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Representation type of Schur superalgebras

David J. Hemmer, Jonathan Kujawa and Daniel K. Nakano

(Communicated by R. M. Guralnick)

Abstract. Let S(m|n,d) be the Schur superalgebra whose supermodules correspond to the
polynomial representations of the supergroup GL(m|n) of degree d. In this paper we determine
the representation type of these algebras (that is, we classify the ones which are semisimple,
have finite, tame and wild representation type). Moreover, we prove that these algebras are in
general not quasi-hereditary and have infinite global dimension.

1 Introduction

1.1 A central problem in the study of finite-dimensional algebras is to understand
the structure of the indecomposable modules. As a first step one would like to know
how many indecomposable modules a given algebra admits. Any finite-dimensional
algebra can be classified into one of three categories: finite, tame, or wild represen-
tation type. A finite-dimensional algebra A has finite representation type if A has
finitely many indecomposable modules up to isomorphism. If 4 is not of finite type
then A is of infinite representation type. Algebras of infinite representation type are
either of tame representation type or of wild representation type. For algebras of tame
representation type one has a chance of classifying all the indecomposable modules
up to isomorphism.

There has been much progress in the past ten years in determining the represen-
tation type of important classes of finite-dimensional algebras. The Schur algebras
and the ¢-Schur algebra are finite-dimensional algebras which arise in the represen-
tation theory of the general linear groups and symmetric groups. A complete classi-
fication of the representation type of these algebras was given by Doty, Erdmann,
Martin and Nakano [10], [11], [13], [14]. These algebras are fundamental examples of
quasi-hereditary algebras (or equivalently highest weight categories) which were in-
troduced by Cline, Parshall and Scott [8]. The blocks for the ordinary and parabolic
BGG category @ for finite-dimensional complex semisimple Lie algebras are other
important examples of highest weight categories. Results pertaining to the represent-
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ation type for these blocks were obtained independently by Futorny, Nakano and
Pollack [16], and Briistle, Konig and Mazorchuk [6] for the ordinary category ¢ and
more recently for the parabolic category ¢ by Boe and Nakano [3]. For quasi-
hereditary algebras the projective modules admit filtrations by certain standard
modules. This information allows one to determine the structure of the projective
modules which in turn can lead to an expression of the algebra via quiver and rela-
tions. In many cases this information can be used to determine the representation
type of the algebra.

Other important classes of finite-dimensional algebras are quasi-Frobenius alge-
bras, where all projective modules are injective. These algebras all have infinite global
dimension (except when the algebra is semisimple). For group algebras, restricted
enveloping algebras and Frobenius kernels, homological information involving the
theory of complexity and support varieties can be used to deduce information about
the representation type of these algebras. For Hecke algebras of type A, the repre-
sentation type of the blocks was given by Erdmann and Nakano in [15]. Ariki and
Mathas [2] classified the representation type for Hecke algebras of type B using Fock
space methods. Ariki [1] recently has extended this classification to Hecke algebras of
classical type.

The main result of this paper is a complete classification of the representation
type for the Schur superalgebras S(m|n,d). These algebras are of particular interest
because the category of S(m|n,d)-supermodules is equivalent to the category of
polynomial representations of degree d for the supergroup GL(m|n). Also, as with
the classical Schur algebra, there is a Schur—Weyl duality between S(m|n, d) and the
symmetric group X, (see [5]). We shall show that in most cases S(m|n, d) is not quasi-
hereditary, contrary to a recent conjecture of Marko and Zubkov. Since the Schur
superalgebras are not quasi-hereditary the aforementioned filtration techniques can-
not be used. In order to obtain information about the basic algebra for certain Schur
superalgebras we will compute the endomorphism algebras of direct sums of signed
Young modules. This will entail knowing the structures of certain signed Young
modules, which is of independent interest from the viewpoint of the representation
theory of symmetric groups.

1.2 We review below the results for the ordinary Schur algebra S(m,d), although
the proof for S(m|n,d) does not rely on these results. The representation type of
S(m,d) was determined in [10]*, [11], [13].

Theorem 1.2.1. Let S(m, d) be the Schur algebra over k where chark = p = 0.

(@) S(m,d) is semisimple if and only if one of the following holds:
(i) p=0;
(i) d < p;
(ili) p=2,m=2,d=3.

!The statement that S(2,11) for p =2 has tame representation type was inadvertently
omitted from the original statement of the theorem [10, Theorem 1.2(A)]. We thank Alison
Parker for pointing this out to us.
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(b) S (m, d) has finite representation type if and only if one of the following holds:
=22 m=3,d< 2p,
=2 m=2d<p%
=2 m=2,d=>5,7.

) has tame representation type if and only if one of the following holds:
) p=3,m=3,d=1,8;

i) p=3,m=2,d=09,10,11;

(iii) p=2,m=2,d=4,9,11.

(d) In all other cases not listed above, S(m,d) has wild representation type.

The classification of the representation type of the g-Schur algebras S,(m, d) can
be found in [14, Theorem 1.4(A)—(C)].

1.3 Throughout this paper we will assume that k is an algebraically closed field
of characteristic p > 0. The following theorem summarizes our results on the Schur
superalgebras.

Theorem 1.3.1. Let S(m|n,d) be the Schur superalgebra over k where chark # 2.

(a) S(m|n,d) is semisimple if and only if one of the following holds:
(1) chark =0;
(i) d <p:
(i) m=n=1andpjtd.
(b) S(m|n,d) has finite representation type but is not semisimple if and only if one of
the following holds:
(i) p<d<2p;
(i) m=n=1and pld.

(¢) In all other cases not listed above, S(m|n,d) has wild representation type.

We should remark that in characteristic two S(m|n,d) is equal to the ordinary
Schur algebra S(m + n,d), and its representation type is classified by Theorem 1.2.1.

2 Comparing module categories for superalgebras

2.1 Recall that k denotes our fixed ground field. All objects defined over k (algebras,
modules, superalgebras, supermodules, etc.) are assumed to be finite-dimensional as
k-vector spaces.

A superspace is a Z-graded k-vector space V' = V5 @ V3. Given a homogeneous
element v of a superspace V, we write © € Z, for the degree of v. If V' and W are
superspaces, then Homy (V, W) is naturally a superspace with Homy (¥, W); (resp.
Homy (V, W);) consisting of all linear maps which preserve (resp. reverse) grading.

A superalgebra is a Z-graded associative k-algebra 4 = A5 ® 4; which sat-
isfies A,A; = A,y for all r,se€Z,. An A-supermodule is a Z,-graded A-module
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M = M5z ® M; which satisfies A4, My < M, for all r,seZ,. An A-super_rpodule
homomorphism is a linear map f : M — N which satisfies f(am) = (—1)"%af (m)
for all homogeneous « € A and all m € M. The given condition makes sense only for
homogeneous elements and it will be used later for such elements without comment.
The general case is obtained by linearity. Note that if A and N are A-supermodules,
then Homy4 (M, N) is naturally a superspace just as in the previous paragraph.

We can define the parity change functor I1 on the category of A-supermodules
as follows. On an object M we let [IM = M as a vector space, but we switch the
Zy-grading by setting (IIM), = M, ; for r € Z,. The action of 4 is defined via
a.m = (—1)"am for homogeneous a € 4 and m e M. On a morphism f, TIf is the
same linear map as f. We refer the reader to [4, Section 2] for further discussion of
general results on superalgebras, supermodules, etc.

Throughout the remainder of this subsection we assume that chark # 2. Given a
superalgebra A4 there are three obvious module categories to consider:

() the category A-smod of all A-supermodules and all (not necessarily graded)
A-supermodule homomorphisms;

(i) the underlying even category of 4-smod where we take the objects of 4-smod
but only the even (i.e. grading-preserving) homomorphisms;

(iii) the category A-mod of all 4-modules.

Observe that an A-supermodule is indecomposable or irreducible regardless of
whether we view it as an object of the category A-smod or its underlying even
category. If M and N are indecomposable A-supermodules and f: M — N is an
A-supermodule isomorphism, write ' = f; + f; with f, e Homy (M, N), for r € Z,.
By considering the Z,-grading it is straightforward to verify that f; — f; : M — N is
also an isomorphism. Using this one can show that the map M @ [IM — N @ [IN
given by

is in fact an even isomorphism of 4-supermodules. Consequently, by the graded ver-
sion of the Krull-Schmidt theorem, we see that M is isomorphic to either N or [IN
by an even isomorphism. The above discussion proves that the category A-smod is
semisimple, finite, tame, or wild if and only if its underlying even category is semi-
simple, finite, tame, or wild, respectively. We use this observation without comment
in what follows. The remainder of this section is devoted to studying the relationship
between the representation type of these categories and the category 4-mod.

Given a superspace V, let 6: 1V — V' be the linear involution defined by
6(v) = (=1)"v, where v e V is homogeneous. In particular, the involution 6 : 4 — A
is an algebra homomorphism and defines an action of Z, on 4. Consequently, we
can define the smash product of kZ, and A as follows. Set

B=kZ, ®; A
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as a vector space. Identify kZ, with k[x]/(x*> — 1). Then the product in B is given
by

(X' ®a)(x* ®b) =x"" ®35(a)b, (2.1.1)

where r,s€{0,1} and a,b € 4. We identify kZ, and A as subalgebras via kZ, ® 1
and 1 ® A4, respectively. Note that since chark # 2, x acts semisimply on any kZ;-
module with eigenvalues +1. The following result is proven in [26, Theorem 1.4b].

Proposition 2.1.2. The category of B-modules is isomorphic to the underlying even
category of A-supermodules.

Proof. Let M be an A-supermodule. We define an action of kZ, on M via xm = o(m).
It is straightforward to verify that this makes M into a B-module. Conversely, if M
is a B-module, then we can view it as an A-module by restriction. To obtain a Z;-
grading we set M (resp. M7) to be the 1 (resp. —1) eigenspace of x acting on M. One
can verify that this Z,-grading makes M into an A-supermodule. It is straightforward
to verify that a morphism in one category restricts or extends to a morphism in the
other category. [

2.2 There is an involution { : B — B given by x" ® a — (—1)"x" ® a for re {0,1}
and a € A. We can twist a B-module M by { to obtain a new B-module which we
denote by M¢. Namely, M¢ = M as a vector space but with the action of B given by
b.m = {(b)m for all b € B and m € M. Note that M¢ is indecomposable if and only if
M is indecomposable.
Since A is a subalgebra of B, we have a restriction functor res : B-mod — 4-mod,
and an induction functor indf : A-mod — B-mod given by
indf N =B®,N

for any A-module N. Note that

ind N~1@N®x®N (2.2.1)
as A-modules. If M is a B-module, then we have

M ® M =ind%res? M. (2.2.2)
Since x acts semisimply on M and M¢, it suffices to define the isomorphism on
eigenvectors me M, m' € M¢ of eigenvalue ¢, ¢’ € {41}, respectively. Then the map
M ® M* — ind” res® M is given by

(mym')— (1 +ex)@m+ (1 —&'x) @m'.

To verify that the map is B-linear, one uses the observation that if a € 4 is an
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eigenvector for the action of x with eigenvalue « and m € M is an eigenvector for
the action of x with eigenvalue f, then am is an eigenvector with eigenvalue of.

Proposition 2.2.3. Let M be an indecomposable B-module. Then M is either in-
decomposable as an A-module or the direct sum of two indecomposable A-modules.
Furthermore, every indecomposable A-module N is a direct summand of indf N as
A-modules.

On the other hand, if M is an indecomposable B-module which contains N as a direct
summand, then M is unique up to isomorphism and twisting by (.

Proof. Let M be an indecomposable B-module and let
M=M®@- @M (2.2.4)

be a decomposition of M into indecomposable 4-modules. By using (2.2.2) and ap-
plying indf,g one has

M® M ~ind? M @ - ®ind? M.

Since the left-hand side is a decomposition as indecomposable B-modules, by the
Krull-Schmidt theorem it follows that (2.2.4) cannot have more than two direct
summands.

Now let N be an indecomposable 4-module. By (2.2.1) we see that N is a direct
summand of ind% N. On the other hand, if M is an indecomposable B-module which
contains N as a direct summand, then indf M =~ M @® M® contains ind§ N. If
ind® NV is indecomposable, then either M =~ ind? N or M = (ind? N)*. If ind % NV is
decomposable, then indf N =~ M@ MF. This proves the desired result. [

As is well known, if M is an irreducible 4-supermodule then as an 4-module M is
either irreducible or the direct sum of two irreducibles. Combining the previous result
with Proposition 2.2.3 shows that this behaviour extends to indecomposables.

2.3 We can now prove the main result of this section: the representation type of 4
as a superalgebra coincides with that of 4 as an algebra.

Theorem 2.3.1. The category A-smod is semisimple, finite, tame, or wild if and only if
the same is true for A-mod.

Proof. By Proposition 2.1.2 it suffices to consider the category B-mod rather than
A-smod.

Semisimple type. That A-smod is semisimple if and only if B-mod is semisimple is
already known. See, for example, [4, Section 2] or [26, Theorem 1.4c].

Finite type. It is clear from Proposition 2.2.3 that A-mod has finitely many in-
decomposables if and only if B-mod does.
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Tame type. Suppose that A-mod has tame representation type. Let ¢ be an in-
determinate and d a positive integer. Then there are indecomposable A-modules
Dyi,...,Dq,, and indecomposable A—k[f]-bimodules E;i,...,E;,, Wwhich are
free as right k[f]-modules so that any indecomposable 4-module of dimension d
either is isomorphic to Dy ; for some i, or is isomorphic to Ey ; ®y L for some i and
some irreducible k[f]-module L. Observe that the proof of Proposition 2.2.3 applies
verbatim to indecomposable A—k[7]-bimodules. Consequently, we can choose
indecomposable B-modules D~dA1,...,D~d,,4d and indecomposable B—k|z]-bimodules
Ey1,...,Eqy, (which are free as k[f]-supermodules) where D, ; contains D, ; as a
direct summand as 4-modules and Ed‘, ; contains Ej ; as a direct summand as 4—k{[t|-
bimodules.

Let M be an indecomposable B-module and N an indecomposable direct sum-
mand of M as an A-module. If N = D, ; for some d and i, then by the uniqueness
statement in Proposition 2.2.3 it follows that M =~ DNd‘,i or M =~ (D~d,,~)4. On the other
hand, say N = E4; ®y L for some d, i, and irreducible k[f]-module L. Since Ey ;
is a direct summand of E,;, we have that N = E, ; ®ppq L 1s a direct summand of
Ey; ®y( L. However, by [10, Lemma 2.2] we know E; i @y L 1s indecomposable. By
uniqueness again we have M = E;; Qg L or M = (Ey; ®yq L)" = (Eq:)" @y L-
Therefore, if A-mod is tame, then B-mod is tame.

Wild type. Suppose that A-mod has wild representation type. By [10, Theorem 2.2]
and Proposition 2.2.3 it follows that B-mod has wild representation type. []

3 Results on the Schur superalgebra

3.1 The Schur superalgebra. Fix non-negative integers m, n, and d, and fix a super-
space V with fixed basis vy,...,v,,, and Z,-grading given by setting 5, = 0 for
i=1,...,mand 5;=1 for i=m+1,...,m+n. The tensor space V®? is then
naturally Z,-graded by setting the degree of v;, ® --- ®v;, to be v;, + .-+ v;, for
1 <iy,...,ig <m+ n. The symmetric group %, acts on ¥®¢ on the right via

0 ® @V ® U, @ ®uy(j i+ 1) = (1) ® v, ®u® -

forl1 <ij,...,iy<m+nandeach 1 <j<d.
The Schur superalgebra is defined to be

S(m|n,d) = Ends, (V®%),

with the Z,-grading given by setting S(m|n,d); (resp. S(m|n,d);) to be the set of all
degree-preserving (resp. degree-reversing) maps. Observe that when p = 2 the above
action coincides with the usual permutation action and so S(m|n,d) = S(m + n,d).
We also note that S(m|n,d) = S(n|lm,d) as superalgebras. Namely, suppose
that ¢: {1,...,m+n} - {1,...,m+n} is given by t(i) =i+nifi=1,...,m and
tiy=i—m if i=m+1,...,m+n Fix a superspace V with fixed basis
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Oly...,Umen and Z,-grading given by setting o, =0 for i =1,...,n and 7; =1 for
i=n+1,...,m+n. Define a linear map 7 : V®? @ sgn — V®? via

T(Uil ® L. ®Uid @ 1) _ (_1)(d l)Lxl (d— 2)b,2+ +Ur,1 IU ® ®Uz (i)

where v;,,...,v;, are elements of our fixed homogeneous basis for V. It is straight-
forward to verify on simple transpositions that in fact 7 is a kX ;-module isomorphism
(cf. the proof of [5, Theorem 6.4]). Consequently we have

S(m|n,d) = Endy, (V®?) =~ Endy, (V®? ® sgn) = Endy, (V®?) = S(n|m, d),

and the isomorphisms preserve the Z,-grading.
We now introduce certain modules which will be crucial in later calculations.
Given a tuple of integers y = (y,, ..., y,) we denote the integer y, + - -- + 7, by |y|. Let

Amn,d) = {21,y dm |1y -y 1) € Z"" | Aiypt; = 0 for all i and |A] + |u| = d}.

We write (4|u) for an element of A(m|n,d).
In general, given a sequence y = (y,,...,7,) of non-negative integers summing to d,
let

Xj=X, XX, XXX,

viewed as a subgroup of X, in the natural way with X, acting as permutations of the
first y, letters, X,, acting as permutations of the next y, letters, and so on.
Given (A|u) € A(m|n,d) we define the signed permutation module M) as

MU — indéﬁ"xz“ k X sgn,

where k denotes the trivial module for 2,11 x ---x %, and sgn denotes the one-
dimensional sign representation for X, x --- x X,

By definition, a X;-module is a signed Young module if for some non-negative in-
tegers m and n and for some (A|u) € A(m|n,d) it is a direct summand of M),
Signed permutation modules and signed Young modules were first considered by
Donkin [9]. Finally we observe the well-known fact that

@ MmUw (3.1.1)

(M) e A(m|n,d)

y®d

Il

as kX -modules.
3.2 We begin by collecting a few preliminary results.

Proposition 3.2.1. Let S be a finite-dimensional algebra containing an idempotent e, so
that eSe is a subalgebra of S.
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(@) Every indecomposable eSe-module is a summand of the restriction to eSe of some
indecomposable S-module.

(b) If eSe has infinite representation type then so does S.

(c) If eSe has wild representation type then so does S.

Proof. (a) Let N be an indecomposable eSe-module. Let U = S ®,g, N. Then U is a
non-zero S-module and we have

UzeU®(1—-¢)U

as eSe-modules. But eU =~ N. Now if U is written as a direct sum of indecomposable
S-modules then an easy argument with the Krull-Schmidt theorem gives the result.
(b) This is clear from (a). If S has only finitely many indecomposable modules then
(a) implies that eSe does as well.
(c) This statement follows from the argument of [10, Theorem 2.2]: the authors
show that if 4 is tame and the statement of (a) holds for an arbitrary algebra 4 then
so is each subalgebra B. []

3.3 One can now apply the previous result to the situation of S(m|n,d). This allows
us to descend from the superalgebra S(m’|n’,d) to S(m|n,d) form <m’, n <n'.

Corollary 3.3.1. Let m < m’ and n < n'. The following assertions hold:
(@) if S(m|n,d) has infinite representation type then so does S(m'|n’, d);
(b) if S(m|n,d) has wild representation type then so does S(m'|n’, d).

Proof. Recall that A(m|n,d) is the set of pairs (1) where A and u are compositions
with |A| + |#| = d and 7 has at most m parts, y has at most n parts. Thus A(m|n,d) is
naturally a subset of A(m’|n’,d). Recall that

S(m’|n’,d) = Endk2d< Mu”)>.

(Alp) e A(m'|n’,d)

So if e denotes the projection onto the direct sum of all M“¥ with (A|u) € A(m|n,d)
then clearly eS(m'|n’,d)e = S(m|n,d), and we can apply Proposition 3.2.1 to prove
the result.

3.4 The classical (and infinitesimal) Schur algebra S(n,n) has a natural one-
dimensional representation corresponding to the determinant for GL(n). This allows
one to embed the module category for S(n,d) into that of S(n,d + n), which can be
used to study representation type (e.g. [12, Theorem 2.2]). Unfortunately the analogue
of the determinant representation for the supergroup GL(m|n), the one-dimensional
Berezinian representation, is not polynomial and so it does not give a natural one-
dimensional S(m|n, m + n)-module.
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We instead use the existence of a one-dimensional representation for S(2|1, p).
Namely, let L(0,0|p) denote the one-dimensional supermodule which is the Frobenius
twist of the one-dimensional GL(2) x GL(1)-module L(0,0) X L(1) (see [5, Remark
4.6]). Since the polynomial representations of GL(m|n) correspond with the repre-
sentations of the supermonoid M (m|n) one can follow the arguments given in [12,
Propositions 2.1, 2.2] by replacing the determinant representation with L(0,0|p) to
deduce the following result.

Proposition 3.4.1. If the algebra S(2|1,d) has wild representation type then so does
S(2|11,d + cp) for any ¢ € N.

3.5 We will assume familiarity with basic modular representation theory of the
symmetric group. In the next section we will prove the main result of the paper.
Surprisingly, we will use virtually no representation theory of the superalgebra. How-
ever, we will need to know that Young modules Y1) are in fact signed Young
modules when c < pand m =2, n = 1.

Proposition 3.5.1. Let | < ¢ < p. Then the Young module Y% is a summand of the

signed permutation module M(@"1°),

Proof. Since ¢ < p we have

M) 2 ks, =indZ k= @(sHmS (3.5.2)
Mc
But the Specht module S* has dimension greater than one except when 4 = (1¢) or
A = c. Thus using (3.5.2) we obtain that
M@D1) = pho @ pet @ ind¥ g (KRERSHY, (3.53)
e, A (19), () ‘ ‘
a,b, 1)

with each d; > 1. Since Y(@b:1%) occurs exactly once as a direct summand of M
and Homg, (Y(@? 1) M(@b:9)) = 0, the result follows from (3.5.3). [

3.6 The significance of Proposition 3.5.1 is that it gives us a Young module Y* as
a summand of the tensor space V®? even though / has more than three parts and
m +n = 3. We need information about one other special signed Young module for
the p = 3 case.

Proposition 3.6.1. Suppose that p does not divide a. Then
M@0p) ~ gla+l 177 oy gla,17),
The two Specht modules in the decomposition are both irreducible and

s@1”) ~ pa21?),
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Proof. The Specht module decomposition follows from Young’s rule (see [20, p. 51]).
The irreducibility of the ‘hook’ Specht modules when p t d is well-known work of
Peel [27]. Finally, which irreducible module corresponds to S“!") can be calculated
directly, or obtained as a special case of James [19, Theorem A]. []

4 Proof of the main result

In this section we prove Theorem 1.3.1. One of the main ideas will be to identify a
subalgebra eSe with k2/I for some quiver 2. Then we can use Gabriel’s theorem,
since if the separated quiver is not a Dynkin or Euclidean diagram then the algebra is
of wild type.

41 S(l|1,d). If n=0 or m =0 the superalgebra S(m|n,d) is isomorphic to the
Schur algebra S(m, d), and so the smallest non-trivial case for us is the superalgebra
S(1|1,d). This has been studied by Marko and Zubkov:

Proposition 4.1.1 [23, Proposition 2.1]. Let S = S(1|1,d). If p does not divide d then S
is semisimple. If p divides d then S has d + 1 pairwise non-isomorphic one-dimensional
modules, labelled by the weights 0,1, ..., d. The algebra is basic, connected, and has
left regular representation given as follows.

0 1 2 r—1 r
sS=100 21 3®---®r-2 ror—1 (4.1.2)
1 2 r—1

From here it is easy to obtain the quiver. In particular, for m > 1 we define an
algebra .o/, to be the algebra k2/I where 2 is the quiver with m + 1 vertices

ay Q2 Qam—1 Qam

B1 B2 Bm—1 Bm

and .# is the ideal generated by the relations

Oi%iy1 = 07 ﬁi-HBi = 07 o(lﬁl = ﬁmam = 07

P =o01fiyy forl<i<m-—1

The quiver for <, is the same as the quiver for Erdmann’s algebra .7, defined
in [13, (3.1)], with one additional relation, namely f,,0, = 0. We will see in Section
5 that this extra relation is crucial because it makes the algebra have infinite global
dimension.

Theorem 4.1.3. When p divides d the algebra S(1|1,d) is isomorphic to the algebra </,
and has finite representation type.
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Proof. The proof of the algebra isomorphism is essentially the same as in [13,
Proposition 3.2], and so we do not give it here. The algebra .7, is a three nilpotent
algebra, but the only indecomposable modules of radical length three are projective.
Hence, the representation type of .7, is the same as the representation type of .27,
modulo its radical squared (which is two nilpotent). The separated quiver is a disjoint
union of two copies of the Dynkin diagram A4,,.;, and hence by Gabriel’s theorem
the algebra is of finite type. []

4.2 S(m|n,d), (d < 2p). We first consider the case where p < d < 2p. It turns out
that this case is essentially the same as for the Schur algebra S(2,d). Recall that
the summands of the signed permutation modules M%) are called signed Young
modules. We recall the following theorem of Donkin.

Theorem 4.2.1 [9, (2.3(6))]. Let m,n = d. The isomorphism classes of indecomposible
signed Young modules are labelled by the set

AT (mln,d) = { (%] pu) | |2 + plu| = d}
where ). and u are partitions.

Following [9], we write Y*P% for the indecomposible signed Young module labelled
by (4] pu) € AT (m|n. d).

We wish to show that for d < 2p the signed Young modules are exactly the ordinary
Young and twisted Young modules. To begin we will show that the non-projective
signed Young modules are all distinct.

Given a partition A d, let /' denote the transpose partition of A. For 1+ d p-
regular we let m (1) be the Mullineux conjugate of Z, so that D* ® sgn =~ D) _ Tt is
well known that the Young module Y™ is the projective cover of D*, a fact that
we will use several times below.

Proposition 4.2.2. If the Young module Y is isomorphic to a twisted Young module
Y* ® sgn, then A is p-restricted, in which case . = m(u')’.

Proof. Applying the adjoint Schur functor to ¥* and Y# ® sgn (see [18, Theorems
3.4.2, 3.8.2]) tells us that P(1) = T(x'). But the tilting modules are self-dual, so that
P(2) is self-dual and hence has simple socle L(4). But V' (x') is a submodule of 7'(x)
and the socle of V(u') is L(m(u')"), so that 4 = m(u')" is p-restricted. [

For d < 2p it is clear that the p-singular partitions are exactly those of the form
(g +p, 1y, . ..) for u a partition of d — p. Thus the number of signed Young modules
for d is the total number of partitions of d plus the number of p-singular partitions,
which by Proposition 4.2.2 is precisely the number of Young and twisted Young
modules. We have shown the following result.

Proposition 4.2.3. For p < d < 2p the signed Young modules are exactly the set of
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Young modules Y* together with the non-projective twisted Young modules Y* ® sgn
where p is p-singular.

We also remark that the non-projective Young modules are actually irreducible
and are in distinct blocks. Symmetric group blocks of defect 1 are well understood
and we have the following. Let 7 - d — p and let B be the block of kZ; with p-core 7.
Let

M= (14 p,12,...,1) oy = (1,17)

be the p partitions of d with p-core 7.

Let u=1"+ (p). Then p is p-singular and an easy calculation shows that
Y* ® sgn =~ D*-', i.e. this is the non-projective twisted Young module in the block.
So the signed Young modules in the block are

D4 DAi-1
yH ~ Dil7 VG ~ DA% Y4 ~ D D/l,-,27
Dh D1
D (4.2.4)
Y% ~ Dh2,  Y*®sgn~ D7,
D*r-1

where 3 <i < p. Thus the basic algebra for S(m|n,d) is a direct sum of two-sided
ideals which either are semisimple (corresponding to blocks of kX, of defect 0) or are
isomorphic to

P
Ends, ( Y@ (Y'® sgn)) : (4.2.5)
=1

1

The quiver and relations for the algebra in (4.2.5) correspond to ,gi;,, which we saw
earlier is of finite type. So we can now prove the first half of Theorem 1.3.1.

Theorem 4.2.6. Let S(m|n,d) be the Schur superalgebra where 0 < d < 2p.

(@) S(mi|n,d) is semisimple if and only if one of the following holds:
(i) chark =0;
(i) d < p;
(i) m=n=1and ptd.
(b) S(m|n,d) has finite representation type but is not semisimple if and only if one of
the following holds:
(i) p<d<2p
(i) m=n=1and p|d.
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Proof. (a) If d < p or char k = 0 then k%, is semisimple, and hence so is the algebra
S(m|n,d) := Endys, (V®?). Part (iii) follows by Proposition 4.1.1.

(b) The calculation above shows that when max(m,n) =2 and p < d < 2p the
algebra S(m|n, d) has finite representation type (and is not semisimple). The same is
true for S(1|1,d) when p|d by Proposition 4.1.1. ]

43 S(2|1,d), (d = 2p).
Now we begin to show that for d > 2p the algebra S(2|1,d) has wild type. By
Proposition 3.4.1 it will suffice to prove this for 2p < d < 3p. Recall that

SQ2|1,d) = End,@,( M()"|=)~Z/‘1)>.

(41s 22|y ) e AQIL, d)

In each case we will find some collection {Y;} of indecomposable signed Young
modules such that the algebra Ends,(@7Y;) is of wild type. But this will imply that
S(2|1,d) is of wild type by Proposition 3.2.1.

To show that the algebra Endss,(®Y;) has wild type we will show, in each case,
that it is isomorphic to an algebra k2/I where 2 is a quiver and .# is an ideal con-
tained in the ideal generated by paths of length at least two. In each case the sepa-
rated quiver of 2 will not be a union of Dynkin or extended Dynkin diagrams, which
by Gabriel’s theorem means that the algebra is of wild type. The main difficulty will
be to make an appropriate choice of the {Y;}.

Our proof will split into three cases, each following the same strategy. First we
handle the case 2p < d < 3p — 2. Then we handle d =3p — 2 and d = 3p — 1 sepa-
rately. That this happens is not surprising, as the blocks of defect 2 are slightly
different in the three cases; see for instance [29, Table 1]. Essentially everything is
understood for symmetric group blocks of defect 2. The decomposition numbers are
all known by [28]. The structure of the projective indecomposable modules can be
determined from [29]. Finally, Chuang and Tan [7] have determined the structure of
the non-projective Young modules. Thus we just need to select signed Young modules
judiciously to get a quiver of wild type. We will not give the details of determining the
module structures we need; they can be found in the works cited above.

Recall that if 4 is a p-regular partition of d, we write m(1) for the Mullineux con-
jugate of /, so that D* ® sgn =~ D”*) and the Young module Y™ is the projective
cover of D*.

44 SQ21,d), 2p<d<3p—2). Let d=2p+1t for 0 <t< p—2. Using the
Chuang-Tan notation we have the following partitions in the principal block of Z;:

W =0pt1), W=2p-11+1), P=02p-2,1+1,1), I =(p+1p).

If we lete=(p+tp—1,1) then g is p-restricted and Y is the projective cover
of DM Using i to denote D*" we have the following Loewy structures [7, Theorem
2.4
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vy =0, v = (1) v ~0 2, v =0 1 %,
0 1 1
! (4.4.1)
* 0 2
Yo~1 u 1.
* 0 2
1

Since all partitions above have third part 0 or 1 and since by Proposition 3.5.1
Y(@b1) is a summand of M(“?11) | all modules in (4.4.1) are signed Young modules for
m =2, n=1. Consider the quiver % given below:

N

°

Let U be the direct sum of the five modules in (4.4.1). We have

Theorem 4.4.2. (a) The algebra Endys,, ,(U) is isomorphic to the algebra k& /1 where
1 is in the ideal generated by paths of length 2. In particular it is of wild represen-
tation type.

(b) The superalgebra S(2|1,d) has wild representation type for 2p < d < 3p — 2.

Proof. (a) The signed Young modules making up U have the same structure as the
modules E; for 1 <i< 5 in [13, Proposition 3.10], and the determination of the
quiver proceeds in exactly the same way.

(b) We obtain this immediately from (a) by calculating the separated quiver of .Z.
The separated quiver is two copies of the diagram

which is not a Dynkin or Euclidean diagram. []

45 S(2|1,3p —2). Let d = 3p — 2. Using the Chuang—Tan notation we have the
following partitions in the principal block of Z;:
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O =@p-2), W=@2p-1,p-1), AP =@2p-2p-21%,
W =@2p-2,p=31°), M =(2p=-2,p), 6=02p-2,p-11).

It is also an easy calculation that
m(é)/ = (2p - 31p - 13 12)7

so that Y(2=3:7=1.1%) i the projective cover of D?. Let t = (2p — 3, p — 1,12). Using i
to denote D*” we have the following structures for Young modules [7]:

AN Ay
4 |>< N [P | ™\
YA YT JE=

N e |1
N \/

20 20 0 23 2
Yy =0, YY" =1, Y =6 3. (4.5.1)
0 2

All of the Young modules in (4.5.1) are either for two-part partitions or partitions
of the form (a, b, 1¢) for ¢ < p, and so by Proposition 3.5.1 they are all signed Young
modules. Now consider the following quiver which we denote by 2.

1)
[ ]
flle
ay az 2 az
[ ] [ [ )
0 B B2 1 Bs 3
h k
[ ]
p

Let T be the direct sum of the six signed Young modules in (4.5.1). We have the
following result.

Theorem 4.5.2. (a) The algebra A = Endys,, ,(T) is isomorphic to the algebra k2/1
where J is the ideal generated by the relations
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oy = 003 = aph = Baffy = foffy = fag = fo3 =0,

(4.5.3)
hk = gf = Byoa + azfs.

(b) The superalgebra S(2|1,d) has wild representation type for d = 3p — 2.

Proof. (a) Let {eg, ey, e2,e3,¢5,e;} € A be the canonical projections onto the Young
module summands of 7. Choose non-zero maps o; and f,. (The module structures
leave no choice for the kernels and images of these maps.) The image and kernels of
the maps f, g, h, k can also be determined by the structure of the modules given in
(4.5.1). In particular we have the following Loewy structures for the kernels (from
which the images are easily determined).

! 2
kerk>~2 x 0, kergzx
o

kerf;* 0, kerh;(l).

0
1’ 0
Knowing the kernels and images of the maps is sufficient to check that the zero
relations in (4.5.3) are satisfied. We need only show we can choose the maps so that
hk = gf = Broa + 3.

Notice that the image of ,a, is the simple module 1 and the image of a3/ is the
simple module J, while both 4k and gh have image equal to the socle of Y*” . Since
End(Y )@) is three-dimensional, we can take as a basis {ey, 0305, o000 }. Write

hk = afyon + basfy,  gf = cfroun + casfs,

where the images ensure that a, b, ¢, d are all non-zero. Now make the sub-
stitutions

ﬁé = aﬁ27 “é = C, ﬁé = bﬁ37 ag = dOC4.

This will give the desired relation without effecting the earlier zero relations. The
maps {o;, B;, h,k, f,g} generate rad A and are independent modulo 72, and so there is
an epimorphism k2/I — A. Now one can simply check that the dimensions agree to
see that it is an isomorphism.

(b) We obtain this immediately from (a) by calculating the separated quiver of 2
and verifying that it is not a Dynkin or Euclidean diagram. []J

In the special case where p =3 (i.e. S(2|1,7)), the partition A¥) above does not
exist. In this case to obtain the same quiver we replace y by the irreducible module
D?, which is a signed Young module by Proposition 3.6.1. The quiver and relations
are easily seen to be identical.

4.6 S(2|]1,3p—1). Let d = 3p — 1. Using the Chuang—Tan notation we have the
following partitions in the principal block of X;:
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}'(O):(3p_1)a ;‘<1>:(2p_17p_1a1)a l(Z)Z(ZP_lvp_zalz)v
W =02p—1,p-31%, M=02p-1,p), p=02p-2,p1),

where p = m(A*))’, anclwhence Y? is the projective cover of D*”.
Using i to denote D" we have the following structures for Young modules [7]:

0 =x 1
v =0, v =% vz 1 vy ~0 2
0 = 1
* 4.6.1
o | (4.6.1)
Y =1 3, Y’==x 0 p
2 1
*
Now consider the following quiver called #:
*
1
L] * L] L ]
3 0
L]
p

Let W be the direct sum of the six signed Young modules in (4.6.1). We have the
following result.

Theorem 4.6.2. (a) The algebra Endys,, (W) is isomorphic to the algebra kA /I where
S is in the ideal generated by paths of length 2. In particular it is of wild repre-
sentation type.

(b) The superalgebra S(2|1,d) has wild representation type for d = 3p — 1.
Proof. (a) We leave the calculations for the reader. They are similar to the proof of
Theorem 4.5.2.

(b) Once again the separated quiver for 5 is neither Dynkin nor Euclidean and so
S(2|1,3p — 1) is of wild representation type. []

Just as in the case for 3p — 2, the partition 483) does not exist when p =3 (i.e. for
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S(2|1,8)). Again, replacing Y** with the simple module D21 =~ D" gives the
same quiver. D>21 is a signed Young module by Proposition 3.6.1.

4.7 We can now complete the proof of Theorem 1.3.1 by proving the following
result.

Theorem 4.7.1. The algebra S(m|n, d) has wild representation type when max(m,n) = 2
and d = 2p.

Proof. Since S(m|n,d) = S(n|m,d) we may assume that m > n. By assumption m > 2
and n > 1. For 2p < d < 3p the algebra S(2|1,d) has wild representation type from
Theorems 4.4.2(b), 4.5.2(b), 4.6.2(b). Hence, by Proposition 3.4.1, S(2|1,d) has wild
type for d = 2p. One can now apply Corollary 3.3.1(b) to conclude that S(m|n,d) has
wild representation type for d > 2p. [

5 Global dimension

5.1 1In [23, Conjecture 1] it is conjectured that S(m|n,d) is quasi-hereditary when-
ever d is coprime to p. In this section we use our previous calculations to show this is
far from true. In fact, we will prove the following theorem.

Theorem 5.1.1. For d = p =5 and m,n > d the superalgebra S(m|n,d) has infinite
global dimension.

This result suggests the following question.

Question 5.1.2. Is it true that S(m|n, d) either is semisimple or has infinite global di-
mension? In particular, is it true that non-semisimple Schur superalgebras are never
quasi-hereditary?

After the completion of the present article we were informed by Marko and Zub-
kov that they obtained in [24] an affirmative answer to the above questions. Their
approach is quite different from the one taken here. They study the representation
theory of S(m|n,d) and answer the questions by obtaining partial information about
the Cartan matrix for S(m|n, d).

5.2 Before proving Theorem 5.1.1 we first need to determine which block of kX,
contains a given signed Young module. Throughout the remainder of this section we
assume that m,n > d.

Recall the classification of irreducible S(m|n, d)-supermodules when m, n > d given
in [9, (2.3(3))] (for the statement when m, n, and d are arbitrary, see [5, Theorem 6.5]).

Theorem 5.2.1. Let m,n = d. The irreducible supermodules of S(m|n,d) are labeled by
heighest weight by the set A**(m|n,d) = {(A| pu) ||| + plu| = d} where /. and u are
partitions.
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Write L(A| py) for the irreducible S(m|n,d)-supermodule of highest weight (1| pu)
and let P(4| pu) denote the projective cover of L(1| pu).
Just as with the ordinary Schur algebra, one can define a Schur functor

F : S(m|n, d)-supermodules — kX ;-modules.

As with the ordinary Schur functor, F is exact and if L is an irreducible S(m|n,d)-
supermodule then FL is either zero or an irreducible kX;-module. All irreducible
kX -modules appear in this way. In fact, by [5, (5.13)] we have

) — "is p-
FL(| p) > {D”’ ) e |y = 0 and A’ is p-regular, (52.2)
0 otherwise.

Furthermore, by [9, p. 662] we have
FP()| pu) = YWP0), (5.2.3)

Thus to determine which block contains Y% it will suffice to obtain information
about the composition factors of P(4| pu).
Before proceeding, we require additional notation. Let

X:{é:(élv-"vém‘ém+17~-~aém+n)|éla"~afm+nEZ}-

We view (4| pu) € AT (m|n,d) as the element (4,0,...,0]| pu,0,...,0) of X in the
natural way. Fori=1,... ,m+n, let ¢; € X be the element which has a 1 in the ith
position and 0’s elsewhere. Let 9 € X be the element

$=(-1,-2,....,-mm—1m—-=2,... m—n+1,m—n).
Note that our definition of & differs from the one in [22, (2.8)] by a multiple of the
GL(m|n) analogue of the determinant representation. This has no significant effect on

our arguments.
Giveni=1,...,m+n we define r; : X — Z by

(é)_ él+‘9l lfl:l,,m,
rile) = —(&E+ %) fi=m+1,... . m+n

ForreZ, and £ € X, define

A& =i=1,....m+n|r(é+¢&)=r(modp)},
BA&) = [{i=1,....m+n|n(&) = r (mod p)}.

For a partition 4 we let 2 denote its p-core. Recall that the blocks of kX ; are para-
metrized by the p-cores of the partitions of d; see [21, Section 2.7]. Also recall that
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the category of S(m|n, d)-supermodules is equivalent to the category of polynomial
representations of degree d for the supergroup GL(m|n). Thus we can view the cate-
gory of S(m|n,d)-supermodules as a full subcategory of the category of representa-
tions of GL(m|n) and, in turn, as a full subcategory of the category of supermodules
for the superalgebra Dist(GL(m|n)) of distributions for GL(m|n). See [5] for a full
discussion of these matters.

Lemma 5.2.4. Let (2| pp), (v| pn) € A" (m|n,d). If L(A| pu) and L(v|py) have the
same central character as Dist(GL(m|n))-supermodules, then A = .

Proof. If L(A| pit) and L(v| pn) have the same central character, then by [22, Lemma
3.3] we have

Ar(A] pu) = B,(Z| p) = A:(v| pn) — B:(v| pn) (525)
for all r € Z,. However, if i=m +1,...,m+ n, then

ri(4| pw) = =9 (mod p) = ri(v| pn) (mod p),

and
ri((Z] pu) + &) = =9 — 1 (mod p) = ri((v| pn) + &) (mod p).
Consequently, we see that (5.2.5) holds if and only if

A0

pu) — Bi(2| pu) = A;(v| pn) — B (v| pn) (5.2.6)

for all r € Z,,, where for £ € X we define

A =Hi=1,....m[ri(+&) =r (modp)},
Bi(&)=Hi=1,....m|ri(¢) =r (mod p)}|.

Given (4|pu) and r e Z,, for brevity let us write 4, for A/(A|pu) and B] for
B/(A] pu). By definition, we have 4] = B]_, for all r € Z,. We then have the follow-
ing equations:

Bi+By+---+B,=m, B |—B/=b forr=1,...,p.
However, it is straightforward to check that the determinant for this system of linear

equations is non-zero and so one can solve this system for the integers B/. That is,
(5.2.6) holds if and only if

B/(%| pu) = B.(v| pn) (5.2.7)
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for all r € Z,. We assume without loss that |A| = |v| since B;(4, 17| pu) = B/(A| pu)
and since the p-cores of (4, 17) and A coincide.

Since for i = 1,...,m we have r;(1| pu) = A; — i, it follows that (5.2.7) holds if and
only if there is an element ¢ € ¥, so that

Ai — i = Vg(;) — a(i) (mod p) (5.2.8)

for i=1,...,m. Finally, by the Nakayama rule [25, Theorem 5.1.1] we have that
(5.2.8) holds if and only if A = 7. This proves the desired result. []

Corollary 5.2.9. The signed Young module Y*P1) is in the kX, block with p-core 2.

Proof. Let L(v| pn) be a composition factor of P(4| pu). Then since both L(4| pu)
and L(v|pn) are composition factors of an indecomposable Dist(GL(m|n))-
supermodule, they must have the same central characters (cf. [22, Section 2.8]). By
the previous lemma, we have A = v. The result then follows by exactness of the Schur
functor along with (5.2.2) and (5.2.3). [

5.3 We can now prove Theorem 5.1.1. Since p > 5, by the work of Granville and
Ono [17] there must be a partition 7 - d — p which is a p-core. Consequently, X, has
a p-block of defect 1. Let B denote this block.

Lemma 5.3.1. There are p + 1 signed Young modules in B. They are the p distinct
Young modules YD) ~ Y* with A = t and one non-projective twisted Young module
yUlr) ~ y('+2) @ sgn.

Proof. By Corollary 5.2.9 the signed Young modules which occur in B are those
of the form YP#) with A = z. Thus they are precisely the ones listed. Now, since
twisted Young modules are signed Young modules, Y ") ® sgn is a signed Young
module in the block B, and it must be Y, O

Now we have the direct sum decomposition

S(m|n,d) = Endys, (V) = Endkz,,( D aup Y@lﬂ)) ® End;s, (U)
YU e B

where a;),) denotes the multiplicity of Y@ in ®4 and U has no summands in the
block B. That is, we have direct sum decomposition of S(m|n,d) into graded two-
sided ideals, one of which is Morita equivalent to

taie( ® 1),

YU e B

This is precisely the situation of (4.2.4), and the quiver is just &{;,. It is easy to see that
this (super)algebra has infinite global dimension. The projective resolutions of the
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simple modules are all periodic and do not terminate. Since a two-sided graded ideal
has infinite global dimension, so does S(m|n, d), proving Theorem 5.1.1.
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