quiver proceeds in exactly the same way.

(b) We obtain this immediately from (a) by calculating the separated quiver of L.
The separated quiver is two copies of the diagram

which is not a Dynkin or Euclidean diagram. r

4.5 Sð2j1; 3p� 2Þ. Let d ¼ 3p� 2. Using the Chuang–Tan notation we have the
following partitions in the principal block of Sd :
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lð0Þ ¼ ð3p� 2Þ; lð1Þ ¼ ð2p� 1; p� 1Þ; lð2Þ ¼ ð2p� 2; p� 2; 12Þ;

lð3Þ ¼ ð2p� 2; p� 3; 13Þ; lð�Þ ¼ ð2p� 2; pÞ; d ¼ ð2p� 2; p� 1; 1Þ:

It is also an easy calculation that

mðdÞ0 ¼ ð2p� 3; p� 1; 12Þ;

so that Y ð2p�3; p�1;12Þ is the projective cover of Dd. Let t ¼ ð2p� 3; p� 1; 12Þ. Using i

to denote DlðiÞ we have the following structures for Young modules [7]:

Y lð0Þ G 0; Y lð1Þ G
0
1
0
; Y lð3Þ G

2
d 3

2
: ð4:5:1Þ

All of the Young modules in (4.5.1) are either for two-part partitions or partitions
of the form ða; b; 1cÞ for c < p, and so by Proposition 3.5.1 they are all signed Young
modules. Now consider the following quiver which we denote by Q.

Let T be the direct sum of the six signed Young modules in (4.5.1). We have the
following result.

Theorem 4.5.2. (a) The algebra L ¼ EndkS3p�2
ðTÞ is isomorphic to the algebra kQ=I

where I is the ideal generated by the relations
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a1a2 ¼ a2a3 ¼ a2h ¼ b3b2 ¼ b2b1 ¼ b3g ¼ f a3 ¼ 0;

hk ¼ gf ¼ b1a2 þ a3b3:
ð4:5:3Þ

(b) The superalgebra Sð2j1; dÞ has wild representation type for d ¼ 3p� 2.

Proof. (a) Let fe0; e1; e2; e3; ed; etg A L be the canonical projections onto the Young
module summands of T . Choose non-zero maps ai and bi. (The module structures
leave no choice for the kernels and images of these maps.) The image and kernels of
the maps f , g, h, k can also be determined by the structure of the modules given in
(4.5.1). In particular we have the following Loewy structures for the kernels (from
which the images are easily determined).

ker f G
� 0

1
; ker kG

t

2 � 0
d

; ker gG
2 0
d

; ker hG
0
1
:

Knowing the kernels and images of the maps is su‰cient to check that the zero
relations in (4.5.3) are satisfied. We need only show we can choose the maps so that
hk ¼ gf ¼ b1a2 þ a3b3.

Notice that the image of b2a2 is the simple module 1 and the image of a3b3 is the

simple module d, while both hk and gh have image equal to the socle of Y lð2Þ . Since
EndðY lð2Þ Þ is three-dimensional, we can take as a basis fe2; a3b3; b2a2g. Write

hk ¼ ab2a2 þ ba3b3; gf ¼ cb2a2 þ ca3b3;

where the images ensure that a, b, c, d are all non-zero. Now make the sub-
stitutions

b 0
2 ¼ ab2; a 0

2 ¼ ca2; b 0
3 ¼ bb3; a 0

3 ¼ da4:

This will give the desired relation without e¤ecting the earlier zero relations. The
maps fai; bi; h; k; f ; gg generate radL and are independent modulo I 2, and so there is
an epimorphism kQ=I ! L. Now one can simply check that the dimensions agree to
see that it is an isomorphism.

(b) We obtain this immediately from (a) by calculating the separated quiver of Q
and verifying that it is not a Dynkin or Euclidean diagram. r

In the special case where p ¼ 3 (i.e. Sð2j1; 7Þ), the partition lð3Þ above does not
exist. In this case to obtain the same quiver we replace Y lð3Þ by the irreducible module
Dd, which is a signed Young module by Proposition 3.6.1. The quiver and relations
are easily seen to be identical.

4.6 Sð2j1; 3p� 1Þ. Let d ¼ 3p� 1. Using the Chuang–Tan notation we have the
following partitions in the principal block of Sd :
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lð0Þ ¼ ð3p� 1Þ; lð1Þ ¼ ð2p� 1; p� 1; 1Þ; lð2Þ ¼ ð2p� 1; p� 2; 12Þ;

lð3Þ ¼ ð2p� 1; p� 3; 13Þ; lð�Þ ¼ ð2p� 1; pÞ; r ¼ ð2p� 2; p; 1Þ;

where r ¼ mðlð�ÞÞ0, and hence Y r is the projective cover of Dlð�Þ .
Using i to denote DlðiÞ we have the following structures for Young modules [7]:

Y lð0Þ G 0; Y lð�Þ G �; Y lð1Þ G
0 �

1
0 �

; Y lð2Þ G
1

0 2
1

;

Y lð3Þ G
2

1 3
2

; Y r G

�
1

� 0 r

1
�

:

ð4:6:1Þ

Now consider the following quiver called H:

Let W be the direct sum of the six signed Young modules in (4.6.1). We have the
following result.

Theorem 4.6.2. (a) The algebra EndkS3p�1
ðWÞ is isomorphic to the algebra kH=I where

I is in the ideal generated by paths of length 2. In particular it is of wild repre-

sentation type.

(b) The superalgebra Sð2j1; dÞ has wild representation type for d ¼ 3p� 1.

Proof. (a) We leave the calculations for the reader. They are similar to the proof of
Theorem 4.5.2.

(b) Once again the separated quiver for H is neither Dynkin nor Euclidean and so
Sð2j1; 3p� 1Þ is of wild representation type. r

Just as in the case for 3p� 2, the partition lð3Þ does not exist when p ¼ 3 (i.e. for
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Sð2j1; 8Þ). Again, replacing Y lð3Þ with the simple module Dð5;2;1Þ GDlð1Þ gives the
same quiver. Dð5;2;1Þ is a signed Young module by Proposition 3.6.1.

4.7 We can now complete the proof of Theorem 1.3.1 by proving the following
result.

Theorem 4.7.1. The algebra Sðmjn; dÞ has wild representation type when maxðm; nÞd 2
and dd 2p.

Proof. Since Sðmjn; dÞGSðnjm; dÞ we may assume that md n. By assumption md 2
and nd 1. For 2pc d < 3p the algebra Sð2j1; dÞ has wild representation type from
Theorems 4.4.2(b), 4.5.2(b), 4.6.2(b). Hence, by Proposition 3.4.1, Sð2j1; dÞ has wild
type for dd 2p. One can now apply Corollary 3.3.1(b) to conclude that Sðmjn; dÞ has
wild representation type for dd 2p. r

5 Global dimension

5.1 In [23, Conjecture 1] it is conjectured that Sðmjn; dÞ is quasi-hereditary when-
ever d is coprime to p. In this section we use our previous calculations to show this is
far from true. In fact, we will prove the following theorem.

Theorem 5.1.1. For dd pd 5 and m; nd d the superalgebra Sðmjn; dÞ has infinite

global dimension.

This result suggests the following question.

Question 5.1.2. Is it true that Sðmjn; dÞ either is semisimple or has infinite global di-
mension? In particular, is it true that non-semisimple Schur superalgebras are never
quasi-hereditary?

After the completion of the present article we were informed by Marko and Zub-
kov that they obtained in [24] an a‰rmative answer to the above questions. Their
approach is quite di¤erent from the one taken here. They study the representation
theory of Sðmjn; dÞ and answer the questions by obtaining partial information about
the Cartan matrix for Sðmjn; dÞ.

5.2 Before proving Theorem 5.1.1 we first need to determine which block of kSd

contains a given signed Young module. Throughout the remainder of this section we
assume that m; nd d.

Recall the classification of irreducible Sðmjn; dÞ-supermodules when m; nd d given
in [9, (2.3(3))] (for the statement when m, n, and d are arbitrary, see [5, Theorem 6.5]).

Theorem 5.2.1. Let m; nd d. The irreducible supermodules of Sðmjn; dÞ are labeled by

heighest weight by the set Lþþðmjn; dÞ ¼ fðl j pmÞ j jlj þ pjmj ¼ dg where l and m are

partitions.
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Write Lðl j pmÞ for the irreducible Sðmjn; dÞ-supermodule of highest weight ðl j pmÞ
and let Pðl j pmÞ denote the projective cover of Lðl j pmÞ.

Just as with the ordinary Schur algebra, one can define a Schur functor

F : Sðmjn; dÞ-supermodules ! kSd -modules:

As with the ordinary Schur functor, F is exact and if L is an irreducible Sðmjn; dÞ-
supermodule then FL is either zero or an irreducible kSd -module. All irreducible
kSd -modules appear in this way. In fact, by [5, (5.13)] we have

FLðl j pmÞG Dmðl 0Þ if jmj ¼ 0 and l 0 is p-regular;

0 otherwise.

�
ð5:2:2Þ

Furthermore, by [9, p. 662] we have

FPðl j pmÞGY ðljpmÞ: ð5:2:3Þ

Thus to determine which block contains Y ðljpmÞ it will su‰ce to obtain information
about the composition factors of Pðl j pmÞ:

Before proceeding, we require additional notation. Let

X ¼ fx ¼ ðx1; . . . ; xm j xmþ1; . . . ; xmþnÞ j x1; . . . ; xmþn A Zg:

We view ðl j pmÞ A Lþþðmjn; dÞ as the element ðl; 0; . . . ; 0 j pm; 0; . . . ; 0Þ of X in the
natural way. For i ¼ 1; . . . ;mþ n, let ei A X be the element which has a 1 in the ith
position and 0’s elsewhere. Let Q A X be the element

Q ¼ ð�1;�2; . . . ;�m jm� 1;m� 2; . . . ;m� nþ 1;m� nÞ:

Note that our definition of Q di¤ers from the one in [22, (2.8)] by a multiple of the
GLðmjnÞ analogue of the determinant representation. This has no significant e¤ect on
our arguments.

Given i ¼ 1; . . . ;mþ n we define ri : X ! Z by

riðxÞ ¼
xi þ Qi if i ¼ 1; . . . ;m;

�ðxi þ QiÞ if i ¼ mþ 1; . . . ;mþ n:

�

For r A Zp and x A X , define

ArðxÞ ¼ jfi ¼ 1; . . . ;mþ n j riðxþ eiÞ1 r ðmod pÞgj;
BrðxÞ ¼ jfi ¼ 1; . . . ;mþ n j riðxÞ1 r ðmod pÞgj:

For a partition l we let ~ll denote its p-core. Recall that the blocks of kSd are para-
metrized by the p-cores of the partitions of d; see [21, Section 2.7]. Also recall that
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the category of Sðmjn; dÞ-supermodules is equivalent to the category of polynomial
representations of degree d for the supergroup GLðmjnÞ. Thus we can view the cate-
gory of Sðmjn; dÞ-supermodules as a full subcategory of the category of representa-
tions of GLðmjnÞ and, in turn, as a full subcategory of the category of supermodules
for the superalgebra DistðGLðmjnÞÞ of distributions for GLðmjnÞ. See [5] for a full
discussion of these matters.

Lemma 5.2.4. Let ðl j pmÞ; ðn j phÞ A Lþþðmjn; dÞ. If Lðl j pmÞ and Lðn j phÞ have the

same central character as DistðGLðmjnÞÞ-supermodules, then ~ll ¼ ~nn.

Proof. If Lðl j pmÞ and Lðn j phÞ have the same central character, then by [22, Lemma
3.3] we have

Arðl j pmÞ � Brðl j pmÞ ¼ Arðn j phÞ � Brðn j phÞ ð5:2:5Þ

for all r A Zp. However, if i ¼ mþ 1; . . . ;mþ n, then

riðl j pmÞ1�Qi ðmod pÞ1 riðn j phÞ ðmod pÞ;

and

riððl j pmÞ þ eiÞ1�Qi � 1 ðmod pÞ1 riððn j phÞ þ eiÞ ðmod pÞ:

Consequently, we see that (5.2.5) holds if and only if

A 0
rðl j pmÞ � B 0

rðl j pmÞ ¼ A 0
rðn j phÞ � B 0

rðn j phÞ ð5:2:6Þ

for all r A Zp, where for x A X we define

A 0
rðxÞ ¼ jfi ¼ 1; . . . ;m j riðxþ eiÞ1 r ðmod pÞgj;

B 0
rðxÞ ¼ jfi ¼ 1; . . . ;m j riðxÞ1 r ðmod pÞgj:

Given ðl j pmÞ and r A Zp, for brevity let us write A 0
r for A 0

rðl j pmÞ and B 0
r for

B 0
rðl j pmÞ. By definition, we have A 0

r ¼ B 0
r�1 for all r A Zp. We then have the follow-

ing equations:

B 0
1 þ B 0

2 þ � � � þ B 0
p ¼ m; B 0

r�1 � B 0
r ¼: br for r ¼ 1; . . . ; p:

However, it is straightforward to check that the determinant for this system of linear
equations is non-zero and so one can solve this system for the integers B 0

r. That is,
(5.2.6) holds if and only if

B 0
rðl j pmÞ ¼ B 0

rðn j phÞ ð5:2:7Þ
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for all r A Zp. We assume without loss that jlj ¼ jnj since B 0
rðl; 1p j pmÞ ¼ B 0

rðl j pmÞ
and since the p-cores of ðl; 1pÞ and l coincide.

Since for i ¼ 1; . . . ;m we have riðl j pmÞ ¼ li � i, it follows that (5.2.7) holds if and
only if there is an element s A Sm so that

li � i1 nsðiÞ � sðiÞ ðmod pÞ ð5:2:8Þ

for i ¼ 1; . . . ;m. Finally, by the Nakayama rule [25, Theorem 5.1.1] we have that
(5.2.8) holds if and only if ~ll ¼ ~nn. This proves the desired result. r

Corollary 5.2.9. The signed Young module Y ðljpmÞ is in the kSd block with p-core ~ll.

Proof. Let Lðn j phÞ be a composition factor of Pðl j pmÞ. Then since both Lðl j pmÞ
and Lðn j phÞ are composition factors of an indecomposable DistðGLðmjnÞÞ-
supermodule, they must have the same central characters (cf. [22, Section 2.8]). By
the previous lemma, we have ~ll ¼ ~nn. The result then follows by exactness of the Schur
functor along with (5.2.2) and (5.2.3). r

5.3 We can now prove Theorem 5.1.1. Since pd 5, by the work of Granville and
Ono [17] there must be a partition t ‘ d � p which is a p-core. Consequently, Sd has
a p-block of defect 1. Let B denote this block.

Lemma 5.3.1. There are pþ 1 signed Young modules in B. They are the p distinct

Young modules Y ðljqÞ GY l with ~ll ¼ t and one non-projective twisted Young module

Y ðtjpÞ GY ðt 0þpÞ n sgn.

Proof. By Corollary 5.2.9 the signed Young modules which occur in B are those
of the form Y ðljpmÞ with ~ll ¼ t. Thus they are precisely the ones listed. Now, since
twisted Young modules are signed Young modules, Y ðt 0þpÞ n sgn is a signed Young
module in the block B, and it must be Y ðtjpÞ. r

Now we have the direct sum decomposition

Sðmjn; dÞ ¼ EndkSd
ðVndÞGEndkSd

�
0

Y ðljmÞ AB

aðljmÞY
ðljmÞ

�
lEndkSd

ðUÞ

where aðljmÞ denotes the multiplicity of Y ðljmÞ in Vnd and U has no summands in the
block B. That is, we have direct sum decomposition of Sðmjn; dÞ into graded two-
sided ideals, one of which is Morita equivalent to

EndSd

�
0

Y ðljmÞ AB

Y ðljmÞ
�
:

This is precisely the situation of (4.2.4), and the quiver is just ~AAp. It is easy to see that
this (super)algebra has infinite global dimension. The projective resolutions of the
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simple modules are all periodic and do not terminate. Since a two-sided graded ideal
has infinite global dimension, so does Sðmjn; dÞ, proving Theorem 5.1.1.
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