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A ROW REMOVAL THEOREM FOR THE EXT1 QUIVER
OF SYMMETRIC GROUPS AND SCHUR ALGEBRAS
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(Communicated by Jonathan I. Hall)

Abstract. In 1981, G. D. James proved two theorems about the decomposi-
tion matrices of Schur algebras involving the removal of the first row or column
from a Young diagram. He established corresponding results for the symmet-
ric group using the Schur functor. We apply James’ techniques to prove that
row removal induces an injection on the corresponding Ext1 between simple
modules for the Schur algebra.

We then give a new proof of James’ symmetric group result for parti-
tions with the first part less than p. This proof lets us demonstrate that
first-row removal induces an injection on Ext1 spaces between these simple
modules for the symmetric group. We conjecture that our theorem holds for
arbitrary partitions. This conjecture implies the Kleshchev-Martin conjecture
that Ext1

Σr
(Dλ,Dλ) = 0 for any simple module Dλ in characteristic p 6= 2.

The proof makes use of an interesting fixed-point functor from Σr-modules to
Σr−m-modules about which little seems to be known.

1. Introduction

We will assume familiarity with representation theory of the symmetric group Σr
as found in [7] and of the Schur algebra S(n, r) as found in [4]. We write λ ` r for
λ = (λ1, λ2, . . . , λk) a partition of r. Let N = {0, 1, 2, . . .}. We do not distinguish
between λ and its Young diagram:

λ = {(i, j) ∈ N×N | j ≤ λi}.
A partition λ is p-regular if there is no i such that λi = λi+1 = · · · = λi+p−1. A

partition is p-restricted if its conjugate partition, denoted λ′, is p-regular.
We write λDµ for the usual dominance order on partitions. For λ = (λ1, λ2, . . . ,

λk) we write λ for λ with its first row removed, i.e.

λ = (λ2, . . . , λk) ` r − λ1.

We write λ̂ for λ with its first column removed, i.e.

λ̂ = (λ1 − 1, λ2,−1, . . . , λk − 1) ` r − k.
The complex simple Σr-modules are the Specht modules {Sλ | λ ` r}. The

simple modules in characteristic p can be indexed by p-restricted partitions or by
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p-regular partitions. If we let Sλ denote (Sλ)∗, then both

{Dλ := Sλ/rad(Sλ) | λ is p-regular}
and

{Dλ = soc(Sλ) | λ is p-restricted}
are complete sets of nonisomorphic simple Σr-modules in characteristic p. The two
indexings are related by Dλ ∼= Dλ′ ⊗ sgn, where sgn denotes the one-dimensional
signature representation.

For a module M and a simple module S we let [M : S] denote the composition
multiplicity of S in M . James proved the following row removal theorems in [6].

Theorem 1.1 (James). Let λ and µ be partitions of r with λ1 = µ1 = m, and let
λ be p-restricted. Then [Sµ : Dλ] = [Sµ : Dλ].

Theorem 1.2 (James). Let λ and µ be partitions of r with λ1 = µ1 = m, and let
λ be p-regular. Then [Sµ : Dλ] = [Sµ : Dλ].

From these results, James deduced corresponding results for first-column removal
by tensoring with the sign representation.

We apply James’ technique to prove that row removal gives an injection on the
corresponding Ext1 space between simple modules for the Schur algebra. Then
we present a new proof of James’ theorem for symmetric groups in the case when
λ1 < p. We apply this proof, together with a theorem of Kleshchev and Sheth, to
prove the corresponding Ext1 result for symmetric groups.

We remark that Theorems 1.1 and 1.2 have been generalized to removing multiple
rows and columns by Donkin [1, 2]; however, we will not use these generalizations.
We would like to thank Gordon James and Dan Nakano for useful discussions about
this paper.

2. An Ext1
-theorem for Schur algebras

Let k be an algebraically closed field of characteristic p > 0, and let n ≥ r. The
simple, complex, polynomial representations of GLn of homogeneous degree r are
the Weyl modules {V (λ) | λ ` r}. Over k the Weyl modules may no longer be
simple, but each Weyl module has a simple head denoted by L(λ).

The category of polynomial representations of GLn(k) of homogeneous degree r
is equivalent to the category mod-S(n, r). The Schur functor is an exact functor
from mod-S(n, r) to mod-kΣr that maps V (µ) to Sµ and, for µ p-restricted, maps
L(µ) to Dµ. Using this functor (specifically Theorem 6.6g in [4]), it sufficed for
James to prove Theorem 1.1 for S(n, r), namely that [V (µ) : L(λ)] = [V (µ) : L(λ)].

To do this, James defined [6, p. 117] an idempotent η ∈ S(n, r) such that
ηS(n, r)η contains a subalgebra isomorphic to S(n− 1, r −m). Let

Fm : mod-S(n, r)→ mod-S(n− 1, r −m)

be defined by Fm(U) = ResηS(n,r)η
S(n−1,r−m)(ηU). James showed:

Theorem 2.1 ([6, pp. 117-120]). Let µ ` r with µ1 = m. Then:
(i) Fm(V (µ)) ∼= V (µ).
(ii) Fm(L(µ)) ∼= L(µ).
(iii) Fm(rad(V (µ)) ∼= rad(V (µ)).

The only other tool we need for our first theorem is the following result.
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Lemma 2.2 ([8, II 2.14]). Suppose λ and µ are partitions of r and µ 6Bλ. Then

Ext1
S(n,r)(L(λ), L(µ)) ∼= HomS(n,r)(rad(V (λ), L(µ))).

Although Lemma 2.2 is actually stated in Jantzen’s book for Ext1 in the category
of rational GLn(k)-modules, this is known to agree with Ext1 in mod-S(n, r) by [3,
2.2d]. We can now prove:

Theorem 2.3. Let λ and µ be partitions of r with λ1 = µ1 = m. Then there is an
injection

0→ Ext1
S(n,r)(L(λ), L(µ))→ Ext1

S(n−1,r−m)(L(λ), L(µ)).

Proof. Since the modules L(τ) are self-dual we can assume µ 6Bλ. The functor Fm
is exact, so any copies of L(µ) in the second radical layer of V (λ) will map to copies
of L(µ) in the second radical layer of V (λ), by Theorem 2.1. The injection then
follows from Lemma 2.2. It is an injection rather than an isomorphism because
other copies of L(µ) may “float up” to the second radical layer of V (λ). There is
no assurance that Fm preserves the radical layers of V (λ). We know only that it
preserves the radical. �

We remark that the situation for column removal is much simpler. Namely, if λ
and µ have m parts, then

Ext1
S(n,r)(L(λ), L(µ)) ∼= Ext1

S(n−m,r−m)(L(λ̂), L(µ̂))

is clear by tensoring with the determinant representation.

3. Symmetric group preliminary results

We desire a result like Theorem 2.3 for the symmetric group. To do so it is
necessary to first reprove James’ results without using the Schur functor. Then we
can use a theorem of Kleshchev and Sheth to play the role of Lemma 2.2.

We begin by gathering information on the modules Sλ, Dλ, Sλ and Dλ, and
establish our notation. For more details on results presented in this section see [7].
For λ ` r, a λ-tableau is one of the r! arrays of integers obtained by replacing each
node of λ bijectively with the integers 1, 2, . . . , r. There is a natural action of Σr
on the set of tableaux. For a tableau t, let R(t) denote the set of permutations in
Σr keeping the rows of t fixed setwise; and similarly let C(t) denote the column
stabilizer. A tableau is standard if its rows and columns are increasing.

For a λ-tableau t, define the signed column sum

κt =
∑

σ∈C(t)

sgn(σ)σ

and the row sum
ρt =

∑
σ∈R(t)

σ.

There is an equivalence relation on λ-tableaux given by t1 ∼ t2 if t2 = πt1 for
some π ∈ R(t1). The equivalence classes are called λ-tabloids and are denoted by
{t}. There is a natural action of Σr on the set of λ-tabloids, and this permutation
module is denoted by Mλ. For a tableau t, the corresponding polytabloid is defined
as et := κt{t} ∈Mλ. The following theorem is fundamental.

Theorem 3.1 ([7, Thm. 8.4]). {et | t is a standard λ-tableau} is a basis for Sλ.
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In particular, Sλ is a submodule of Mλ.
We will find it useful to identify the various kΣr-modules as left ideals in the

group algebra kΣr. In particular (see for example [10, Thm. 4.2.2]):

Lemma 3.2. Choose any λ-tableau T . Then
(i) Mλ ∼= kΣrρT ;
(ii) Sλ ∼= kΣrκTρT ;
(iii) Sλ ∼= kΣrρTκT ;
(iv) Dλ ∼= kΣrκTρTκT ;
(v) Dλ

∼= kΣrρTκTρT ;
(vi) a basis for Sλ is given by {πρTκT | πT is standard}.

If λ′ denotes the conjugate partition to λ, the following is well known.

Lemma 3.3.
(i) For λ p-restricted, Dλ

∼= head(Sλ) ∼= soc(Sλ).
(ii) For λ p-regular, Dλ ∼= head(Sλ) ∼= soc(Sλ).

To obtain his results on decomposition numbers from Theorem 2.1, James ap-
plied the following lemma.

Lemma 3.4 ([4, Lemma 6.6b]). Let S be an algebra and η ∈ S an idempotent.
Suppose V is an S-module and F is a simple S-module such that ηF 6= 0. Then
ηF is a simple ηSη-module and [V : F ] = [ηV : ηF ].

As in James’ proof for S(n, r), we will find an idempotent η in kΣr such that
ηkΣrη has a subalgebra isomorphic to kΣr−m, and such that λ1 = m < p implies
ηSλ ∼= Sλ and ηDλ

∼= Dλ as kΣr−m-modules.
Our idempotent exists only when m < p, which (coincidentally?) is the only case

where the symmetric group result corresponding to Lemma 2.2 is known. Thus we
can obtain a result on Ext1 for symmetric groups in this case.

4. Determining the row removal functor on Sλ

Our main result in the next two sections is a new proof of a weaker version
(Theorems 4.1, 4.2) of James’ theorems, which is entirely contained in symmetric
group theory. This proof will lead to new results in Section 6. Henceforth we
assume p > 2. This eliminates problems with semistandard homomorphisms (see
[7, 13.14]) and is not relevant to our results for kΣr, because for p = 2 the only
λ ` r with λ1 < 2 is (1r).

Theorem 4.1. Let λ, µ ` r with λ1 = µ1 = m < p. Then [Sµ : Dλ] = [Sµ : Dλ].

Tensoring with the sign representation gives:

Theorem 4.2. Let λ, µ ` r have m parts, for m < p. Then [Sµ : Dλ] = [Sµ̂ : Dλ̂].

Henceforth when we write Σm it will be acting on {1, 2, . . . ,m}. When we write
Σr−m it will be acting on {m + 1,m + 2, . . . , r} and will be embedded in Σr in
the natural way. Similarly, when λ ` r −m, a λ-tableau will be labelled with the
numbers {m+ 1,m+ 2, . . . , r} rather than by {1, 2, . . . , r −m}.

We begin by defining

η =
1
m!

∑
σ∈Σm

σ.
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Notice that η is a nonzero idempotent (and η exists only because m < p). So for
U a kΣr-module, ηU is a ηkΣrη-module. The group algebra kΣr−m sits naturally
inside ηkΣrη (namely as ηkΣr−mη) and η commutes with Σr−m. So we can regard
ηU as a kΣr−m-module by restriction. Left multiplication by η then restriction to
kΣr−m gives an exact functor

Fm : mod-kΣr → mod-kΣr−m

defined by Fm := ResηkΣrη
kΣr−m

(ηU).
We would like to see how this functor behaves on the Specht, dual Specht, and

simple modules. In this section we determine how it acts on Specht modules and
use the information to determine which simple modules it annihilates. In the next
section we consider dual Specht modules and use the information to determine Fm
on simple modules. We begin with an easy lemma.

Lemma 4.3. If λ1 < m, then Fm(Sλ) = 0.

Proof. Since λ1 < m, any standard tableau t must have a column with more than
one entry from {1, 2, . . . ,m}. This implies ηκt = 0; so ηet = 0. Thus, by Theorem
3.1, η annihilates a basis for Sλ; hence ηSλ = 0. �

Next we determine which simple modules are annihilated by Fm.

Lemma 4.4. Fm(Dλ) = 0 if and only if λ1 < m.

Proof. Suppose λ1 < m. Then by Lemma 4.3, ηSλ = 0. Since Dλ = soc(Sλ),
we know ηDλ = 0. Conversely suppose λ1 ≥ m. Choose a λ-tableau T with
{1, 2, . . . ,m} in its first row, so that ηρT = ρT . We have

Dλ = kΣrρTκTρT
by Lemma 3.2(v), so

0 6= ρTκTρT = ηρTκTρT ∈ ηDλ.

Thus ηDλ 6= 0. �
We will now determine how Fm acts on the Specht modules Sλ when λ1 = m.

Theorem 4.5. Let λ1 = m, and let t1, . . . , ts be the standard λ -tableaux with first
row 1 2 · · · m. Then for any standard λ-tableau t,

ηet 6= 0 iff t = ti for some i.

The set {ηeti}si=1 is linearly independent. Furthermore, ηSλ ∼= Sλ as Σr−m-
modules, i.e. Fm(Sλ) ∼= Sλ.

Proof. Suppose t is a standard λ-tableau but t 6∈ {ti}si=1. Then the first column of
t must contain one, plus at least one other number ≤ m. Thus ηκt = 0, so ηet = 0
as desired. To prove the linear independence of the set {ηeti}si=1 we first recall the
total order on λ-tabloids from [7, p. 10]:

Definition: {t1} < {t2} if ∃i such that:
(i) {i+ 1, . . . , r} are in the same row of {t1} and {t2}.
(ii) i is higher in {t1} than in {t2}.

By [7, Lemma 8.2], to prove the linear independence of the set {ηeti}si=1, it is
sufficient to prove the following.
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Lemma 4.6. The tabloid {ti} is the greatest (in the total order) tabloid that occurs
in ηeti , and it occurs with nonzero coefficient.

Proof. It is easy to check that for any tableau T ,

(4.1) κπT = πκTπ
−1.

Set {t} = {ti}. Since 1 2 · · · m is the first row of {t}, we know Σm ≤ R(t), and
hence

(4.2) σ{t} = {t} = {σt} ∀σ ∈ Σm;

so η{t} = {t}. Using this plus Equation (4.1) we determine

ηet = ηκt{t}

=

(
1
m!

∑
σ∈Σm

σ

)
κt{t}

=
1
m!

κt{t}+
∑

16=σ∈Σm

κσt{σt}


=

1
m!

 ∑
π∈C(t)

sgn(π)π{t} +
∑

16=σ∈Σm

κσt{σt}


=

1
m!
{t}+

1
m!

∑
16=π∈C(t)

sgn(π)π{t} +
1
m!

∑
16=σ∈Σm

κσt{σt}.(4.3)

Now we will show that all the tabloids that occur in Equation (4.3) except {t}
are tabloids smaller than {t}, and that {t} occurs with coefficient one. First we
recall that by [7, 3.15]:

t standard and 1 6= π ∈ C(t) =⇒ {t} > {πt}.
This implies that the tabloids in the second summand of (4.3) are all < {t}.

Next we consider the third summand in (4.3). These are tabloids of the form
{s} := π{σt}, for π ∈ C(σt). For π = 1 we get {s} = {σt} = {t}. This yields
another (m! − 1)/m copies of {t}, bringing the coefficient of {t} in (4.3) to one.
Now suppose π 6= 1, and π ∈ C(σt). Then

{t} = {σt}
> π{σt} since 1 6= π ∈ C(σt).

Hence the remaining tabloids in (4.3) are also smaller than {t}, completing the
proof of Lemma 4.6. �

To complete the proof of Theorem 4.5, it remains to show that ηSλ ∼= Sλ as
kΣr−m-modules. The linear independence of the set {ηeti} proves that both mod-
ules have dimension equal to the number of standard λ-tableaux. For a λ-tableau
T , we let T denote T with its first row removed. Notice that the λ-tableaux are all
of the form T where T is a λ-tableau with first row 1 2 · · ·m. We use Lemma 3.2
to deduce:

Lemma 4.7.
(i) {eT | T is a λ-tableau}is a spanning set for Sλ.
(ii) {eT | T ∈ {ti}si=1}is a spanning set for Sλ.
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We remark that {ti}si=1 is a complete set of standard λ-tableaux.
Now, following James [6], we define a kΣr−m-homomorphism Θ : Mλ →Mλ by

(4.4) Θ({t}) =
{

0 if the first row of {t} is not 1 2 · · · m,
{t} otherwise.

Notice that by Equation (4.2),

(4.5) Θ({ηt}) = Θ({t}).
It is a simple computation that for a λ-tableau t,

(4.6) Θ(et) =
{

sgn(π)eπt if {1, 2, . . . ,m} are in distinct columns of t
0 otherwise,

where π is any element of C(t) such that πt has {1, 2, . . . ,m} in the first row.
By Lemma 4.7, the set {ηeT | T a λ-tableau} spans ηSλ and {eT | T ∈ {ti}si=1}

spans Sλ. Thus, Equations (4.5) and (4.6), plus the known equality of the di-
mensions, prove that restricting Θ to ηSλ gives an isomorphism onto Sλ. This
completes the proof of Theorem 4.5. �

5. Determining Fm(Sλ) and Fm(Dλ)

In order to determine Fm(Dλ) we will need to understand Fm(Sλ). The analysis
will be similar to the last section, but the proof is subtly different. Namely, we will
use other means to determine the dimension of ηSλ before we determine its module
structure. In Section 7 we will say more about why we believe the two cases are
fundamentally different.

To begin, observe that for a kΣr-module U , the subspace ηU is exactly the space
of fixed points UΣm under Σm. Since Σm commutes with Σr−m, this space carries
the structure of a kΣr−m-module. We will say more about this in Section 7, but
for now we use it to prove:

Lemma 5.1. dimk(ηSλ) = dimkSλ.

Proof. As we remarked above,

dimk(ηSλ) = dimk(Sλ)Σm

= dimkHomkΣm(k, Sλ)

= dimkHomkΣr (S
λ,M (m,1r−m)).

But since p > 2, this is just the number of semistandard λ-tableaux of type
(m, 1r−m) by [7, 13.14], which (since λ1 = m) is the number of standard λ-tableaux,
i.e. the dimension of Sλ. �

Recall that since Sλ ∼= Sλ
′ ⊗ sgn, we can consider Sλ as sitting inside Mλ′ ⊗ sgn.

So Sλ has a basis of the form {et ⊗ ε} where t is a standard λ′-tableaux and ε is
such that σε = sgn(σ)ε. As in Theorem 4.5 we have:

Theorem 5.2. Let t1, t2, . . . , ts be the standard λ′-tableaux that have 1, 2, . . . ,m as
their first column. Then:

(i) η(eti ⊗ ε) = eti ⊗ ε.
(ii) {eti ⊗ ε}si=1 is a basis for ηSλ.
(iii) ηSλ ∼= Sλ as kΣr−m-modules.
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Proof. Part (i) follows from the fact that for σ ∈ Σm we have σ(eti) = sgn(σ)eti .
Part (ii) follows from the fact that the eti are linearly independent and the number
of them is the same as the dimension of ηSλ determined in Lemma 5.1. Part (iii)
is then clear from looking at the action of Σr−m on the {eti}. (See also Lemma
5.4(iii).) �

We remark that this situation is different from Theorem 4.5, because for t not
in the set {t1, t2, . . . , ts}, we may still have ηet 6= 0.

Let 〈 , 〉 denote the bilinear form on Mλ defined by setting the basis of tabloids
to be orthonormal. This immediately gives a form on Mλ⊗ sgn as well. Let 〈〈 , 〉〉
denote the form similarly defined on Mλ

′
⊗ sgn. Then Sλ ⊆ Mλ′ ⊗ sgn and from

[7] we have:

Lemma 5.3. Let λ be p-restricted.
(i) For Sλ ⊆Mλ′ ⊗ sgn we have rad(Sλ) = Sλ ∩ (Sλ)⊥.
(ii) For Sλ ⊆Mλ

′
⊗ sgn we have rad(Sλ) = Sλ ∩ (Sλ)⊥.

As in the proof of Theorem 4.5 we define Ψ : Mλ′ ⊗ sgn→Mλ
′
⊗ sgn by

Ψ({t} ⊗ ε) =

{
{̂t} ⊗ ε if 1, 2, . . . ,m are in distinct rows of t,
0 otherwise,

where ˆ{t} is the λ
′
-tableau obtained by removing the numbers 1, 2, . . . ,m from

{t}. We let Ψ denote the restriction of Ψ to ηSλ. The following lemma is a
straightforward calculation. For part (iv) it suffices to check on the basis of ηSλ
given in Theorem 5.2(ii).

Lemma 5.4. Let t1, t2, . . . , ts and Ψ be as above. Let t̂i be the standard λ
′
-tableau

given by removing the first column of ti. Then:
(i) Ψ is a kΣr−m-homomorphism.
(ii) Ψ(ηx) = Ψ(x) ∀x ∈Mλ′ .
(iii) Ψ(eti ⊗ ε) = m!(et̂i ⊗ ε). In particular Ψ is an isomorphism from ηSλ to

Sλ.
(iv) For any x, y ∈ ηSλ we have 〈x, y〉 = m!(〈〈Ψ(x),Ψ(y)〉〉).
(v) For any u, v ∈ Sλ we have 〈u, v〉 = 〈ηu, ηv〉.

Finally we can determine Fm(Dλ) as a kΣr−m-module:

Theorem 5.5. ηDλ
∼= Dλ as Σr−m-modules, i.e. Fm(Dλ) ∼= Dλ.

Proof. We know ηDλ = η(Sλ/rad(Sλ)). Since Dλ = Sλ/rad(Sλ), it is enough to
show that Ψ maps η(rad(Sλ)) onto rad(Sλ).

So choose an arbitrary x ∈ rad(Sλ). Then x = Ψ(ηu) for some u in Sλ. We
must show that ηu is in η(rad(Sλ)), so we prove u ∈ rad(Sλ). To do this, choose
any v ∈ Sλ. Then Lemma 5.4 gives

〈u, v〉 = 〈ηu, ηv〉
= m!(〈〈Ψ(ηu),Ψ(ηv)〉〉)
= m!(〈〈x,Ψ(ηv)〉〉)
= 0 since x ∈ rad(Sλ).

Thus u ∈ rad(Sλ) and so ηu ∈ η(rad(Sλ)) as desired. �
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All the pieces are now in place to prove Theorem 4.1. It is well known that any
composition factor Dµ of Sλ has λDµ. In particular, Sλ has no composition factors
Dµ with µ1 > λ1 = m. Thus η annihilates all the composition factors of Sλ except
those Dµ with µ1 = λ1 = m. We have proved that ηSλ ∼= Sλ and that ηDµ

∼= Dµ.
In particular ηDµ, which is guaranteed by Lemma 3.4 to be a simple ηΣrη-module,
remains simple as a ηkΣr−mη ∼= kΣr−m-module.

Thus Lemma 3.4 implies [Sλ : Dµ] = [Sλ : Dµ]. Theorem 4.1 then follows
because Sλ = (Sλ)∗ and all the Dµ are self-dual; so [Sλ : Dµ] = [Sλ : Dµ].
Theorem 4.2 follows from Theorem 4.1 by tensoring with sgn and recalling that
Sλ ⊗ sgn ∼= Sλ′ .

6. A row removal theorem for Ext
1
kΣr

(Dλ, Dµ)

In this section we combine information from our partial proof of James’ result
with a theorem of Kleshchev and Sheth to derive a new result about the Ext1-quiver
of the symmetric group.

Given any finite-dimensional algebra S and an idempotent e ∈ S there is an
exact functor F : mod-S → mod-eSe given by multiplication by e. If eL(λ) and
eL(µ) are nonzero, then they are irreducible and there is an injection

0→ Ext1
S(L(λ), L(µ))→ Ext1

eSe(eL(λ), eL(µ)).

However both James’ proof and our proof involve a restriction functor after
multiplication by the idempotent, in our case restricting from ηkΣrη to kΣr−m.
But restriction does not in general induce an injection on Ext1. The following
result of Kleshchev and Sheth lets us use our row removal functor to obtain a result
on extensions between simple modules. We have translated the theorem to index
irreducibles with p-restricted partitions rather than p-regular.

Theorem 6.1 ([9, Theorem 2.10]). Let λ, µ be partitions of r with λ1, µ1 < p and
assume µ 6Bλ. Then

Ext1
kΣr (Dλ, Dµ) ∼= HomkΣr (Dµ, S

λ/Dλ).

This is all we need to prove:

Theorem 6.2. Let λ1, µ1 = m < p. Then there is an injection

0→ Ext1
kΣr (Dλ, Dµ)→ Ext1

kΣr−m (Dλ, Dµ).

Equivalently, if λ and µ both have m < p parts, then there is an injection

0→ Ext1
kΣr (Dλ, Dµ)→ Ext1

kΣr−m (Dλ̂, Dµ̂).

Proof. Since the irreducible modules are self-dual we can assume µ 6Bλ without loss
of generality, so of course µ 6Bλ as well. We have

0→ Dλ → Sλ → Sλ/Dλ → 0.

Multiplying by η gives

0→ Dλ → Sλ → η(Sλ/Dλ)→ 0.

Thus,
η(Sλ/Dλ) ∼= Sλ/Dλ.
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So each Dµ in the socle of Sλ/Dλ maps to a Dµ in the socle of Sλ/Dλ. We get

0→ HomkΣd (Dµ, S
λ/Dλ)→ HomkΣd−m(Dµ, S

λ/Dλ),

which, together with Theorem 6.1, completes the proof. �

We have verified that Theorem 6.2 holds for all known Ext1-quivers for the
symmetric group, including blocks of small defect and for various small r. This
data together with Theorem 6.2 leads us to the following conjecture.

Conjecture 6.3. Let p ≥ 3, and let λ and µ be p-restricted partitions of r with
λ1 = µ1 = m. Then there is an injection

0→ Ext1
kΣr (Dλ, Dµ)→ Ext1

kΣr−m (Dλ, Dµ).

Equivalently, for τ and ρ p-regular partitions of r with m parts, there is an injection

0→ Ext1
kΣr (Dτ , Dρ)→ Ext1

kΣr−m (Dτ̂ , Dρ̂).

Conjecture 6.3 immediately implies the following conjecture.

Conjecture 6.4 (Kleshchev, Martin). For p ≥ 3, Ext1
kΣr (Dλ, Dλ) = 0.

The reason for this is that if Conjecture 6.3 holds and if λ = (λ1, λ2, . . . , λk),
then we can remove rows one at a time. This eventually gives an injection from
Ext1

kΣr (Dλ, Dλ) into Ext1
kΣλk

(Dλk , Dλk) ∼= Ext1
kΣλk

(k, k), which is known to be
zero.

We present an example where the injection in Theorem 6.2 is proper. Let p = 3,
m = 2 and choose λ = (23, 16) and µ = (2, 110). Then

S(23,16) ∼=
D(2,110)

D(112)

D(23,16),

so Ext1
kΣ12

(D(2,110), D(23,16)) = 0. But

ηS(23,16) ∼= S(22,16) ∼= D(110)

D(22,16).

Notice that η annihilated the D(112) term. So the D(2,110) term dropped down, and

Ext1
kΣ10

(D(22,16), D(110)) ∼= k.

James also proved a result corresponding to removing the first column from Dλ.
Using the idempotent

η′ :=
1
m!

∑
σ∈Σm

sgn(σ)σ

and proceeding with a similar analysis we could obtain Theorem 6.2 for first-column
removal from Dλ. However, for fixed p there are only finitely many p-restricted
partitions with less than p parts, so the corresponding theorem is weaker. We
are not aware of any counterexamples to the column removal statement for Dλ

corresponding to Conjecture 6.3, so perhaps this holds as well.
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7. Remarks on fixed point functors

As above we consider Σm and Σr−m as subgroups of Σr, but we drop the as-
sumption that m < p. For U ∈ mod-kΣr, the fixed points of U under Σm are
clearly invariant under the action of Σr−m. So we can define

Fm : mod-kΣr → mod-kΣr−m

by
Fm(U) = UΣm ∼= HomkΣm(k, U) ∼= HomkΣr (M

(m,1r−m), U).
When m < p this functor agrees with the functor Fm defined previously, namely

it is multiplication by an idempotent and then restriction (and hence is exact).
When m ≥ p, the module k is not projective as a kΣm-module, so the functor Fm
is only left exact. Very little seems to be known about this functor. For example
what is Fm(Sλ)? In Section 4 we determined this in the special case λ1 = m < p.

We also determined Fm(Sλ) in this case by a similar but not identical proof. It
is clear the two situations are very different. In particular the dimension Fm(Sλ)
is independent of the characteristic and is the number of semistandard λ-tableaux
of type (m, 1r−m). We will study this functor in more detail in [5]. In particular
we can show:

Theorem 7.1. Let λ = (λ1, λ2, . . . , λk). Then:
(i) If m > λ1, then Fm(Sλ) = 0.
(ii) If m = λ1, then Fm(Sλ) ∼= Sλ.
(iii) If m < λ1, then Fm(Sλ) ∼= Sλ\(m), the dual of a skew Specht module.

The situation for Specht modules in characteristic p is much more difficult; not
even the dimension of Fm(Sλ) is known. Of course Fm(Sλ) is not just a vector
space, but has the structure of a kΣr−m-module. The author is not aware of any
investigation of this module structure.

We remark that part (i) of Theorem 7.1 is not true for Specht modules. For
example, when p = 3, λ = (7, 2, 2) and m = 8 > λ1,

dimF8(Sλ) = 3 > 0.

We make the following conjecture.

Conjecture 7.2. Fm(Sλ) has a filtration by Specht modules for kΣr−m.
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