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Program: We review some recent work on quantum electrodynamics on a three dimen-
sional Euclidean spacetime, work which culminates in a proof of ultraviolet stability
in a finite volume. The model is formulated on a fine lattice and bounds are obtained
uniformly in the lattice spacing. The method is a renormalization group technique due
to Balaban.
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1 Introduction

1.1 the model

We are interested in quantum electrodynamics in a three dimension Euclidean space-
time with finite volume. The model is presented as functional integrals which are ill
defined due to short distance (ultraviolet) singularities. The goal is to show that the
model can be renormalized non-perturbatively to tame the singularities and give a
precise definition.

The model is first regularized by formulating it on a fine lattice, and the first goal
is to get bounds uniformly in the lattice spacing. We particularly concentrate on the
partition function, but the same methods should give bounds on correlation functions.
The continuum limit as the lattice spacing goes to zero should also be feasible. The
infinite volume limit and reconstruction of an operator theory on a three dimensional
Minkowski spacetime are problems for the future.

Our tool is the renormalization group which is a systematic way of integrating out
the short distance modes and tracking the result. The method is implemented with a
block averaging technique due to Balaban. Balaban created the approach in his studies
of (massive) scalar electrodynamics in d=3 [1] - [4], and Yang-Mills gauge theory in
d=3,4. [5] - [15]. It was further developed in joint work with collaborators Imbrie, Jaffe
[18] - [19] and O’Carroll, Shor [20] -[21].

The model is defined by the action

S(A, ψ̄, ψ) =
1

2
‖dA‖2+ < ψ̄, (De(A) + m̄)ψ > +mN < ψ̄, ψ > +εN (1)

This is defined on a lattice with finite volume, and for definiteness we take unit volume.
The lattice ΛN has spacing ε = L−N for some fixed large postive odd integer L. We
either take a toroidal lattice

ΛN = (L−NZ/Z)3 (2)

or a cube

ΛN =
(
L−NZ ∩ [−1/2, 1/2]

)3

(3)

We are interested in what happens as N →∞.
The gauge field A is defined on bonds b in the lattice consisting of ordered nearest

neighbor pairs b = (x, x′) with the convention that A(x, x′) = −A(x′, x) The associated
field strength dA defined on plaquettes (squares) in the lattice

dA(p) = ε−1
∑
b∈∂p

A(b) (4)

where ∂p is the boundary of p oriented counterclockwise. The gauge term in the action
is

1

2
‖dA‖2 =

1

2

∑
p

ε3|dA(p)|2 (5)
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The fermi fields ψ̄α(x), ψα(x) arre indexed by points x in the lattice and spinor
indices α. They are totally anti-commuting and are the generators of a Grassman
algebra. The pairing < ψ̄, ψ > is defined by.

< ψ̄, ψ >=
∑
α

∑
x

ε3ψ̄α(x)ψα(x) (6)

A covariant forward derivative with gauge field A and charge e in the direction eµ
is defined on spinors f by

(∂A,µf)(x) =
(
eieεA(x,x+εeµ)f(x+ εeµ)− f(x)

)
ε−1 (7)

This is a forward derivative. The transpose ∂T−A,µ is a backward derivative and we
consider the symmetric derivative

∇A,µ =
1

2

(
∂A,µ − ∂T−A,µ

)
(8)

and the covariant Laplacian
∆A = −(∂−A)T∂A (9)

Now let {γµ, γν} = 2δµν for µ = 0, 1, 2 be a representation of the three dimensional
Clifford algebra. The Dirac operator on spinors is

De(A) = γ · ∇A −
1

2
ε∆A =

2∑
µ=0

γµ∇A,µ −
1

2
ε∆A (10)

The extra term 1
2
ε∆A was added by Wilson to prevent doubling of fermion species in

the continuum limit. The operator can also be written

(De(A)f)(x)

=− ε−1
∑
µ

[(
1− γµ

2

)
eieεA(x,x+εeµ)f(x+ εeµ) +

(
1 + γµ

2

)
eieεA(x,x−εeµ)f(x− εeµ) − f(x)

]
(11)

The vacuum energy density εN and the mass mN are counterterms and will be
chosen to depend on N to cancel singularities in the model. With these definitions the
N →∞ limit formally gives the standard continuum theory.

The partition function is defined by

ZN(e) =

∫
exp(−S(A, ψ̄, ψ)) Dψ DA (12)

where
Dψ =

∏
x,α

d(ψ̄α(x))d(ψα(x)) DA =
∏
b

d(A(b)) (13)
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The fermion integral is the standard Grassman integral: projection onto the highest
element. The integral over the gauge field is not yet well-defined since the integrand
is gauge invariant and so there is no convergence in pure gauge directions. One has
to specify some gauge fixing which we will discuss presently. Once that is settled the
goal is to show that for e sufficiently small the partition function is bounded above and
below uniformly in the lattice spacing N .

1.2 the scaled model

Let us now specialize to the toroidal lattice. We introduce the notation

T−NM = (L−NZ/LMZ)3 (14)

for the lattice with spacing L−N and width LM . So we begin with the lattice ΛN = T−N0

with spacing L−N and unit volume. But it for some purposes it is easier to work with a
unit lattice so we scale up to the unit lattice T0

N with width LN and volume L3N . Let
Ψ(x), Ψ̄(x) be elements of a Grassmann algebra indexed by x ∈ T0

N and let A(b) be a
real valued functions on bonds b in T0

N . The scaled action is defined by

S0(A, Ψ̄,Ψ) = S(AL−N , Ψ̄L−N ,ΨL−N ) (15)

where

AL−N (b) =L
1
2
NA(LNb)

ΨL−N (x) =LNΨ(LNx)

Ψ̄L−N (x) =LNΨ̄(LNx)

(16)

are fields on the original lattice T−N0 . The scaling factors here are chosen to preserve
the free kinetic terms ‖dA‖2 and < ψ̄,D(0)ψ >. and we have

S0(A, Ψ̄,Ψ) =
1

2
‖dA‖2 +

〈
Ψ̄, (DeN0

(A) + m̄N
0 )Ψ

〉
+mN

0

〈
Ψ̄,Ψ

〉
+ εN0 Vol(T0

N) (17)

Now lattice sums are unweighted and derivatives are unit lattice derivatives. The new
parameters are the tiny values

eN0 = L−
1
2
Ne m̄N

0 = L−Nm̄ mN
0 = L−NmN εN0 = L−3NεN (18)

For example mN < Ψ̄,Ψ > becomes

mN < Ψ̄L−N ,ΨL−N >=mN
∑

x∈T−N0

L−3N LNΨ̄(LNx) LNΨ(LNx)

=L−NmN
∑
x′∈T0

N

Ψ̄(x′)Ψ(x′)

=mN
0 < Ψ̄,Ψ >

(19)
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Note also that parallel translation in the derivative exp(ieL−NA(x, x+L−Neµ)) becomes

exp(ieL−N/2A(LNx, LNx+eµ)) or in unit lattice points exp(ieL−
1
2
NA(x′, x′+eµ)). This

accounts for the L−
1
2
N in eN0 = L−

1
2
Ne. In the following we omit the superscript N in

the parameters and just write e0, m̄0,m0, ε0, the zero indicating that this is our starting
point.

The N →∞ limit, formerly an ultraviolet (short distance) problem, has now been
recast as an infrared (long distance) problem with scaled parameters.

1.3 RG transformations

The partition function now has the form, (up to scaling factors, and with Ψ0 standing
for Ψ̄0,Ψ0)

ZN(e) =

∫
ρ0(A0,Ψ0)DA0DΨ0

ρ0(A0,Ψ0) = exp
(
− S0(A0,Ψ0)

) (20)

The fields all live on the torus T0
N . This still needs gauge fixing but we proceed formally

with specifying how it is accomplished.
The difficulty with the problem is that we have an unbounded number of variables.

The renormalization group method consists of integrating out a few variables at a time,
and keeping careful track of the effective actions at each stage. In Balaban’s formulation
one defines new fields A1 = QA0 and Ψ1 = Q(A0)Ψ0 defined on the L-lattice T1

N where
the operators Q, Q(A0) average over blocks of width L (precise definition later). Then
one integrates over all fields A0,Ψ0 with roughly fixed values of A1,Ψ1 by

ρ̃1(A1,Ψ1) = N0

∫
DA0DΨ0 δ(A1 −QA0)

exp
(
− b/L < Ψ̄1 −Q(−A0)Ψ̄0,Ψ1 −Q(A0)Ψ0 >

)
ρ0(A0,Ψ0)

(21)

If we had taken a delta function δ(Ψ1−Q(A0)Ψ0) then the integral would be exactly over
fixed values of A1,Ψ1, but this does not make sense for Grassmann variables and so we
have taken a Gaussian type factor to approximate a delta function. The normalization
factor N0 is chosen so N0

∫
exp(−b/L < Ψ̄1,Ψ1 >)DΨ1 = 1. Then we have∫

DA1DΨ1 ρ̃1(A1,Ψ1) =

∫
DA0DΨ0ρ0(A0,Ψ0) = ZN(e) (22)

and so a new representation of the partition function. Next we scale back to the unit
lattice and define for A1,Ψ1 on T0

N−1

ρ1(A1,Ψ1) = ρ̃1(A1,L,Ψ1,L) (23)

where A1,L(b) = L−
1
2A1(b/L) and Ψ1,L(x) = L−1Ψ1(x/L) are fields on T1

N .
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We repeat the transformation many times generating a sequence of densities ρ0, ρ1, ρ2, . . . .
After k steps ρk(Ak,Ψk) is a function on fields on T0

N−k. We pass from ρk to ρk+1 defin-
ing for Ak+1,Ψk+1 on T1

N−k

ρ̃k+1(Ak+1,Ψk+1) = Nk

∫
DAkDΨk δ(Ak+1 −QAk)

exp
(
− b/L < Ψ̄k+1 −Q(−Ak)Ψ̄k,Ψk+1 −Q(Ak)Ψk >

)
ρk(Ak,Ψk)

(24)

Then for Ak+1,Ψk+1 on T0
N−k−1 define

ρk+1(Ak+1,Ψk+1) = ρ̃k+1(Ak+1,L,Ψk+1,L) (25)

We stop the iteration when k = K ≈ N . Then we have a density ρK(Ak,Ψk) on
T0
N−K and

ZN(e) =

∫
ρK(AK ,ΨK)DAKDΨK (26)

If we have control over the density ρK this is now a tractable integral over a small
number of variables and should yield good estimates.

So the issue is to keep control over the sequence ρ0, ρ1, ρ2, . . . . To accomplish
this it is desirable to write it as the exponential of an effective action ρk(Ak,Ψk) =
exp(−Sk(Ak,Ψk)) as much as possible. It turns out this is only possible when the
gauge field is bounded in in certain sense. To accomodate this fact we will have to
continuously split the field space into large an small field sectors, and show that the
large field sectors make a negligible contribution. With effective actions defined for
small fields the problem is to control the sequence S0, S1, S2, . . . . After k steps the the
leading terms Sk should look something like the original action with new parameters
ek, m̄k,mk, εk. These start at tiny values and grow. The issue is to chose counter terms
so they do not grow too quickly. The other contributions to Sk are smaller but com-
plicated multi-fields terms and their growth must be limited as well. To keep track of
this it is important that they have all the symmetries of the original action, that they
have a local structure, and that they have some residual gauge invariance in spite of
the gauge fixing. These ideas will be explored in detail in subsequent lectures.

1.4 gauge fixing

We make some preliminary remarks on gauge fixing. We are interested in integrals of
the form ∫

f(A) exp
(
− 1

2
‖dA‖2

)
DA DA =

∏
b∈Λ

A(b) (27)

For definiteness suppose that the space time Λ is a cube in Z3. and that f(A) is gauge
invariant, f(Aλ) = f(A− dλ) = f(A). The gauge invariance of ‖dA‖2 means we have
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a large null space and such integrals will not converge. The integrand is really defined
on the orbit space of gauge transformations A → A − dλ. To define the integral we
need to pick coordinates for the orbit space, that is pick a representative of each orbit.
We now make a definite choice called an axial gauge.

Let T be a tree on the lattice with rectilinear branches joining all points. The case
d=2 is illustrated in figure 1

r r r r rr r r r rr r r r rr r r r rr r r r r
- x1

6

x2

0

Figure 1: A tree in d=2

A gauge field A is said to be axial if it vanishes on the tree.

Proposition 1. Every A on Λ is gauge equivalent to a unique axial A′ = A− dλ.

Proof. For any lattice point x ∈ Λ, let Γ0,x be the path in the tree joining the origin
to the point x and let

(τA)(x) = A(Γ0,x) =
∑
b∈Γ0,x

A(b) (28)

Then for a bond (x, x+ eµ) on the tree

A(x, x+ eµ) = (τA)(x+ eµ)− (τA)(x) (29)

So (τA)(x) = 0 for all x is equivalent to A axial.
Now given A define λ(x) = (τA)(x) and A′ = A − dλ. Then for (x, x + eµ) on the

tree
(dλ)(x, x+ eµ) = λ(x+ eµ)− λ(x) = A(x, x+ eµ) (30)

and so
A′(x, x+ eµ) = A(x, x+ eµ)− dλ(x, x+ eµ) = 0 (31)

This establishes equivalence to the axial field A′.
For uniqueness suppose that A ∼ A1 axial and that A ∼ A2 axial. Then A1 ∼ A2 or

A1 = A2 − dλ and A1 = A2 = 0 on the tree. Hence dλ = 0 on the tree so λ is constant
on the tree and hence everywhere. Therefore A1 = A2. This completes the proof.

Now we interpret the integral (27) as integration over axial fields only. We write
this as ∫

f(A)δ(τ(A)) exp
(
− 1

2
‖dA‖2

)
DA (32)

8



where
δ(τ(A)) =

∏
x∈Λ

δ
(

(τA)(x)
)

(33)

With the gauge fixing the integral will converge. Thus is so because dA has no null
space. To see this use that principle that if A = 0 on three sides of a plaquette p and
dA(p) = 0, then A = 0 on the fourth side as well. Using this principle and moving
outward from the origin one can argue that dA = 0 and τA = 0 imply A = 0.

However the expression (32) not a good starting point for our analysis. It does
not have good ultraviolet properties. We actually use something else which we now
develop.
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2 Gauge fields

2.1 block averaging

For A on a unit lattice define an averaged field QA bonds in an L lattice by

(QA)(y, y + Leµ) =
∑
x∈B(y)

L−4A(Γx,x+Leµ) (34)

Here B(y) is the L- block of L3 lattice points centered on y. The Γx,x+Leµ is the straight
line between the indicated points and A(Γ) =

∑
b∈ΓA(b). This is designed to be gauge

covariant, that is
Q(A− dλ) = Q(A)− d(Qλ) (35)

where Qλ is the average of the the scalar λ

(Qλ)(y) =
∑
x∈B(y)

λ(x) (36)

Similarly gauge fields on any rectangular lattice can be averaged to gauge fields on a
coarser lattice.

Given a density on the unit lattice ρ0(A0) on our starting unit lattice T0
N we define

a new density ρ̃1(A) of the L-lattice T1
N defining for A1 on T1

N

ρ̃1(A1) =

∫
δ(A1 −QA0)ρ0(A0) DA0 (37)

(If ρ0(A0) is gauge invariant we need some gauge fixing here, but we postpone dealing
with this for now.) Then

∫
ρ̃1(A1)DA1 =

∫
ρ0(A0)DA0. Next we scale back down to

the unit lattice T0
N−1 defining for A1 on T0

N−1

ρ1(A1) = ρ̃1(A1,L) A1,L(b) = L−
1
2A(L−1b) (38)

Then up to scaling factors from DA0
1∫

ρ1(A1)DA1 =

∫
ρ0(A0)DA0 (39)

We repeat this process. Given ρk(Ak) on T0
N−k we define ρ̃k+1(Ak+1) on T1

N−k by

ρ̃k+1(Ak+1) =

∫
δ(Ak+1 −QAk)ρk(Ak) DAk (40)

and then ρk+1(Ak+1) on T0
N−k−1 by

ρk+1(Ak+1) = ρ̃k+1(Ak+1,L) (41)

1We are not keeping tracking of these scaling factors which take care of themselves. Those arising
from the original scaling up are compensated step by step as we scale back down.
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Again the integral is preserved∫
ρk+1(Ak+1)DAk+1 =

∫
ρk(Ak)DAk (42)

The result of the iteration has an explicit representation. The delta functions com-
pose by ∫

δ(A2 −QA1)δ(A1 −QA0)DA1 = δ(A2 −Q2A0) (43)

so after k steps we generate operators Qk = Qk. Taking advantage of the scale invari-
ance of Q we find

ρk(Ak) =

∫
δ(Ak −QkA)ρ0,L−k(A)DA (44)

where ρ0,L−k(A) = ρ0(ALk). Here A is defined on bonds in T−kN−k and QkA is defined
on bonds in T0

N−k by

(QkA)(y, y + eµ) =
∑

x∈Bk(y)

L−4kA(Γx,x+eµ) (45)

Here Bk(y) is the Lk block of L3k sites in T−kN−k. It has unit volume. The A(Γx,x+eµ) is
an unweighted sum over bonds in Γx,x+eµ .

2.2 axial gauge

The discussion of block averaging has not dealt with the necessity of gauge fixing. A
key idea of Balaban’s method is that one does not fix the gauge at the start, but piece
by piece as one makes the RG transformations. We carry this out with a modified axial
gauge.

In the first step we construct a tree in each L-block as in figure 1. A partial axial
gauge is imposed by setting A0(b) = 0 for each bond b in any such tree. Bonds joining
different blocks are not restricted. This is implemented with the delta function

δ(τA0) =
∏
y∈T1

N

∏
x∈B(y),x 6=y

δ
(

(τA0)(y, x)
)

(46)

where
(τA0)(y, x) = A0(Γy,x) (47)

with Γy,x the path from the center y to the point x along the tree. This also generalizes
to any rectangular lattice

Now we define the first RG transformation by

ρ̃1(A1) =

∫
δ(A1 −QA0)δ(τA0)ρ0(A0) DA0 (48)
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followed by scaling back to the unit lattice. We are particularly interested in initial
densities of the form

ρ0(A0) = F0(A0)e−
1
2
‖dA0‖2 (49)

where say F0 is bounded. For such functions the above integral converges as the fol-
lowing propostion shows (in the case A1 = 0)

Proposition 2. On the subspace QA0 = 0, τA0 = 0 if dA0 = 0 then A0 = 0 and hence
‖dA0‖2 ≥ C‖A0‖2 for some constant C.

Proof. dA0 = 0 and τA0 = 0 imply A0 = 0 on bonds in each block as explained earlier.
This also implies the A0 is constant for bonds in any face joining two blocks, But now
QA0 only depends on such bonds and it is evaluated as a multiple of the same constant.
Then QA0 = 0 says the constant is zero so A0 = 0.

The inequality follows since in a finite dimensional vector space a positive definite
quadratic form is bounded below. This completes the proof. (This simple proof does
not give control over the constant, put a further analysis shows that the constant only
depends on L and is O(L−4) [6].

We again repeat the operation and generate a sequence of densities ρk(Ak) on T0
N−k

by

ρ̃k+1(Ak+1) =

∫
δ(Ak+1 −QAk)δ(τAk)ρk(Ak) DAk

ρk+1(Ak+1) =ρ̃k+1(Ak+1,L)

(50)

The result of the iteration again has an explicit representation. Taking advantage of
the scale invariance of τA it is found to be.

ρk(Ak) =

∫
δ(Ak −QkA)δ(τkA)ρ0,L−k(A)DA (51)

where now A is defined on bonds in T−kN−k. The gauge fixing function now has a
hierarchical structure:

δ(τkA) =
k−1∏
j=0

δ(τQjA) (52)

In the case ρ0(A0) = F0(A0)e−
1
2
‖dA0‖2 the last expression becomes

ρk(Ak) =

∫
δ(Ak −QkA) δ(τkA)F0,L−k(A)e−

1
2
‖dA‖2DA (53)

Here we used the scale invariance ‖dALk‖2 = ‖dA‖2. We analyze this further. One can
show that the quadratic form ‖dA‖2 on T−kN−k, as restricted by the constraints of the
delta functions, has a unique minimum. It is a linear function of Ak and is denoted
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Ax
k = Hx

kAk. Expanding around the minimizer by A = Ax
k + Z the quadratic form

splits (there is no term linear in Z)

1

2
‖dA‖2 =

1

2
‖dAx

k‖2 +
1

2
‖Z‖2 (54)

and one finds
ρk(Ak) = ZkFk(A

x
k)e
− 1

2
‖dAx

k‖
2

(55)

where

Fk(A) =Z−1
k

∫
δ(QkZ)δ(τkZ)F0,L−k(A + Z) exp

(
− 1

2
‖dZ‖2

)
DZ

Zk =

∫
δ(QkZ)δ(τkZ) exp

(
− 1

2
‖dZ‖2

)
DZ

(56)

In arriving at this expression we used that QkAx
k = Ak and that Ax

k is axial.

Note that if the initial function F0(A0) is gauge invariant then we also have gauge
invariance for the function Fk(A), this in spite of the gauge fixing we were obliged to
insert. If we average over the orientation of the trees when they are first introduced,
then we also have invariance under all lattice symmetries.

The previous discussion is useful for identifying the type of structures that arise
after multiple RG transformations. But to really track the flow we have to understand
the individual steps better. We consider how one passes from the representation for ρk
to the representation for ρk+1.

Suppose we are starting with the expression (55) for ρk(Ak). In the next step we
have

ρ̃k+1(Ak+1) = Zk

∫
δ(Ak+1 −QAk) δ(τAk) Fk(Ax

k) exp
(
− 1

2
‖dAx

k‖2
)
DAk (57)

Let

Amin
k = Hx

kAk+1 = minimizer for ‖dAx
k‖2 on the subspace QAk = Ak+1, τAk = 0

(58)
We expand around the minimizer with Ak = Amin

k + Zk. Then Ax
k = Ãx

k+1 + Zk where

Ãx
k+1 =Hx

kH
x
kAk+1

Zk =Hx
kZk

(59)

The quadratic form splits

1

2
‖dAx

k‖2 =
1

2
‖dÃx

k+1‖2 +
1

2
‖dZk‖2 (60)
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We get

ρ̃k+1(Ak) = ZkδZkF̃k+1(Ãx
k+1) exp

(
− 1

2
‖dÃx

k+1‖2
)

(61)

where

F̃k+1(A) =δZ−1
k

∫
δ(QZk)δ(τZk) Fk

(
A + Zk

)
exp

(
− 1

2
‖dZk‖2

)
DZk

δZk =

∫
δ(QZk)δ(τZk) exp

(
− 1

2
‖dZk‖2

)
DZk

(62)

This is a fluctuation integral. It is a Gaussian integral on a unit lattice and can be
further analyzed depending on the particular function Fk.

Finally we scale by ρk+1(Ak+1) = ρ̃k+1(Ak+1,L) and get the expected

ρk+1(Ak+1) = Zk+1Fk+1(Ax
k+1)e−

1
2
‖dAx

k+1‖
2

(63)

provided we make the identifications

Zk+1 =ZkδZk

Ax
k+1,L =Hx

kH
x
kAk+1,L

Fk+1(A) =F̃k+1(AL)

(64)

2.3 parametrization of fluctuation integrals

Our fluctuation integrals have the form with ∆k = Hx,T
k δdHx

k and δ = dT∫
f(Z)δ(QZ)δ(τZ)e−

1
2
<Z,∆kZ>dZ /[f = 1] (65)

It is an integral over the subspace QZ = 0, τZ = 0. This subspace can be parametrized
as follows. The δ(τZ) sets Z = 0 on the bonds in each tree. For the remaining bonds
we take Z̃ = (Z̃1, Z̃2) where

• Z̃1 is defined on bonds in each block not on a tree .

• Z̃2 is defined on bonds joining adjacent block, except the central bond.

There is a bijective map Z = CZ̃ to the subspace QZ = 0, τZ = 0 defined by choosing
the value on the central bond so that QZ = 0. The integral is then evaluated as the
Gaussian integral∫

f(CZ̃)e−
1
2
<CZ̃,∆kCZ̃>dZ̃ /[f = 1] =

∫
f(CZ̃)dµCk(Z̃) (66)

where
Ck = (CT∆kC)−1 (67)
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2.4 changing gauges

We are going to change from the axial gauge to covariant gauges which have better
ultraviolet properties. First we introduce gauge fixing functions for both the axial and
covariant gauges

For the axial gauge we define for A, λ on T−kN−k

Ik(A) =

∫
Dλ δ(Qkλ)δ(τkA

λ) =

∫
Dλ δ(Qkλ)

k−1∏
j=0

δ(τQjAλ) (68)

Here Qk = Qk. For y ∈ T0
N−k it is given by

(Qkf)(y) = L−3k
∑

x∈Bk(y)

f(x) (69)

where Bk(y) is the unit block centered on y with Lk sites on a side. The adjoint is

(QT
k f)(x) = f(y) for x ∈ Bk(y) (70)

Proposition 3. Ik ≡ Ik(A) is constant in A.

Remark. We could have used Ik to obtain the axial gauge formally from an expression
with no gauge fixing.

Proof. [25] In δ(τQj(A − dλ)) we use Qjdλ = dQjλ and for x ∈ B(y) the identiy
τdQjλ(y, x) = −LN−j(Qjλ(x)−Qjλ(y) to obtain

I(A) =

∫
Dλ δ(Qkλ)

k−1∏
j=0

∏
yj

∏
xj∈B(yj),xj 6=yj

δ
(

(τQjA)(yj, xj)−LN−j(Qjλ(xj)−Qjλ(yj)
)

(71)
Now change variables from λ to Qkλ and {Qjλ(xj) − Qjλ(yj)}0≤j≤k−1. The Jacobian
is independent of A and we get the result.

The covariant gauges depend on a parameter α > 0 and have the gauge fixing
function

Gk(A) =

∫
Dλδ(Qkλ) exp

(
− 1

2α
‖δAλ‖2

)
=

∫
Dλδ(Qkλ) exp

(
− 1

2α
‖δA−∆λ‖2

)
=

∫
Dλδ(Qkλ) exp

(
− 1

2α
‖δA−∆′kλ‖2

) (72)
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Here δ = dT for d on scalars. The scalar δA is the divergence. Also we have identified
the positive Laplacian ∆λ = δdλ on scalars, and have defined for any a > 0 the operator

∆′k = ∆ + aQT
kQk (73)

Note that the quadratic form

< f,∆′kf >= ‖df‖2 + a‖Qkf‖2 (74)

is positive definite. Indeed if it vanishes then df = 0 implies f is a constant in which
case Qkf = f is that constant which must be zero. Hence in our finite dimensional
space < f,∆′kf >≥ c‖f‖2 for some c > 0 and hence ‖∆′kf‖ ≥ c‖f‖. Thus the inverse
operator

Gk = (∆′k)
−1 = (∆ + aQT

kQk)
−1 (75)

exists. It is called the Greens function or propagator. Properties of this operator are
developed later.

Proposition 4. Gk(A) = Gk(0) exp
(
− 1

2α
‖PkδA‖2

)
where Pk is the orthogonal pro-

jection
Pk = GkQ

T
k (QkG

2
kQ

T
k )−1QkGk (76)

The projection is independent of a, and in fact Rk = I − Pk is the projection onto
∆ kerQk.

Proof. [5] Take α = 1 for simplicity. To compute the integral we look for a minimum
of the exponential on the subspace Qkλ = 0. For the constraint we introduce the
Lagrange multiplier < ω,Qkλ > and seek to minimize

gk(λ, ω) =
1

2
‖δA−∆′kλ‖2+ < ω,Qkλ >

=
1

2
‖δA‖2− < ∆′kδA, λ > +

1

2
‖∆′kλ‖2+ < QT

k ω, λ >
(77)

The minimum comes when

Dλgk =−∆′kδA + ∆′k
2λ+QT

k ω = 0

Dωgk =Qkλ = 0.
(78)

Then the first equation is solved by

λ0 = GkδA−G2
kQ

T
k ω (79)

Then the second equation says

Qkλ0 = QkGkδA−QkG
2
kQ

T
k ω = 0 (80)
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The symmetric non-negative operatorQkG
2
kQ

T
k is invertible. Indeed if< f,QkG

2
kQ

T
k f >=

0, then ‖GkQ
T
k f‖2 = 0, then GkQ

T
k f = 0, then QT

k f = 0, then QkQ
T
k f = 0, and since

QkQ
T
k = I this implies f = 0. Hence we can solve the last equation by

ω = (QkG
2
kQ

T
k )−1QkGkδA (81)

Thus
λ0 = GkδA−G2

kQ
T
k (QkG

−2
k QT

k )−1QkGkδA = Gk(I − Pk)δA (82)

and so
∆′kλ0 = (I − Pk)δA (83)

At the minimum we have

‖δA−∆′kλ0‖2 = ‖PkδA‖2 (84)

Expanding the exponential in Gk(A) around λ0 by λ = λ0 + λ′ yields

Gk(A) =

∫
Dλδ(Qkλ) exp

(
− 1

2
‖PkδA‖2 − 1

2
‖∆′k(λ− λ0)‖2

)
(85)

Since Qλ0 = 0 a change of variables λ → λ + λ0 shows that we can remove the λ0 in
the second term and find the announced

Gk(A) = exp
(
− 1

2
‖PkδA‖2

)∫
Dλδ(Qkλ) exp

(
− 1

2
‖∆′kλ‖2

)
= exp

(
− 1

2
‖PkδA‖2

)
Gk(0)

(86)

We characterize Rk as the projection onto ∆ kerQk. If f ∈∆ kerQk then f = ∆ω
and Qkω = 0. Then we have f = ∆′kω and Qkω = 0 and hence Pkf = 0 and Rkf = f .
On the other hand if Rkf = f then Pkf = 0 and applying Qk∆

′
k gives QkGkf = 0. Let

ω = Gkf . Then Qkω = 0 and f = ∆′kω, so f ∈ ∆′k kerQk = ∆ kerQk.

Proposition 5. For gauge fields A on T−kN−k let f(A) be bounded and gauge invariant
under transformations A→ A− dλ with Qkλ = 0. Then∫

δ(Ak −QkA)f(A) δ(τkA) exp
(
− 1

2
‖dA‖2

)
DA

=
Ik

Gk(0)

∫
δ(Ak −QkA)f(A) exp

(
− 1

2
‖dA‖2 − 1

2α
‖RkδA‖2

)
DA

(87)

Remark. Equation (53) was of this form with f(A) = F0,L−k(A)

Proof. [5] The following is a Fadeev-Popov procedure. We insert

Gk(A)Gk(A)−1 =

∫
Dλδ(Qkλ) exp

(
− 1

2α
‖δAλ‖2

)
Gk(A)−1 (88)
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into the axial integral and after changing the order of integration we find∫
Dλ δ(Qkλ)

[∫
DA δ(Ak −QkA)f(A)δ(τkA) exp

(
− 1

2α
‖dA‖2 − 1

2α
‖δAλ‖2

)
Gk(A)−1

]
(89)

In the bracketed expression we make the gauge transformation A → A−λ and with
Qkλ = 0. The gauge function Gk(A) is invariant since either by a change of variables
in the integral expression, or by observing that PkδA is invariant since Pkδdλ = Pk∆λ =
(1−Rk)∆λ = 0. Furthermore δ(Ak−QA) is invariant sinceQk(A+dλ) = QkA+dQkλ =
QkA So the expression becomes∫
Dλ δ(Qkλ)

[∫
DA δ(Ak −QkA)f(A)δ(τkA

−λ) exp
(
− 1

2
‖dA‖2 − 1

2α
‖δA‖2

)
Gk(A)−1

]
(90)

We change the order of integration again and identify
∫
Dλ δ(Qkλ)δ(τkA

−λ) = Ik(A) =
Ik. We are left with

Ik
∫
DA δ(Ak −QkA)f(A) exp

(
− 1

2
‖dA‖2 − 1

2α
‖δA‖2

)
Gk(A)−1 (91)

Now put the calculated value

Gk(A)−1 = G−1
k (0) exp

( 1

2α
‖PkδA‖2

)
= Gk(0)−1 exp

( 1

2α
< δA, PkδA >

)
(92)

and identify exp
(
− 1

2α
< δA, RkδA >

)
= exp

(
− 1

2α
‖RkδA‖2

)
to complete the proof.

Does the integral on the right side of (87) makes sense? Take α = 1 for simplicity.
The issue is whether the quadratic form ‖dA‖2 + ‖RkδA‖2 =< A,( δd + dRkδ)A >
is positive definite. Since we are constrained by QkA = Ak we can add a term
a‖QkA‖2 =< A, aQTQA > and ask the same question. Then we question is answered
by the following

Proposition 6. δd+ dRkδ + aQTkQk is a positive definite operator

Proof. [5] Since Rk = I − Pk and ∆ = δd + dδ the operator can also be written as
∆− dPkδ +QTkQk. We need to show that〈

A, (∆− dPkδ)A
〉

+ a‖QkA‖2 = 0 =⇒ A = 0 (93)

This is a sum of two symmetric non-negative operators so it suffices to show that

(∆− dPkδ)A = 0 and QkA = 0 =⇒ A = 0 (94)
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The space `2(T−kN−k) space is a direct sum of constants and functions orthogonal to
constants. The operators ∆, Qk, Q

T
k preserve these subspaces. The function δA is

orthogonal to constants so we are concerned with Pk on this subspace. Then we can
take a = 0 in the expression for Pk. Then ∆′k = ∆ and we write it as

Pk = ∆−1QT
k (Qk∆

−2QT
k )−1Qk∆

−1 (95)

The first equation is then

∆A− d∆−1QT
k (Qk∆

−2QT
k )−1Qk∆

−1δA = 0 (96)

This has the form ∆A = f with f orthogonal to constants. Solutions have the form
A = (∆)−1f + A0 for constant A0 and so

A = d∆−2QT
k (Qk∆

−2QT
k )−1Qk∆

−1δA + A0 (97)

Since Qkd = dQk and QA0 = A0 the second equation QkA = 0 says

dQk∆
−1δA + A0 = 0 (98)

Apply δ to this equation and get ∆Qk∆
−1δA = 0 and hence Qk∆

−1δA = 0. Then
A0 = 0 by (98) and A = 0 by (97).

2.5 covariant gauges

We study the covariant gauges in more detail with. Instead of the axial gauge expression
(53), the k-step RG transformation would now be given by

ρk(Ak) =

∫
δ(Ak −QkA)F0,L−k(A) exp

(
− 1

2
‖dA‖2 − 1

2α
‖RkδA‖2

)
DA (99)

We analyze this further taking α = 1 for simplicity. The quadratic form in the expo-
nential is < A, (δd + dRkδ)A > and we look for the minimizer. subject to Ak = QkA.
Again this is the same as the minimizer of < A, (δd + dRkδ + QTkQk)A > subject to
Ak = QkA. To find it we introduce Lagrange multipliers and ask for the minimizer of

< A, (δd+ dRkδ +QTkQk)A > + < ω, (Ak −QkA) > (100)

Taking derivatives in A and ω we find

(δd+ dRkδ +QTkQk)A−QTk ω =0

Ak −QkA =0
(101)

The solution of the first equation is Ak = GkQTk ω where.

Gk = (δd+ dRkδ +QTkQk)−1 (102)
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Then the second equation says Ak = QkGkQTk ω or ω = (QkGkQTk )−1Ak. (The inverse
exists as before.) Therefore the minimizer is

Ak = HkAk ≡ GkQTk (QkGkQTk )−1Ak (103)

As for the axial gauge we expand around the minimizer by A = Ak + Z. The
quadratic form splits and one finds

ρk(Ak) = ZkFk(Ak) exp
(
− 1

2
‖dAk‖2 − 1

2
‖RkδA‖2

)
(104)

where

Fk(A) =Z−1
k

∫
δ(QkZ)F0,L−k(A + Z) exp

(
− 1

2
‖dZ‖2 − 1

2
‖RkδZ‖2

)
DZ

Zk =

∫
δ(QkZ) exp

(
− 1

2
‖dZ‖2 − 1

2
‖RkδZ‖2

)
DZ

(105)

A special case is F0,L−k(A) = A(b) for some fixed bond b ∈ T−kN−k. Then in (105)
F0,L−k(A + Z) = A(b) + Z(b) and the Z(b) term contributes nothing since we are
integrating an odd fucntion. Thus we have in this case

ρk(Ak) = ZkAk(b)e
− 1

2
‖dAk‖2 (106)

On the other hand if F0,L−k(A) = 1 we get ρk(Ak) = Zke
− 1

2
‖dAk‖2 Thus Ak is the ratio

of these two. Returning to the representation (99) we have. for the covariant minimizer

.Ak(b) = HkAk(b) =

∫
δ(Ak −QkA) A(b) exp

(
− 1

2
‖dA‖2 − 1

2
‖RkδA‖2

)
DA∫

δ(Ak −QkA) exp
(
− 1

2
‖dA‖2 − 1

2
‖RkδA‖2

)
DA

(107)

Similarly for the axial minimizer

Ax
k(b) = Hx

kAk(b) =

∫
δ(Ak −QkA)δ(τkA) A(b) exp

(
− 1

2
‖dA‖2

)
DA∫

δ(Ak −QkA)δ(τkA) exp
(
− 1

2
‖dA‖2

)
DA

(108)

The covariant minimizers HkAk will play a big role in our development. These repre-
sentations enable us to show it is equivalent to the axial gauge minimizer Hx

kAk.
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Proposition 7. There exists a scalar function λ∗ = λ∗(Ak) such that

Hx
kAk = HkAk + dλ∗ (109)

Proof. [18] To compare the two we proceed as in Propostion 5. Insert Gk(A)Gk(A)−1

in the axial expression (108), change the order of integration and find

Hx
kAk(b) =Zx

k(Ak)
−1

∫
Dλ δ(Qkλ)[∫

DA δ(Ak −QkA) A(b) δ(τkA) exp
(
− 1

2
‖dA‖2 − 1

2
‖δAλ‖2

)
Gk(A)−1

]
(110)

where Zx
k(Ak) be the denominator in (108). Now let A → A−λ. As before it removes

the λ from ‖δAλ‖2 and changes δ(τkA) to δ(τkA
−λ). New is the A(b) which becomes

A(b) + dλ(b).
In the A(b) term we identify Ik as before and put in the expression for Gk(A)−1.

We then use the representation (107) to identify HkAk(b). If Zk(Ak) is the denominator
in (107) we find that the A(b) term is

Zx
k(Ak)

−1IkGk(0)−1Zk(Ak)HkAk(b) = HkAk(b) (111)

Here we use the identity Zx
k(Ak) = IkGk(0)−1Zk(Ak) which is (87) with f(A) = 1,

For the dλ(b) term suppose b = (x, x + L−keµ). Then this term is revealed to be
dλ∗(b) = (λ∗(x+ L−keµ)− λ∗(x))/L−k where

λ∗(x) =Zx
k(Ak)

−1

∫
Dλ δ(Qkλ)[∫

DA δ(Ak −QkA) λ(x) δ(τkA
−λ) exp

(
− 1

2
‖dA‖2 − 1

2
‖δA‖2

)
Gk(A)−1

]
(112)

2.6 Landau gauge

In (99) if we take the limit α → ∞ we get an integral over the subspace RkδA = 0.
This is the Landau gauge. It can be defined directly by the k-step RG transformation

ρk(Ak) =

∫
δ(Ak −QkA)δ

(
RkδA

)
F0,L−k(A) exp

(
− 1

2
‖dA‖2

)
DA (113)

One can show it is equivalent to the other gauges by a Fadeev-Popov argument.
The minimizer in the Landau gauge can be computed as before now with two

Lagrange multipliers. One finds that it is the same as the covariant gauges, which are
therefore independent of α. Without going through the calculation we can understand
why they are the same.
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Proposition 8. The minimizers Hk are the same in the Landau and covariant gauges

Proof. [17] We work in the subspace of gauge fields A satisfying QA = Ak. We want
to argue that.

HkAk = the unique minimizer of ‖dA‖2 +
1

2α
‖RkδA‖2 + a‖QkA‖2

=the unique minimizer of ‖dA‖2 + a‖QkA‖2 with RkδA = 0

=HLandau
k Ak

(114)

It suffices to show that the minimizer in the first line satisfies RkδA = 0 since
then we can restrict the definition of that minimizer to that subspace. The proof is
by contradiction. Suppose the minimizer in the first line has RkδA 6= 0. There is a
restricted gauge transformation Qkλ = 0 such that RkδA

λ = 0. Indeed this equation
says

RkδA−Rk∆λ = RkδA−∆λ = 0 (115)

and since RkδA = ∆ω for some Qkω = 0, we can just take λ = ω. But the re-
stricted gauge transformation leaves invariant the condition QA = Ak and the func-
tions ‖dA‖2 and ‖QkA‖2. Thus we have lower the overall value by replacing the positive
(2α)−1‖RkδA‖2 by zero. This contradicts the fact that we had a minimum.
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3 Fermi fields

3.1 block averaging

The block averaging operator for fermions on the unit lattice T0
N with a background

field A0 and coupling constant e0 is

(Q(A)Ψ)(y) = L−3
∑
x∈B(y)

eie0A(Γy,x)Ψ(x) y ∈ T1
N (116)

As before B(y) is the L-block centered on the point y in L-lattice T1
N and Γy,x is the

path in the tree from the center y to x ∈ B(y). This is constructed to be gauge
covariant. If Ψλ = eie0λΨ and Aλ = A− dλ then

Q(Aλ)Ψλ = (Q(A)Ψ)λ
(1)

(117)

where λ(1) is λ restricted to the lattice T1
N . For the conjugate field Ψ̄λ = e−ie0λΨ̄ and

it is Q(−A)Ψ̄ which is covariant. The transpose operator maps functions Ψ on T1
N to

functions on T0
N . It is computed with sums on T1

N weighted by L3 and is given by

(QT (A)Ψ)(x) = Ψ(y)eie0A(Γy,x) x ∈ B(y) (118)

Then we have Q(A)QT (−A) = I and QT (−A)Q(A) is a projection operator. Q(A) is
defined similarly on any finer lattice.

Suppose we start with a density ρ0(A,Ψ0) on T0
N with fermion field Ψ0 and back-

ground gauge field A on T0
N . Delta functions are not an option for fermions, and instead

we implement the block averaging with an exponential. We define a new density on
T1
N by

ρ̃1(A,Ψ1) = N1

∫
exp

(
− b

L
|[Ψ1 −Q(A)Ψ0]|2

)
ρ0(A,Ψ0)DΨ0 (119)

Here b > 0 is an arbitrary constant and we have introduced the notation

|[Ψ1 −Q(A)Ψ0]|2 =
〈

Ψ̄1 −Q(−A)Ψ̄0,Ψ1 −Q(A)Ψ0

〉)
(120)

where < Ψ̄1,Ψ1 >=
∑

x L
3Ψ̄1(x)Ψ1(x), etc., Nothing is actually being squared here,

the exponent two is just a reminder that this is a quadratic form. The normalization
factor N−1

1 =
∫
e−bL

−1<Ψ̄1,Ψ1>DΨ1 is chosen so that∫
ρ̃1(A,Ψ1) DΨ1 =

∫
ρk(A,Ψ0) DΨ0 (121)

Next one scales back to the unit lattice defining for Ψ1 on T0
N−1 and A on T−1

N−1

ρ1(A,Ψ1) = const ρ̃0(AL,Ψ1,L) (122)
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where
AL(b) = L−1/2A(L−1b) Ψ1,L(x) = L−1Ψ1(L−1x) (123)

We repeat the operation k times and we get a density ρk(A,Ψk) defined for A on
T−kN−k and Ψk on T0

N−k. After some work we find it is given by

ρk(A,Ψk) = Nk
∫

exp
(
− bk|[Ψk −Qk(A)ψ]|2

)
ρ0(ALk , ψLk) Dψ (124)

for some constants bk,Nk. The integral here is over ψ on T−kN−k. The averaging operator
is the composition

Qk(A) = Q(A) ◦ · · · ◦Q(A) (k times ) (125)

This is not a simple as it looks since the factors are acting on different scales. We can
give a more explicit expression. Suppose x ∈ T−kN−k and y ∈ T0

N−k satisfy x ∈ Bk(y),
which is the same as |x−y| < 1

2
. There is an associated sequence x = y0, y1, y2, . . . yk = y

such that yj ∈ T−k+j
N−k and x ∈ Bj(yj). Define

A(Γky,x) =
k−1∑
j=0

A(Γyj+1,yj) (126)

Here each A(Γyj+1,yj) is an unweighted sum over bonds in T−kN−k, but the paths Γyj+1,yj

live on trees in different scales. Then with η = L−k

(Qk(A)ψ)(y) =
∑

x∈Bk(y)

η3eiekηA(Γky,x)ψ(x) (127)

Here e0 has scaled to
ek = Lk/2e0 = L−(N−k)/2e (128)

This running coupling constant which will make frequent appearances in the following.
For future reference the background mass scales to

m̄k. = Lkm̄0 = L−(N−k)m (129)

3.2 Dirac type effective actions

Now consider an initial density which is a perturbation of the free fermion action:

ρ0(A,Ψ0) = F0(Ψ0) exp
(
−
〈

Ψ̄, (De0(A) + m̄0)Ψ
〉)

(130)

Insert this in (124). The Dirac operator with e0,m0 scales to the Dirac operator with
ek,mk Then with F0,L−k(ψ) = F0(ψLk) we have

ρk(A,Ψk) = Nk
∫
F0,L−k(ψ) exp

(
− bk|[Ψk −Qk(A)ψ]|2 −

〈
ψ̄, (Dek(A) + m̄k)ψ

〉)
Dψ

(131)
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We next diagonalize the quadratic form in the exponential. To accomplish this we
temporarily regard ψ̄, ψ as functions and look for critical points of the quadratic form
in these variables. Setting the derivative in ψ̄ equal to zero says.

bkQ
T
k (−A)

(
Ψk −Qk(A)ψ

)
− (Dek(A) + m̄k)ψ = 0 (132)

This has the solution ψ = ψk(A) where

ψk(A) ≡ Hk(A)Ψk ≡ bkSk(A)QT
k (−A)Ψk (133)

where Sk(A) is the Green’s function (assuming it exists)

Sk(A) =
(
Dek(A) + m̄k + bkQ

T
k (−A)Qk(A)

)−1

(134)

There is a similar expression for the critical point ψ̄ = ψ̄k(A).
Now we change variables from ψ̄, ψ to new Grassmann elements Z̄,Z by expanding

around the critical point

ψ = ψk(A) + Z ψ̄k(A) = ψ̄k(A) + Z̄ (135)

The quadratic form splits and becomes

Sk(A,Ψk, ψk(A))+ < Z, Sk(A)−1Z > (136)

where

Sk(A,Ψk, ψk(A)) ≡ bk|[Ψk −Qk(A)ψk(A)]|2 −
〈
ψ̄k(A),

(
Dek(A) + m̄k

)
ψk(A)

〉
(137)

We find that

ρk(A,Ψk) = NkZk(A)Fk

(
ψk(A)

)
exp

(
−Sk(A,Ψk, ψk(A)

)
(138)

where

Fk

(
ψk(A)

)
=

∫
F0,L−k

(
ψk(A) + Z

)
dµSk(ψ)

Zk(A) = det(Sk(A))−1

(139)

The fluctuation integral is now a Gaussian integral with covariance Sk(A).

Let us examine the assumption that the inverse Sk(A) exists. The operator in
question can be written with Pk(A) = bkQ

T
k (−A)Qk(A)

Dek(A) + m̄k + Pk(A) =
(
Dek(0) + m̄k + Pk(0)

)
+
(
Dek(A)−Dek(0)

)
+
(
Pk(A)− Pk(0)

) (140)
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The A = 0 term is invertible and has nice properties. Indeed the inverse has a kernel
with strong exponential decay. (Not from the m̄k which is too small to be useful, but
from the Pk(0) which provides an effective mass. More on this later) The second term
has the form with η = L−k(

(Dek(A)−Dek(0))f
)

(x) = −
∑
µ

(
1− γµ

2

)((
eiekηA(x,x+ηeµ) − 1

η

)
f(x+ ηeµ) + . . .

(141)

If both ek and A are small then the operator is small. The same is true for Pk(A)−Pk(0).
Thus under these assumptions we have a small perturbation of an invertible operator
and so the sum is invertible. However the assumption that A is globally small cannot
be realized. At best we can get bounds on dA. This is a key issue which we will explore
further.

Nevertheless we continue with the next step. We first note that since ψk(A) =
Hk(A)Ψk, the leading term S(A,Ψk, ψk(A)) is a quadratic form in Ψk and can be
calculated as

Sk(A,Ψk, ψk(A)) =
〈

Ψ̄k, Dk(A)Ψk

〉
(142)

where
Dk(A) = bk − b2

kQk(A)Sk(A)QT
k (−A) (143)

If we start with the expression (138) for ρk and apply another renormalization trans-
formation we again get ρk+1. We have first

ρ̃k+1(A,Ψk+1) = NkNkZk(A)∫
Fk

(
ψk(A)

)
exp

(
− b
L
|[Ψk+1 −Q(A)Ψk]|2 −

〈
Ψ̄k, Dk(A)Ψk

〉)
DΨk

(144)

Here Ψk+1,Ψk are fields on T1
N−k,T0

N−k respectively. The critical point for the quadratic
form in the exponential is

Ψcrit
k =Hk(A)Ψk+1 ≡ bL−1Γk(A)QT (−A)Ψk+1

Γk(A) =
(
Dk(A) +

b

L
QT (−A)Q(A)

)−1 (145)

and similarly for Ψ̄k. Again we diagonalize the quadratic form by expanding around
the critical point by Ψk = Hk(A)Ψk+1 + Wk and Ψ̄k = Hk(A)Ψ̄k+1 + W̄k. Under this
change of variables ψk(A) = Hk(A)Ψk becomes ψ̃k+1(A) +Hk(A)Wk where

ψ̃k+1(A) = Hk(A)Hk(A)Ψk+1 (146)

The quadratic form splits and after a calculation can be written in the form

S̃k+1(A,Ψk+1, ψ̃k+1(A)) +
〈
W̄k,Γk(A)−1Wk

〉
(147)
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The integral over Wk can be identified as a Gaussian integral with covariance Γk(A)
and we find

ρ̃k+1(A,Ψk+1) = NkNkZk(A)δZk(A)F̃k+1

(
ψ̃k+1(A)

)
exp

(
− S̃k+1(A,Ψk+1, ψ̃k+1(A))

)
(148)

where

F̃k+1(ψ) =

∫
Fk

(
ψ +Hk(A)Wk

)
dµΓk(A)(WK)

δZk(A) = det(Γk(A))−1

(149)

Now we scale by ρk+1(A,Ψk) = ρ̃k+1(AL,Ψk+1,L). One finds that ψ̃k+1(A) scales to

Hk(AL)Hk(AL)Ψk+1,L = [Hk+1(A)Ψk+1]L = [ψk+1(A)]L (150)

that S̃k+1(A,Ψk+1, ψ̃k+1(A)) scales to Sk+1(A,Ψk+1, ψk+1(A)) and that ( up to scaling
factors)

NkNkZk(AL)δZk(AL) = Nk+1Zk+1(A) (151)

Then we get the expected

ρk+1(A,Ψk+1) = Nk+1Zk+1(A)Fk+1

(
ψk+1(A)

)
exp

(
−Sk+1(A,Ψk+1, ψk+1(A))

)
(152)

where now

Fk+1(ψ) =

∫
Fk

(
ψL +Hk(A)Wk

)
dµΓk(A)(Wk) (153)

This is the basic fluctuation integral. Analyzing such integrals is one of our main tasks,
and this depends heavily on properties of Hk(A) and Γk(A)
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4 Random walk expansions

We need detailed control over the gauge field propagators Gk and Dirac propagators
Sk(A). Results on these operators will give control over other important operators
Hk,∆k, Ck for gauge fields and Hk(A), Dk(A),Γk(A) for fermions. To accomplish this
we employ random walk expansions. We start with a simpler case.

4.1 A simple case

In the Dirac propagator Sk(A) and critical operator Hk(A) eliminate the background
field A, replace the Dirac operator by the Laplacian, and drop the mass term. So we
are interested on the operators

Gk =(∆ + akQ
T
kQk)

−1

Hk =akGkQ
T
k

(154)

which act on functions on T−kN−k, T0
N−k respectively. With constants ak > 0 bounded

above and below, these are in fact the Greens functions and minimizer for a massless
scalar field theory. We want to develop estimates and random walk expansions for these
operators. We start with a restricted operator.

Partition the lattice into M -blocks (cubes) where M = Lm is much larger than L.
Then enlarge each M -block to a 3M -block by including all of its nearest neighbors.
Then we have a covering of the lattice with 3M -blocks �.

Lemma 1. Let � be an 3M-block, let [∆ + akQ
T
kQk]� be the indicated operator on

`2(�) with Neumann boundary conditions and define

Gk(�) = [∆ + akQ
T
kQk]

−1
� (155)

Then there is a constant O(1) such that

‖Gk(�)f‖2 ≤ O(1)‖f‖2 ‖∂µGk(�)f‖2 ≤ O(1)‖f‖2 (156)

The same bounds hold for Gk = [∆ + akQ
T
kQk]

−1 on the torus T−kN−k or infinite lattice
L−kZ3.

Remark. Neumann boundary conditions for ∆� means that on bonds entirely in �
contribute. As a quadratic form with η = L−k

< f,∆�f >=
∑

(x,y)∈�

η3
(
|f(x)− f(y)|/η

)2

(157)

Proof. [4] First consider a unit block ∆ ⊂ � and consider the operator [∆+akQ
T
kQk]∆

on `2(∆) with Neumann conditions. The Hilbert space splits into constants and the
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orthogonal complement which we write `2(∆) = [1]⊕ [1]⊥ Under the decomposition we
have ∆ = 0 ⊕ (∆) and ∆ ≥ π2 on [1]⊥. On the other hand QT

kQk = I ⊕ 0; it is the
projection onto [1]. So since ak is bounded below

[∆ + akQ
T
kQk]∆ ≥ inf

k
{π2, ak} ≥ c0 (158)

Now for the M -cube we can drop the contribution of bonds joining different unit
blocks and estimate〈

f, [∆ + akQ
T
kQk]�f

〉
≥
∑
∆⊂�

〈
f, [∆ + akQ

T
kQk]∆f

〉
≥c0

∑
∆⊂�

‖f‖2
∆ = c0‖f‖2

�

(159)

This implies ‖[∆ + akQ
T
kQk]�f‖ ≥ c0‖f‖ and hence ‖Gk(�)f‖ ≤ c−1

0 ‖f‖.
For the second bound we first note

‖∂µG
1
2
k (�)f‖2 ≤

〈
f,G

1
2
k (�)[∆]�G

1
2
k (�)f

〉
≤
〈
f,G

1
2
k (�)

[
∆ + akQ

T
kQk

]
�
G

1
2
k (�)f

〉
= ‖f‖2

(160)

It follows that
‖∂µGk(�)f‖ ≤ ‖G

1
2
k (�)f‖ ≤ c

− 1
2

0 ‖f‖ (161)

This completes the proof.

We now quote a sharpened version of these bounds. The exponential decay in the
following can be interpreted as saying that the akQ

T
kQk in Gk(�) = [∆ + akQ

T
kQk]−1

�

provides an effective mass.

Lemma 2. There are constants C, γ depending only on L such that for unit cubes ∆,∆′

|1∆Gk(�)1∆′f |, |1∆∂Gk(�)1∆′f | ≤ Ce−γd(∆,∆′)‖f‖∞ (162)

Remark. We could have stated the result in terms of kernels Gk(�, x, y), but then
we would have to keep track of integrable short distance singularities in some detail.
Stating the result as above efficiently deals with these. Also if we have two operators
which satisfy a bound of the form (162), then the composition also satisfies a bound of
the form (162). Note also that these imply the global estimates

|Gk(�)f |, |∂Gk(�)f | ≤ C‖f‖∞ (163)

Proof. [4] We sketch the proof. First consider the kernel Gk(x, y) of the operator
Gk = (∆ + akQ

T
kQk)−1 on the infinite lattice L−kZ3. This operator Gk has a kernel
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which can be written as Fourier transform

Gk(x, y) =(2π)−3

∫
|pµ|≤Lkπ

eip(x−y)G̃k(p)

G̃k(p) =
∑
x

L−3ke−ipxGk(x)
(164)

Corresponding to the fact that Gk is a bounded operator one finds that G̃k(p) is a
bounded function, and it is in fact O(|p|−2) as p→∞. Closer inspection of the explicit
formula for G̃k(p) reveals that it is an analytic function of any component pµ in a strip
of width γ around the real axis. Then a contour deformation pµ → pµ ± iγ (the sign
depending on the sign of xµ − yµ) yields a decay factor e−γ|xµ−yµ|. These ideas lead to
the bounds (162) for the infinite lattice.

The result for Gk(�, x, y) with Neumann boundary conditions follows by the method
of reflections. More is true. The method of reflections also gives the result forGk(�, x, y)
with Dirichlet or periodic boundary conditions, and also for Gk(x, y) on the full torus
T−kN−k.

Armed with Gk(�) we can now develop the random walk expansion. We have a
covering of the lattice T−kN−k with 3M blocks �. Let h� be a continuum partition of unity
subordinate to this covering. More precisely we require

∑
� h

2
� = 1 and supp h� ⊂ �.

We can choose h� so that
|∂h�| ≤ O(1)M−1 (165)

For example take a covering �′ by blocks of width 3 and an associated partition of
unity h′�′ . Then define h�(x) = h′M−1�(M−1x).

We define a parametrix for ∆ + akQ
T
kQk by

G∗k =
∑
�

h�Gk(�)h� (166)

On supp h� the boundary conditions are irrelevant and so (∆ + akQ
T
kQk)G(�)f = f .

Therefore
(∆ + akQ

T
kQk)G

∗
k = I −

∑
�

K�Gk(�)h� ≡ I −K (167)

where
K� = −

[
(∆ + akQ

T
kQk), h�

]
(168)

Then

Gk = G∗k(I −K)−1 = G∗k

∞∑
n=0

Kn (169)

if the series converges. This can be written as the random walk expansion

Gk =
∑
ω

Gk,ω (170)

30



where a path ω is a sequence of blocks ω = (�0,�1, . . . ,�n) such that �i ∩ �i+1 6= ∅
and

Gk,ω = (h�0Gk(�0)h�0)(K�1Gk(�1)h�1) · · · (K�nGk(�n)h�n) (171)

Lemma 3. If M is sufficiently large the random walk expansion for Gk converges and
again satisfies

|1∆Gk1∆′f |, |1∆∂Gk1∆′f | ≤ Ce−γd(∆,∆′)‖f‖∞ (172)

Proof. [∆, h�] is a first order differential operator that has at least one derivative of
h� and so the coefficients are O(M−1). The operator QT

kQk is localized in unit squares
and thereby one can show [QT

kQk, h�] is also O(M−1). These considerations lead to the
bound

|K�f | ≤ O(1)M−1(‖f‖∞ + ‖∂f‖∞) (173)

and hence by (163)
|K�Gk(�)f | ≤ O(1)M−1‖f‖∞ (174)

These imply that if |ω| = n then

|Gk,ωf | ≤ C(CM−1)n‖f‖∞ (175)

This is sufficient to establish the convergence of the expansion for M sufficiently large.
Each block has 33 neighbors so the number of paths with a fixed length n is bounded
by (33)n. We have

|Gkf | ≤
∞∑
n=0

∑
ω:|ω|=n

|Gk,ωf |

≤
∞∑
n=0

∑
ω:|ω|=n

C(CM−1)n‖f‖∞

≤
∞∑
n=0

(33)nC(CM−1)n‖f‖∞

≤C‖f‖∞

(176)

Similarly |∂Gkf | ≤ C‖f‖∞
For the local version we use instead of (174) the sharper estimate

|1∆K�Gk(�)1∆′f | ≤ CM−1e−γd(∆,∆′)‖f‖∞ (177)

The decay factors combine to give an overall decay factor and the result follows.
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4.2 Dirac propagators

Let us define
Pk(A) = QT

k (−A)Qk(A) (178)

so that the Dirac Greens function and critical operator are

Sk(A) =(Dek(A) + m̄k + bkPk(A))−1

Hk(A) =bkSk(A)QT
k (−A)

(179)

We need random walk expansions for these operators, and it suffices to consider Sk(A).
First we need some restrictions on the background gauge field A. We will only have

good control over dA and we need to transfer it to bounds and A and its derivatives.
This can only be done locally. Here is an example

Lemma 4. Let A be a gauge field on a block of arbitrary size in a unit lattice centered
on y. Then there is a gauge transformation to A′ = A− dλ such that for any bond in
the block

|A′(b)| ≤ d(b, y)‖dA‖∞ (180)

Proof. We can assume that A is axial gauge relative to a tree rooted on x. If b is
on the tree the result is trivial. Otherwise b = (x, x + eµ) with x, x + eµ on different
branches. Note that

A(Γy,x) + A(x, x+ eµ)−A(Γy,x+eµ) (181)

is a sum around a closed curve. Thus by the lattice version of Stokes theorem it is
equal to dA(Σy,x) for some surface Σy,x of width one and length d(y, x). But in the
axial gauge A(Γy,x) = A(Γy,x+eµ) = 0. Then

A(x, x+ eµ) = dA(Σy,x) =
∑
p∈Σy,x

dA(p) (182)

which gives the result.

We want to generalize this to some kind of global statement about gauge fields on
finer lattices. We particularly want to consider the minimizers Ak = HkAk.

First a definition For each 3M -block � let �̃ be an enlargement, say to a 5M -block.

Definition Rk is the space of all real fields A on T−kN−k such that in every block �̃ the
A is gauge equivalent to a field A′ such that

|A′|, |∂A′| < e
− 3

4
k (183)

Complex Rk is the space of all A of the form A = A0 + A1 with A0 ∈ Rk and A1

complex and satisfying the bounds (183).

Note that |ekA′||ek∂A′| ≤ e
1
4
k are small under this restriction.
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Lemma 5. [26]

1. Ak = HkAk has the property that in each �̃ it is gauge equivalent to some A′

satisfying
|A′|, |∂A′| ≤ CM‖dAk‖∞ (184)

2. If ‖dAk‖∞ ≤ (CM)−1e
− 3

4
k then Ak ∈ Rk

The first point is like lemma 4, but requires some work. Then the second point is
immediate. The condition on ‖dAk‖∞ can be arranged as we will see. Next we note
that the condition A ∈ Rk is sufficient for the existence of Sk(A)

Lemma 6. [21] Let A ∈ Rk. Then for each 5M-block �̃ there exists an operator
Sk(�,A) on functions f on �̃ such that(

Dek(A) + m̄k + bkPk(A)
)
Sk(�,A)f = f on � (185)

The operator Sk(�,A) only depends on A in �̃ and satisfies

|1∆Sk(A)1∆′f | ≤ Ce−γd(∆,∆′)‖f‖∞ (186)

The idea of the proof is to first prove it for Sk(�, 0). Then prove it for Sk(�,A′) with
the small transformed field A′ = A− dλ by expanding in ekA

′ as sketched previously.
Finally translate this result to A by using the gauge covariance

Sk(�,A) = eiekλSk(�,A
′)e−iekλ (187)

The creation of Sk(�, 0) needs more work. The construction given by Balaban, O’Carroll,
and Shor [21] uses a multi-scale random walk expressions which are of a type we consider
later and which are rather complicated. Possibly this construction could be improved.

Using the operators Sk(�,A) we can develop a random walk expansion. Again
take a partition of unity h� with supph� ⊂ � and |∂h�| ≤ O(1)M−1. We define a
parametrix by

S∗k(A) =
∑
�

h�Sk(�,A))h� (188)

Then(
Dek(A) + m̄k + bkPk(A)

)
S∗k(A) = I −

∑
�

K�(A)Sk(�)h� ≡ I −K(A) (189)

where
K�(A)) = −

[
(Dek(A) + m̄k + bkPk(A)), h�

]
= O(M−1) (190)
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Now as before Sk(A) = S∗k(A)(I −K)−1 = S∗k(A)
∑∞

n=0K
n(A) This can be written as

the random walk expansion

Sk(A) =
∑
ω

Sk,ω(A) (191)

where a path ω is a sequence of blocks ω = (�0,�1, . . . ,�n) such that �i ∩ �i+1 6= ∅
and

Sk,ω(A) = h�0Sk(A,�0)h�0

(
K�1(A)Sk(A,�1)h�1

)
· · ·
(
K�n(A)Sk(A,�n)h�n

)
(192)

This only depends on A in ω.

Lemma 7. [21] Let A ∈ Rk and let M be sufficiently large. Then Sk(A) exists, the
random walk expansion for Sk(A) converges, and satisfies

|1∆Sk(A)1∆′f | ≤ Ce−γd(∆,∆′)‖f‖∞ (193)

The same holds for Hk(A).

4.3 gauge propagators

We will also need random walk expansions for the gauge Greens function and minimizer

Gk =(δd+ dRkδ + aQTkQk)−1

Hk =GkQTk (QkGkQTk )−1
(194)

As in the scalar case the operator QTkQk provides an effective mass (although it is not
now a projection operator).

Now there are new difficulties connected with the non-local projection operator Rk

in GK Dealing with this non-locality requires some substantial workarounds. Also in the
minimizer the operator (QkGkQTk )−1 is not the inverse of a local operator and requires
special treatment. Nevertheless one can develop a random walk expansion

Gk =
∑
ω

Gk,ω (195)

However the elementary local building blocks have to be generalized from 3M blocks
� to something more general.

Lemma 8. [8] If M is sufficiently large the random walk expansion for Gk converges
and again satisfies

|1∆Gk1∆′f |, |1∆∂Gk1∆′f | ≤ Ce−γd(∆,∆′)‖f‖∞ (196)

The same holds for the minimizer Hk.
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5 Norms and polymer functions

5.1 definitions

We collect some definitions for use later
Consider a Grassmann algebra generated by element Ψ(x) on a finite unit lattice.

(For example the fundamental fields Ψk on T0
N−k). The general element of the algebra

has the form.

E(Ψ) =
∞∑
n=0

1

n!

∑
x1,...,xn

En(x1, . . . , xn)Ψ(x1) · · ·Ψ(xn) (197)

Here there is an implicit sum over spin indices and over the choice of Ψ or Ψ̄. Then for
h > 0 a norm is defined by

‖E‖h =
∞∑
n=0

hn

n!

∑
x1,...,xn

|En(x1, . . . , xn)| (198)

This satisfies ‖EF‖h ≤ ‖E‖h‖F‖h.
More generally suppose we have Grassman elements ψ on a finite lattice with spacing

L−k (For example the smeared fields ψk(A) on T−kN−k.) Then a general element has the
form

E(ψ) =
∞∑
n=0

1

n!

∑
x1,...,xn

L−3knEn(x1, . . . , xn)ψ(x1) · · ·ψ(xn) (199)

This has a norm

‖E‖h =
∞∑
n=0

hn

n!

∑
x1,...,xn

L−3kn|En(x1, . . . , xn)| (200)

and again ‖EF‖h ≤ ‖E‖h‖F‖h.
A polymer X is a connected union of M -blocks with the convention that two blocks

are connected if they have a face in common. A polymer function E(X) = E(X,ψ) is
an element of the Grassman algebra which only depends on ψ in X. Equivalently the
kernels En(X, x1, . . . , xn) have support in X×· · ·×X. We will be considering elements
E(ψ) which have polymer expansions E(ψ) =

∑
X E(X,ψ).

More generally we also allow dependence on a gauge field A and we consider elements
of the form

E(A, ψ) =
∑
X

E(X,A, ψ) (201)

now with the requirement that E(X,A, ψ) only depend on A, ψ in X. This has kernels
En(X,A, x1, . . . xn) and for a set R of gauge fields we define

‖En(X)‖R = sup
A∈R

∑
x1,...,xn

L−3kn|En(X,A, x1, . . . , xn)| (202)
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Then we define

‖E(X)‖R,h =
∞∑
n=0

hn

n!
‖En(X)‖R (203)

We expect that E(X) will have tree decay on scale M of the form E(X) ∼ e−κdM (X)

for some constant κ = O(1) and

MdM(X) = length of the shortest continuum tree joining the blocks in X (204)

Correspondingly we introduce the norm on the family {E(X,A, ψ)} by

‖E‖R,h,κ = sup
X
‖E(X)‖R,heκdM (X) (205)

We note that there is a constand κ0 depending only on the dimension such that∑
X⊃�

e−κ0dM (X) ≤ O(1) (206)

We assume that κ is a substantial multiple of κ0 and hence e−κdM (X) is strongly
summable.

Now suppose we specifically want to allow fields A = Ak and ψ = ψk(A) defined
on T−kN−k after k iterations of the RG group. We take R = Rk as defined earlier with
the running coupling constants. It is also convenient to let allow the parameter h to

depend on the running coupling constant ek by taking hk = e
− 1

4
k . so we define for a

family {E(X,A, ψ)}
‖E‖k = ‖E‖Rk,hk,κ (207)

The choice h = hk means that if E is bounded then the kernels En are O(h−nk ) =

O(e
1
4
n

k ). They are automatically small, and more fields means even smaller. This is
convenient. But hiding some of the smallness in the definition of the norm means we
have less in the size of the norm. Estimates with this norm with tend to have fractional
powers of ek. (This choice h = hk is probably optional. Very likely we could take a
fixed h and estimates would have integral powers of ek )

5.2 scaling

It is important to know how polymer functions scale. So we have polymer functions
E(X,A, ψ) on T−kN−k with norms ‖E‖k as defined above. Before scaling we reblock.
Let X̄ defined to be the smallest union of LM -blocks containing X and define for LM
polymers X ′

E ′(X ′,A, ψ) =
∑

X:X̄=X′

E(X,A, ψ) (208)

Then we scale down defining LE(Y ) on T−k−1
N−k−1 for M -polymers Y

(LE)(Y,A, ψ) = E ′(LY,AL, ψL) =
∑

X:X̄=LY

E(X,AL, ψL) (209)
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Lemma 9.
‖LE‖k+1 ≤ O(1)L3‖E‖k (210)

or more precisely

‖LE‖Rk+1,hk+1,κ ≤ O(1)L3‖E‖
L−

7
8Rk,L−

9
8 hk,κ

≤ O(1)L3‖E‖Rk,hk,κ (211)

Proof. We have

‖E(X, (·)L, (·)L)‖Rk+1,hk+1
≤‖E(X)‖

L−
1
2 R̃k+1,L−1hk+1

≤‖E(X)‖
L−

7
8Rk,L−

9
8 hk

(212)

Here R̃k+1 is Rk but with bounds e
− 3

4
k+1 rather than e

− 3
4

k Since ek+1 = L
1
2 ek we have

e
− 3

4
k+1 = L−

3
8 e
− 3

4
k which accounts for the improvement L−

1
2 → L−

7
8 . Similarly hk+1 =

L−
1
8hk accounts for the improvement L−1 → L−

9
8 .

‖(LE)(Y )‖Rk+1,hk+1
≤

∑
X:X̄=LY

‖E(X)‖
L−

7
8Rk,L−

9
8 hk

≤‖E‖
L−

7
8Rk,L−

9
8 hk,κ0+2L−1κ

∑
X:X̄=LY

e−(κ0+2L−1κ)dM (X)
(213)

But a tree on X is also a tree on X̄ and so MdM(X) ≥ LMdLM(X̄). Thus if X̄ = LY

dM(X) ≥ LdLM(LY ) = LdM(Y ) (214)

Then we can extract a factor e−2κdM (Y ) from the sum and we are left with∑
X:X⊂LY

e−κ0dM (X) ≤
∑

�⊂LY

∑
X⊃�

e−κ0dM (X) ≤ O(1)|LY |M ≤ O(1)L3|Y |M (215)

Now use |Y |M ≤ O(1)(1 + dM(Y )) ≤ eκdM (Y ) and get

‖(LE)(Y )‖Rk+1,hk+1
≤ O(1)L3‖E‖

L−
7
8Rk,L−

9
8 hk,κ0+2L−1κ

e−κdM (Y ) (216)

which gives

‖LE‖k+1 ≤ ‖LE‖Rk+1,hk+1,κ ≤ O(1)L3‖E‖
L−

7
8Rk,L−

9
8 hk,κ0+2L−1κ

(217)

Since L−
7
8Rk ⊂ Rk, L

− 9
8hk < hk, and κ0 + 2L−1κ < κ the right side is less than

‖E‖Rk,hk,κ = ‖E‖k which gives the result.

Thus under scaling the overall size of the polymer functions can increase by as
much as L3 which represents dangerous growth. But if the polymer functions E(X)

have relevant parts removed the factors L−
7
8 for gauge fields and L−

9
8 for fermions in

(217) can compensate, even for marginal terms.
In addition if dM(Y ) > 0 we can modify the above proof (replace κ0 + 2L−1κ by

κ0 +1+2L−1κ) and gain a factor e−dM (X) ≤ e−LdM (Y ) which dominates the L3. Thus we
do not have to remove relevant parts frin E(X) for large sets X such that Y = L−1X̄
sarisfies dM(Y ) > 0.
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6 RG with bounded fields

6.1 the first step

We now discuss the first step in some detail. It has the form

ρ̃1(A1,Ψ1) = N1

∫
δ(A1−QA0)δ(τA0) exp

(
− b
L
|[Ψ1−Q(A0)Ψ0]|2−S0(A0,Ψ0)

)
DΨ0DA0

(218)
where

S0(A0,Ψ0) =
1

2
‖dA0‖2 +

〈
Ψ̄0, (De0(A0) + m̄0)Ψ0

〉
+m0

〈
Ψ̄0,Ψ0

〉
+ ε0 (219)

In ρ0(A0) we have a factor e−
1
2
‖dA0‖2 which is going to suppress large values of dA0.

To translate this fact into hard bounds on dA0 (which we have seen that we need) we
again divide the torus into blocks of size M = Lm. Then we introduce the characteristic
functions for each M -block � by

χ0(�, A0) = χ
(

suppp∈�|dA0(p)| ≤ p(e0)
)

(220)

Here
p(e0) = (log e−1

0 )p (221)

for some positive integer p. Since e0 is tiny p(e0) is large, but not too large in the sense
that e0p(e0) is still very small. Then with ζ0(�) = 1− χ0(�) we write

1 =
∏
�

ζ0(�) + χ0(�) =
∑

Ω

∏
�⊂Ωc

ζ0(�)
∏
�⊂Ω

χ0(�) ≡
∑

Ω

ζ0(Ωc)χ0(Ω) (222)

where Ω is an arbitrary union of M -cubes. For the term Ω the characteristic function
χ0(Ω) enforces that |dA0(p)| ≤ p(e0) everywhere in Ω. The characteristic function
ζ0(Ωc) enforces that in each M -cube � in Ωc there is at least one plaquette p such that
|dA0(p)| > p(e0).

We insert the identity under the integral sign in (218) and then the sum taken
outside the integral. The integrand approximately factorizes and we have

ρ̃1(A1,Ψ1) =
∑

Ω

N1

∫
δΩc1

(A1 −QA0)δΩc1
(τA0) ζ0(Ωc)

exp
(
− b

L
|[Ψ1 −Q(A0)Ψ0]|2Ωc1 − S0,Ωc1

(A0,Ψ0)
)
DΨ0,Ωc1

DA0,Ωc1[ ∫
δΩ1(A1 −QA0)δΩ1(τA0) χ0(Ω)

exp
(
− b

L
|[Ψ1 −Q(A0)Ψ0]|2Ω1

− S0,Ω1(A0,Ψ0)
)
DΨ0,Ω1DA0,Ω1

]
(223)

38



Of course this is not a perfect split. There are bonds and plaquettes that intersect both
Ω and Ωc. The convention is that Ω includes such bonds and plaquettes but Ωc does
not. The the integral over the Ω fields depends on fields in Ωc near the boundary.

Most of our attention will be focused on the small field region Ω, but first consider
the large field region Ωc. A block � in Ωc has at least one plaquette with |dA0(p)| >
p(e0) and so

ζ0(�)e−
1
4
‖dA0‖2� ≤ e−

1
4
p(e0)2

. (224)

Note that for any positive integer n0 and p ≥ 2

e−n0
0 e−

1
4
p(e0)2

= exp
(
n0(log e−1

0 )− 1

4
(log e−1

0 )p
)
≤ cn0 (225)

Thus e−
1
4
p(e0)2 ≤ cn0e

n0
0 for any n0; it is a very small number. The bound (224) gives

that
ζ0(Ωc))e−

1
4
‖dA0‖2Ωc ≤ e−

1
4
p(e0)2|Ωc|M (226)

where |Ωc|M is the number of M blocks in Ωc. This is enough for the convergence of
the sum over Ω for we have∑

Ω

e−
1
4
p(e0)2|Ωc|M =

∏
�

(1 + e−
1
4
p(e0)2

) ≤
∏
�

exp(cn0e
n0
0 ) ≤ exp

(
cn0e

n0
0 |T0

N |M
)

(227)

Note that en0
0 |T0

N |M is tiny uniformly in N since en0
0 = L−n0N/2en0 beats |T0

N |M =
L3NM−3.

In subsequent steps we make similar splits in successively smaller regions Ω =
Ω1 ⊃ Ω2 ⊃ . . . with the region Ωk defined so that |dAk| ≤ p(ek). This gives tiny

factors e−
1
4
p(ek)2

in each block in Ωc
k. As above the sum over Ωk is bounded by

exp(cn0e
n0
k |T0

N−k|M) which is tiny. A bound on on the contribution from all steps
1 ≤ k ≤ N is the exponential of

N∑
k=1

cn0e
n0
k |T

0
N−k|M ≤ cn0M

−3

N∑
k=1

(
L−(N−k)/2e

)n0

L3(N−k) (228)

which is bounded uniformly in N for n0 ≥ 7.
A final remark. For technical reasons it is useful to replace M -blocks in these

expansions by larger M [r(ek)] blocks where r(ek) = (− log ek)
r for some integer r < p.

The above discussion still holds with this modification.
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6.2 the general step

The first step is iterated many times. As noted at each step we need a fresh splitting
of the integrated gauge field into large and small field regions. This can get rather
complicated and for a first pass we consider the case where at each stage the small field
region is the entire torus. This is the dominant contribution. Our discussion can also
be taken over almost word for word to the analysis of the small field region when it is
not the whole torus.

With this understanding suppose that after k transformations the (partial) density
ρk has the form for |dAk| ≤ p(ek) on the lattice T0

N−k

ρk(Ak,Ψk) =NkZkZk(0) exp
(
− 1

2
‖dAk‖2 −Sk(Ak,Ψk, ψk(Ak))

− εkVol(TN−k)−mk

〈
ψ̄k(Ak), ψk(Ak)

〉
+ Ek(Ak, ψk(Ak))

) (229)

with Ek =
∑

X Ek(X).

We introduce characteristic functions in a different fashion than that suggested in
the discussion of the first step and define

ρ̃k+1(Ak+1,Ψk+1) =

Nk

∫
χkχ̂k δ

(
Ak+1 −QAk

)
δ(τAk) exp

(
− b

L
|[Ψk+1 −Q(Ak)Ψk]|2

)
ρk(Ak,Ψk)DΨkDAk

(230)

Here characteristic function χk enforces globally

|dÃk+1| ≤ L−
3
2p(ek+1) p(ek) = (log e−1

k )p (231)

We have also inserted another characteristic function χ̂k which enforces

|Ak − Amin
k | ≤ p0(ek) p0(ek) = log(e−1

k )p0 (232)

with p0 < p. Here Amin
k = Hx

kAk+1 is the minimizer of the quadratic form introduced
previously.

When we translate to the minimum the factor exp(−1
2
‖dAk‖2) becomes the prod-

uct exp(−1
2
‖dÃk‖2) exp(−1

2
‖dZk‖2). The first factor facilitates the bound on |dÃk+1|.

The second factor, which is the same as exp(−1
2
< Zk,∆kZk >), together with the

constraints, facilitates the bound on Zk = |Ak − Amin
k |.

Furthermore the bounds |dÃk+1| ≤ L−
3
2p(ek+1) and |Zk| ≤ p0(ek) give |dZk| ≤

Cp0(ek) and hence

|dAk| ≤ |dÃk+1|+ |dZk| ≤ L−
3
2p(ek+1) + Cp0(ek) ≤ p(ek) (233)

which is the bound discussed in the first step, and which we need for the expression for
ρk to be well-defined.

The first main result is the following:
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Theorem 1. Let L be sufficiently large, let M be sufficiently large (depending on L),
and let ek be sufficiently small (depending on L,M). Suppose that ρk(Ak,Ψk) has the
representation (229) for |dAk| ≤ p(ek). Suppose the polymer function Ek(X,A, ψk(A))
is defined and analytic in complex Rk as defined in section 4.2 , is gauge invariant, is
charge conjugation invariant, and is invariant under all lattice symmetries. Suppose
also that

|mk| ≤ 1 ‖Ek‖k ≤ 1 (234)

Then ρk+1(Ak+1,Ψk+1) defined by (230) has a representation of the same form for
|dAk+1| ≤ p(ek+1), now with ek+1 = L1/2ek and

εk+1 =L3
(
εk + ε∗)

mk+1 =L
(
mk +m∗k

)
Ek+1 =L

(
REk + E∗k

) (235)

Here ε∗k,m
∗
k are linear in Ek, and E∗k is a function of ek,mk, Ek. They satisfy

|ε∗k| ≤ O(1) |m∗k| ≤ O(e
1
2
k ) ‖E∗k‖k+1 ≤ O(e

1
4
k ) (236)

When we iterate this result all these quantities are going to grow. The main issue
is that they do not grow too quickly. Things are arranged so the polymer functions
stay bounded. The point is that REk has the relevant parts removed so when we
scale with the operator L we get shrinkage. The E∗k provides a fresh small term and
‖Ek+1‖k+1 < 1. Control of the growth of ε∗k and particularly m∗k is not assured and this
is where renormalization enters, a topic still to come.

Note that the assumption |dAk| ≤ p(ek) easily implies Ak ∈ Rk by lemma 5.
We now sketch the proof of the theorem.

Proof. [27]
Step I: extraction We remove the relevant parts of Ek defining REk by the identity

Ek(X,A, ψ) = α0(X)Vol(X) +
〈
ψ̄, α2(X)ψ

〉
+ (REk)(X,A, ψ) (237)

where

α0(X) =
1

Vol(X)
Ek,0(X, 0)

α2(X) =
1

Vol(X)

∑
x,y∈X

L−6kEk,2(X, 0;x, y)
(238)

Then we sum over X and get

Ek(A, ψ) = −ε∗kVol(T0
N−k)−m∗k

〈
ψ̄, ψ

〉
+ (REk)(A, ψ) (239)
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where

ε∗k =−
∑
X⊃�

α0(X)

m∗k =−
∑
X⊃�

α2(X)
(240)

Here invariance under lattice symmetries is important to insure that ε∗k,m
∗
k are inde-

pendent of � and are Dirac scalars. One can show

|ε∗k| ≤O(1)‖Ek‖k

|m∗k| ≤O(1)e
1
2
k ‖Ek‖k

‖REk‖k ≤O(1)‖Ek‖k

(241)

here with ‖Ek‖k ≤ 1.

Step II: gauge field translation. Now we expand around the minimum of ‖dA‖2

as constrained by Ak+1 = QAk and τAk = 0. As explained earlier the minimum is
Amin
k = Hx

kAk+1 and we write Ak = Hx
kAk+1 + Zk. We take advantage of the fact that

the minimizer Hx
k and the covariant minimizer Hk are gauge equivalent to evaluate

Ak = HkAk+1 as

Ak =HkH
x
kAk+1 +HkZk

∼Hx
kH

x
kAk+1 +HkZk

=Ãx
k+1 +HkZk

∼Ãk+1 + Zk

(242)

where Zk = HkZk. In the gauge invariant effective action we make the replacement
Ak = Ãk+1 + Zk and integrate over Zk instead of Ak. Again we have the split

1

2
‖dAk‖2 =

1

2
‖dÃk+1‖2 +

1

2
‖dZk‖2 =

1

2
‖dÃk+1‖2 +

1

2
< Zk,∆kZk > (243)

where ∆=
kHT

k δdHk. We also have with A = Ãk+1

Sk(A + Zk,Ψk, ψk(A + Zk)) =Sk(A,Ψk, ψk(A)) + [. . . ]〈
ψ̄k(A + Z), ψk(A + Z)

〉
=
〈
ψ̄k(A), ψk(A)

〉
+ [· · · ]

REk
(
A + Zk, ψk(A + Zk)

)
=REk

(
A, ψk(A)

)
+ [. . . ]

(244)

The quantities [. . . ] are collected into a function E ′(A, ψk(A),Zk) which has a polymer
expansion but not yet in the variables we want.
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As noted in section 2.3 the integral over Zk is Gaussian and parametrized by fields
Z̃k by∫

f(Zk)δ(QZk)δ(τZk) exp
(
− 1

2
< Zk,∆kZk >

)
dZk =

∫
f(CZ̃k)dµCk(Z̃k) (245)

where C maps to the subspace QZk = 0, τZk = 0 and Ck = (CT∆kC)−1. We make a
further change to an identity covariance by∫

f(CZ̃k)dµCk(Z̃k) =

∫
f(CC

1
2
k Z̃k)dµI(Z̃k) (246)

After all these changes we now have with m′k = mk + m∗k and ε′k = εk + ε∗k and

Z ′k = HkCC
1
2
k Z̃k

ρ̃k+1(Ak+1,Ψk+1) = (Zk δZk) (NkNkZk(0)) exp
(
− 1

2
‖dA‖2

)
∫

DΨk exp
(
− b

L
|[Ψk+1 −Q(Ak+1)Ψk]|2 −Sk(A,Ψk, ψk(A))

− ε′kVol(TN−k)−m′k
〈
ψ̄k(A), ψk(A)

〉
+REk(A, ψk(A))

)
.

∫
dµI(Z̃k)χ̂k(CC

1
2
k Z̃k) exp

(
E ′k(A, ψk(A),Z ′k)

)∣∣∣
A=Ãk+1

(247)

Step III: localization. A major issue going forward is keeping the interaction part
of the effective action localized, i.e. expressed as a polymer expansion. This was com-
promised when we expanded around the minimizers and we have to make adjustments.
The problem occurs in the expression E ′k. There are three contributions to E ′k in (244),
but to illustrate the remedy we only consider the first. So we consider

E ′k(A,Z ′k,Ψk, ) = Sk(A + Z ′k,Ψk, ψk(A + Z ′k))−Sk(A,Ψk, ψk(A)) (248)

This can also be written as

E ′k(A,Z ′k,Ψk) =
〈

Ψ̄k,
(
Dk(A + Z ′k)−Dk(A)

)
Ψk

〉
=
〈

Ψ̄k,
(
D̂k(A + Z ′k)− D̂k(A)

)
Ψk

〉 (249)

where
D̂(A) = −b2

kQk(A)Sk(A)QT
k (−A) (250)

omits the constant term in D(A).

We first localize
〈

Ψ̄k, D̂k(A)
)

Ψk

〉
in A. Here we use the random walk expansion

Sk(A) =
∑

ω Sk,ω(A) for the Green’s function. Every path ω = (�0,�1, . . . ,�n) deter-
mines a polymer Xω which is the union the 3M -blocks in ω. Then we can write

Sk(A) =
∑
X

∑
ω:Xω=X

Sk,ω(A) ≡
∑
X

Sk(X,A) (251)
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and we have the estimate from the expansion ‖Sk(X,A)f‖ ≤ Ce−κdM (X)‖f‖∞. This
gives a local expansion〈

Ψ̄k, D̂k(A)Ψk

〉
=
∑
X

〈
Ψ̄k, D̂k(X,A)Ψk

〉
(252)

The
〈

Ψ̄k, D̂k(X,A)Ψk

〉
only depends on A,Ψk in X and satisfies

‖
〈

Ψ̄k, D̂k(X,A)Ψk

〉
‖hk ≤ Ch2

ke
−κdM (X) (253)

This also localizes the difference. We have E ′k =
∑

X E
0
k(X) where.

E0
k(X,A,Z ′k,Ψk) =

〈
Ψ̄k,

(
D̂k(X,A + Z ′k)− D̂k(X,A)

)
Ψk

〉
(254)

We also need to know that this is small. Consider the operator Dk(X,A + tZ ′k) for t

complex. From the bound |CC
1
2
k Z̃k| ≤ p0(ek) from χ̂k and our bound on Hk we have

that Z ′k = HkCC
1
2
k Z̃k = O(p0(ek)) is logarithmic in ek. But for A ∈ Rk the Dk(X,A)

can accept complex fields as large as e
− 3

4
k . Then D̂k(X,A + tZ ′k) is analytic in say

complex |t| ≤ e
− 3

4
+ε

k and we can write

E0
k(X,A,Z ′k,Ψk) =

1

2πi

∫
|t|=e

− 3
4 +ε

k

dt

t(t− 1)

〈
Ψ̄k, D̂k(X,A + tZ ′k)Ψk

〉
(255)

The
〈

Ψ̄k, D̂k(X,A + tZ ′k)Ψk

〉
satisfies the bound (253) and we get

‖E0
k(X,A,Z ′k,Ψk)‖hk ≤ Ch2

ke
3
4
−ε

k e−κdM (X) = Ce
1
4
−ε

k e−κdM (X) (256)

This is not the end of the story. We have localized in Z ′k = HkCC
1
2
k Z̃k ≡ H′kZ̃k. But

for the fluctuation integral we want to localize in Z̃k.
Here we again need our random walk expansions. Recall that the gauge propagator

has the expansion Gk =
∑

ω Gk,ω where ω = (�0,�1,�2, . . . .) . We separate off the
paths consisting of a single block �0 and for the rest introduce a weakening parameter
0 ≤ s� ≤ 1. Then we define

Gk(s) =
∑
�0

h�0Gkh�0 +
∑

ω:|ω|≥1

sωGk,ω (257)

where
sω =

∏
�⊂Xω

s� (258)

44



This again satisfies the bounds (186). But recall that each block � in ω contributes a
factor M−1 to the convergence. This is more than we need and one could in fact let s�
be complex and satisfy say |s�| ≤M

1
2 and still have convergence.

With more work the same remarks hold for H′k = HkCC
1
2
k . We have a random walk

expansion H′k =
∑

ωH′k,ω and again we weaken it introducing H′k(s) = Hk(s)CC
1
2
k (s)

as above. Then we have

E0
k(X,A,Z ′k,Ψk) =

[
E0
k(X,A,H′k(s)Z̃k,Ψk)

]
s�=1

(259)

Now in each block � in Xc we interpolate between s� = 1 and s� = 0 by

f(s� = 1) = f(s� = 0) +

∫ 1

0

∂

∂s�
f(s�) (260)

This yields

E0
k(X,A,Z ′k,Ψk) =

∑
Y⊃X

∫
dsY−X

∂

∂sY−X

[
E0
k(X,A,H′k(s)Z̃k,Ψk)

]
sY c=0,sX=1

(261)

where
∫
dsZ =

∏
�⊂Z

∫ 1

0
ds� and ∂/∂sX =

∏
�⊂X ∂/∂s�. But with sY c = 0, sX = 1

the operator H′(s) has no coupling between the connected components of Y . If the
connected components are Y0 ⊃ X and {Yβ} then we have

H′k(s) = H′kY0(s)⊕
(
⊕βH′kYβ(s)

)
(262)

Only the first term contributes since for the others we have Yβ ∩ X = ∅, and the
derivative is

∂

∂sY0−X

∏
β

∂

∂sYβ

[
E0
k(X,A,H′kY0(s)Z̃k,Ψk)

]
sY c=0,sX=1

(263)

which vanishes unless there are no Yβ. Thus in the sum we can restrict to connected
Y ⊃ X.

Now in E ′ =
∑

X E
0
k(X) insert this sum and change the order of summation, Then

we have E ′k =
∑

Y E
′
k(Y ) with

E ′k(Y,A, Z̃k,Ψk) =
∑
X⊂Y

∫
dsY−X

∂

∂sY−X

[
E0
k(X,A,H′k(s)Z̃k,Ψk)

]
sY c=0,sX=1

(264)

This accomplishes the localization as E ′k(Y ) only depends on Z̃k in Y .

As noted Hk(s) is analytic in |s�| ≤ M
1
2 . So for |s�| ≤ 1 each derivative gains a

factor M− 1
2 ≤ e−κ by Cauchy inequalities. This leads to the estimate

‖E ′k(Y )‖hk ≤ Ce
1
4
−ε

k

∑
X⊂Y

exp
(
− κ|Y −X|M − κdM(X)

)
(265)
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But |Y −X|M +dM(X) ≥ dM(Y ) so we can extract a factor e−(κ−κ0)dM (Y ) and still have
e−κ0dM (X) left for the convergence of the sum over X. The sum over X is estimated as
in (215) by ∑

X⊂Y

e−κ0dM (X) ≤ O(1)|Y |M ≤ O(1)edM (Y ) (266)

This gives the estimate

‖E ′k(Y )‖hk ≤ Ce
1
4
−ε

k e−(κ−κ0−1)dM (Y ) (267)

The same bound holds for the other contributions to E ′k, but with 1
2
hk instead of

hk. We also note that there is a local linear operator Tk(A) so that Ψk = Tk(A)ψk(A)
and so we can write our function as

E ′k(A, Z̃k, ψk(A)) =
∑
X

E ′k(X,A, Z̃k, ψk(A)) (268)

Remark. There is also a localization problem with the characteristic function χ̂k(CC
1
2
k Z̃k).

One might try to localize it by introducing weakened versions χ̂k(CC
1
2
k (s)Z̃k) and ex-

panding around s� = 1 as above. However estimates on the construction break down.
One cannot use Cauchy inequalities since χ̂ is not analytic.

This problem is dealt with in different ways in [27] and [29]. The method of [29]
seems more general and is probably preferable. It involves introducing a local version

C
1
2
,loc

k of C
1
2
k with a small error. Then the characteristic function χ̂k(CC

1
2
,loc

k Z̃k) stays
local. This function behaves like χ̂(Z̃k) and we simplify things by replacing it by χ̂(Z̃k).
This is not really a cheat since in the full expansion we can arrange that it is actually
χ̂(Z̃k) that appears, at the cost of introducing another large field/small field split.

Step IV: fermion translation. Now in the expression (247) we expand around the
critical point in fermions by Ψk = Hk(A)Ψk+1 + Wk and hence ψk(A) = ψ̃k+1(A) +
Hk(A)Wk. As before the quadratic form splits

S̃k+1(A,Ψk+1, ψ̃k+1(A)) +
〈
W̄k,

(
Dk(A) +

b

L
QT (−A)Q(A)

)
Wk

〉
(269)

and we identify the fluctuation integral as Gaussian integral with covariance

Γk(A) =
(
Dk(A) +

b

L
QT (−A)Q(A)

)−1

(270)

and the formal measure is

exp
(
−
〈
W̄k,Γk(A)−1Wk

〉)
DWk = δZk(A)dµΓk(A)(Wk) (271)
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We also use the identity∫
f(W̄k,Wk)dµΓk(A)(Wk) =

∫
f(W̄k,Γk(A)Wk)dµI(Wk) (272)

The translation now becomes

ψk(A) =ψ̃k+1(A) +Hk(A)Γk(A)Wk

ψ̄k(A) =ψ̃k+1(A) +Hk(A)W̄k

(273)

and we summarize both as ψk(A) = ψ̃k+1(A) + H′k(A)Wk where H′k(A) is either
Hk(A)Γk(A) or Hk(A).

Under this translation we get E ′k(A, Zk, ψ̃k+1(A) + H′k(A)Wk) and similarly for
some other terms in the action. These are no longer well localized in Wk. We again
localize by introducing weakened random walk expansions H′(s,A) for H′k(A), and
expand around s� = 1. The result is that E ′ becomes E ′′ with

E ′′k (A, Zk, ψ̃k+1(A),Wk) =
∑
X

E ′′k (X,A, Z̃k, ψ̃k+1(A),Wk) (274)

with E ′′(X) localized in the indicated fields. It has a bound for a new smaller κ′

‖E ′′k (Y,A, Z̃k)‖ 1
4
hk,

1
4
hk
≤ Ce

1
4
−ε

k e−κ
′dM (Y ) (275)

After these changes we have

ρ̃k+1(Ak+1,Ψk+1) =
(
Zk δZk

)(
NkNkZk(0)δZk(A)

)
exp

(
− 1

2
‖dA‖2

)
exp

(
− S̃k+1(A,Ψk+1, ψ̃k+1(A))− ε′kVol(TN−k)−m′k

〈
ψ̃k+1(A), ψ̃k+1(A)

〉)
exp

(
REk(A, ψ̃k+1(A)

)
Ξk

(
A, ψ̃k+1(A)

)∣∣∣
A=Ãk+1

(276)

where the fluctuation integral is now

Ξk

(
A, ψ̃k+1(A)

)
=

∫
exp

(∑
X

E ′′k (X,A, Z̃k, ψ̃k+1(A),Wk)
)
χ̂(Z̃k)dµI(Z̃k)dµI(Wk)

(277)
Step V: cluster expansion. The fluctuation integral is estimated by a cluster
expansion. We have set it up as an ultra-local version of this standard technique. The
Gaussian integrals are strictly local since the convariance is the identity. The integrand
is local since it is expressed as a polymer expansion in the field Z̃k,Wk. Furthermore
the fluctuation gauge field is bounded by |Z̃k| ≤ p0(ek). Things are as nice as they
could be and the cluster expansion is essentially a combinatoric problem. The result is
that there are polymer functions E#

k =
∑

X E
#
k (X) such that

Ξk

(
A, ψ̃k+1(A)

)
= exp

(∑
X

E#
k (X,A, ψ̃k+1(A))

)
(278)
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and we still have the bound with a new smaller κ′ < κ

‖E#
k (Y,A)‖ 1

4
hk
≤ Ce

1
4
−ε

k e−κ
′dM (Y ) (279)

For details see for example [22].

Step VI: determinants. We still have to deal with the A dependence in

δZk(A) = det Γk(A)−1 = det
(
Dk(A) + bL−1QT (−A)Q(A)

)
(280)

We use the following result [16], [27]. Let T be an invertible self-adjoint matrix, and
consider detT = exp( Tr log T ). We take the branch of the logarithm with the cut on
the negative imaginary axis so the log of negative numbers is defined. Then

log T =
1

2πi

∫
Γ

dz log z (z − T )−1 (281)

where Γ is any closed contour which avoids the negative imaginary axis and encloses
the spectrum of T , a finite non zero subset of the real axis. For the contour take an
inner circle of small radius r, and outer circle of large radius R and join them with rays
which make an an angle ε with the negative imaginary axis. See figure 2.

For any R0 we can assume r < R0 < R. If we take the limits ε→ 0, R→, r → 0 we
find

log T = T

∫ ∞
R0

dy

y
(T + iy)−1 − i

∫ R0

0

dy(T + iy)−1 + logR0 +
iπ

2
(282)

Now the Dirac operator DA is not self-adjoint and neither are the operators Sk(A) =(
DA + m̄+ bkPk(A)

)−1

or Dk(A) = bk − b2
kQk(A)Sk(A)QT

k (−A). But we can suppose

that our representation of the Dirac matrices γ0, γ1, γ2 in three dimensions is obtained
from a collection γ0, γ1, γ2, γ3 in four dimensions. Since γ3 anti-commutes with the
others DAγ3 is self-adjoint as are Sk(A)γ3 and Dk(A)γ3. This does not change the
determinant and we can take.

δZk(A) = det
((
Dk(A) + bL−1QT (−A)Q(A)

)
γ3

)
(283)

Now apply the formula (282). It turns out one can take the limit R0 → ∞ and one
finds for some explicit constant ck

δZk(A) = ck exp
(
− iγ3b

2
k

∫ ∞
0

Tr
[
Bk,y(A)Qk(A)Sk,y(A)QT

k (−A)Bk,y(A)
]
dy
)

(284)

Here Bk,y(A) is local operator which is a linear combination of the identity I and
QT (−A)Q(A) and is O(y−1) as y → ∞. The Sk,y(A) interpolates between Sk(A) at
y =∞ and S̃k+1(A) at y = 0. (S̃k+1(A) scales to Sk+1(A)).
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Figure 2: The contour Γ

Now as for Sk(A) we have a polymer expansion Sk,y(A) =
∑

X Sk,y(X,A). The
other terms under the trace are local, so this generates an expansion

δZk(A) = ck exp
(∑

X

Ed(X,A)
)

(285)

where Ed(X,A) is gauge invariant and satisfies |Ed(X,A)| ≤ CM3e−κdM (X).
Next define Edet(X,A) = Ed(X,A)− Ed(X, 0) and we have

Zk(A) = Zk(0) exp
(∑

X

Edet(X,A)
)

(286)

We are assuming A ∈ Rk but in fact Ed(X,A) is defined and analytic in the larger

domain e
− 1

4
+ε

k Rk. Thus we can write

Edet(X,A) =
1

2πi

∫
|t|=e

− 1
4 +ε

k

dt

t(t− 1)
Ed
k(X, tA) (287)

and obtain the bound
|Edet

k (X,A)| ≤ e
1
4
−ε

k e−κ
′dM (X) (288)

Step VII: scaling We define E∗k = E#
k +Edet

k . This inherits a polymer expansion with

‖E∗k(X,A, ψ̃k+1(A))‖ 1
4
hk
≤ Ce

1
4
k e
−κ′dM (X) (289)
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Now we have

ρ̃k+1(Ak+1,Ψk+1) = (Zk δZk) (NkNkZk(0)δZk(0)) exp
(
− 1

2
‖dA‖2 − S̃k+1(A,Ψk+1, ψ̃k+1(A))

)
exp

(
− ε′kVol(TN−k)−m′k

〈
ψ̃k+1(A), ψ̃k+1(A)

〉
+ (REk + E∗k)(X,A, ψ̃k+1(A))

)∣∣∣
A=Ãk+1

(290)

This scales to the desired expression for ρk+1. In particular ε′k = εk + ε∗k scales to
εk+1 = L3(εk + ε∗k) and m′k = mk + m∗k scales to mk+1 = L(mk + m∗k). Furthermore
REk + E∗k scales to Ek+1 = L(REk + E∗k). This completes the proof of theorem 1.

Note: Let us check that the polymer function is not growing from its initial ‖Ek‖k ≤ 1.
We have from (217) and (289)

‖LE∗k‖Rk+1,hk+1κ ≤O(1)L3‖E∗k‖Rk, 14hk,κ0+2L−1κ

≤O(1)L3‖E∗k‖Rk, 14hk,κ′

≤CL3e
1
4
k <

1

2

(291)

Here we have used κ0 + 2L−1κ ≤ κ′. The κ′ has been shrinking throughtout the proof,
but if you trace it through you find that you can take κ′ = κ − 10κ0 − 10. Then the
inequality says 11κ0 + 10 ≤ (1− 2L−1)κ which holds if κ is a sufficiently large multiple
of κ0.

We also have from (217) and ‖REk‖k ≤ O(1)‖Ek‖k

‖LREk‖Rk+1,hk+1κ ≤O(1)L3‖REk‖L− 7
8Rk,L−

9
8 hk,κ

≤O(1)L−1/4‖REk‖k

≤O(1)L−1/4‖Ek‖k <
1

2

(292)

Here we have used the fact that REk has relevant terms removed to get the improved
scaling

‖REk‖L− 7
8Rk,L−

9
8 hk,κ

≤ L−
13
4 ‖REk‖Rk,hk,κ (293)

To give the idea for this bound consider that constants and local ψ̄ψ which scale like
L−

9
4 are gone, but they may have left terms ψ̄∂ψ which scale like L−13/4. Or consider

that local |A|2 term are forbidden by gauge invariance, but there might be |dA|2 which

scale like L−
15
4 . Actually this kind of argument can only be made for small polymers.

For large polymers one uses the scaling of e−dM (X) to get extra powers of L−1. For
details see [27].

Altogether then

‖ Ek+1‖k+1 ≤ ‖LREk‖k+1 + ‖LE∗k‖k+1 < 1 (294)
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7 Renormalization

We have seen that under a single renormalization group step the parameters of the
theory are changed by ek+1 = L

1
2 ek and by the following equations

εk+1 =L3
(
εk + ε∗k

)
mk+1 =L

(
mk +m∗k

)
Ek+1 =L

(
REk + E∗k

) (295)

We want to iterate these transformations and study the flow. The main difficulty
is keeping growth of the mass mk under control (and also the energy density εk, but
this is less serious since it does not affect the other quantities). We have seen that if
this is accomplished then the flow of the polymer functions Ek is also controlled. The
idea is to pick initial conditions ε0,m0 for the counter terms such that the final values
take prescribed values, which for simplicity we take to be zero. The final values come
at k = K ≡ N −m since at this point we are on the torus T0

N−K = T0
m which consists

of a unit lattice and a single M = Lm cube. This accomplishes the goal a reducing
our problems to a fixed finite number of degrees of freedom. Nevertheless our smeared
fields which we are using to track the action are on the L−K lattice T−KN−K which is close

to the original T−N0 .
Now we can state:

Theorem 2. Let L be sufficiently large and e be sufficiently small. Then for each N
there is a unique sequence εk,mk, Ek for k = 0, 1, 2, . . . , K satisfying of the dynamical
equation (295), the boundary conditions

εK = 0 mK = 0 E0 = 0 (296)

It satisfies the bounds

|εk| ≤e
1
4
−ε

k

|mk| ≤e
3
4
−2ε

k

‖Ek‖k ≤e
1
4
−ε

k

(297)

We sketch the proof. It suffices to consider only mk, Ek, the εk can be treated
separately. Let ξk be the pair ξk = (mk, Ek) and consider the space of all sequences
ξ = (ξ0, . . . , ξK) which satisfy the boundary conditions. Supplied with the norm

‖ξ‖ = sup
0≤k≤K

{e−
3
4

+2ε

k |mk|, e
− 1

4
+ε

k ‖Ek‖k} (298)
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we have a Banach space B. Our problem is to find elements of the unit ball

B1 = {ξ ∈ B : ‖ξ‖ ≤ 1} (299)

which satisfy the dynamical equations (297) . Elements of the unit ball satisfy the

bounds |mk| ≤ e
3
4
−2ε

k and ‖Ek‖k ≤ e
1
4
−ε

k . These are stronger than the hypotheses of
theorem 1 so the consequences of that theorem hold.

We reformulate into a contractive setting as follows. Define an mapping ξ′ = Tξ on
B1 by

m′k =L−1mk+1 −m∗(Ek)

E ′k =L
(
REk−1 + E∗k−1(mk−1, Ek−1)

) (300)

Then ξ satisfies the dynamical equations and the boundary conditions if and only if it
is a fixed point for T on B1.

First we need to know that T maps B1 to itself. This is true since ek+1 = L
1
2 ek and

we know |m∗(Ek)| ≤ O(1)e
1
2
k ‖Ek‖hk and so

e
− 3

4
+2ε

k |m′k| ≤e
− 3

4
+2ε

k

(
L−1|mk+1|+O(1)e

1
2
k ‖Ek‖k

)
≤L−

5
8

[
e
− 3

4
+2ε

k+1 |mk+1|
]

+O(1)eεk

[
e
− 1

4
+ε

k ‖Ek‖k
]

<
(
L−

5
8 +O(1)eεk

)
‖ξ‖ < 1

2
‖ξ‖

(301)

We also have from (291), (292) and ek−1 < ek

e
− 1

4
+ε

k ‖E ′k‖k ≤e
− 1

4
+ε

k

(
‖LREk−1‖k + ‖LE∗k−1‖k

)
≤e−

1
4

+ε

k−1

(
O(1)L−

1
4‖Ek−1‖k−1 + CL3e

1
4
k−1

)
≤O(1)L−

1
4

[
e
− 1

4
+ε

k−1 ‖Ek−1‖k−1

]
+ CL3eεk−1

<
1

2
‖ξ‖+

1

2

(302)

Together these imply ‖ξ′‖ = ‖Tξ‖ ≤ 1
2
‖ξ‖+ 1

2
< 1.

Now we claim that the map is a contraction and assert that for any two sequences
ξ1, ξ2 in B1 we have

‖ξ′1 − ξ′2‖ = ‖Tξ1 − Tξ2‖ ≤
1

2
‖ξ1 − ξ2‖ (303)
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Indeed since m∗(Ek) is linear we have |m∗(E1,k) − m∗(E2,k)| ≤ O(1)e
1
2
k ‖E1,k − E2,k‖k

and so as in (301)

e
− 3

4
+2ε

k |m′1,k −m′2,k| ≤e
− 3

4
+2ε

k

(
L−1|m1,k+1 −m2,k+1|+O(1)e

1
2
k ‖E1,k − E2,k‖k

)
≤L−

5
8

[
e
− 3

4
+2ε

k+1 |m1,k+1 −m2,k+1|
]
O(1)eεk

[
e
− 1

4
+ε

k ‖E1,k − E2,k‖k
]

≤
(
L−

5
8 +O(1)eεk)

)
‖ξ1 − ξ2‖ ≤

1

2
‖ξ1 − ξ2‖

(304)

Similarly as in (302) we have

e
− 1

4
+ε

k ‖E ′1,k − E ′2,k‖k <
1

2
‖ξ1 − ξ2‖ (305)

In this case E∗k is not a linear function of (mk, Ek) so we need estimates on the derivatives
with respect to these variables. These follow by Cauchy bounds since E∗k is in fact an
analytic function of mk, Ek. Applying these remarks to E∗k−1(mk−1, Ek−1) gives the
result. The last two estimates give (303).

Now we have a contraction mapping on a complete metric space, so by a standard
theorem there is a unique fixed point. This proves theorem 2.

The above analysis is a kind of non-perturbative renormalization. The technique
should work for any super-renormalizable quantum field theory, i.e. models in which
the coupling constant has positive dimension (in mass units). But it probably does not
work for strictly renormalizable models for which the coupling constant is dimensionless.
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8 The full expansion

8.1 the full RG

The previous discussion focussed on the special case where small field regions are the
whole torus. Now we discuss the general case where we have both large and small field
regions. We have previously discussed the first step. After k steps we have a sequence
of small field regions

Ω = (Ω1, · · · ,Ωk) (306)

which are decreasing
Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωk (307)

Each Ωj is a union of L−(k−j)M cubes in T−kN−k. On Ωj we have increasingly tight small
field bounds.

The small field regions Ω are introduced as follows. After k steps the density will
have the form

ρk(Ak,Ψk) =
∑
Ω

ρk,Ω(Ak,Ψk) (308)

Insert this into the general RG transformation and take the sum outside the integral
to obtain

ρ̃k+1(Ak+1,Ψk+1) =∑
Ω

Nk

∫
δ
(
Ak+1 −QAk

)
δ(τAk) exp

(
− b

L
|[Ψk+1 −Q(Ak+1)Ψk]|2

)
ρk,Ω(Ak,Ψk)DΨkDAk

(309)

Now introduce a new small field region. Ωk+1 by inserting under the integral

1 =
∑

Ωk+1⊂Ωk

Ck+1,Ωχk+1(Ωk+1)χ̂k(Ωk+1) (310)

Let Ω+ = (Ω,Ωk+1). then χk+1(Ωk+1) enforces (a local version of)

|dÃk+1,Ω+ | ≤ L−
3
2p(ek+1) on Ωk+1 (311)

and the χ̂k(Ωk) enforces (a local version of)

|Ak − Amin
k,Ω+ | ≤ p0(ek) on Ωk+1 (312)

for a cetrtain minimizer Amin
k,Ω+ . One can show that these bounds imply (a local version

of) |dAk,Ω| ≤ p(ek). The term Ck+1,Ω(Ak, Ak+1) collects various large and small field
characteristic functions, but has at least one large field characteristic function in in
block � ⊂ Ωc

k+1.

54



Then we again get something of the form

ρ̃k+1(Ak+1,Ψk+1) =
∑
Ω+

ρ̃k,Ω+(Ak+1,Ψk+1) (313)

where

ρ̃k+1,Ω+(Ak+1,Ψk+1) = Nk+1

∫
Ck+1,Ω χk+1(Ωk+1)χ̂k(Ωk)

δ
(
Ak+1 −QAk

)
δ(τAk) exp

(
− b

L
|[Ψk+1 −Q(Ak+1)Ψk]|2

)
ρk,Ω(Ak,Ψk)DΨkDAk

(314)

In the new small field region Ωk+1 we expand around the critical points of the quadratic
terms and process the result as a bounded fluctuation integral just as we did in section
6. Finally we scale down to get ρk+1,Ω+(Ak+1,Ψk+1).

After k steps the claim is that density can be represented on the lattice T0
N−k in

the form which is something like

ρk(Ak,Ψk) =
∑
Ω

Zk,Ω(0)Zk,Ω

∫
Dmk,Ω(A)Dmk,Ω(Ψ) Ck,Ω χk(Ωk)

exp
(
− 1

2
‖dA‖2 −Sk,Ω

(
A,Ψk,Ω, ψk,Ω(A)

)
−mk < ψ̄k,Ω(A), ψk,Ω(A) >Ωk

− εkVol(Ωk) + Ek(Ωk,A, ψk,Ω(A)) +Bk,Ω(A, ψk,Ω(A))
)∣∣∣

A=Ak,Ω

(315)

The parameters εk,mk are tuned as in the previous section and various terms are defined
as follows:

• The factors Zk,Ω(0),Zk,Ω contain normalization factors for fermions and boson
fluctuation integrals respectively, and also include normalization factors for fermion
block averaging.

• Dmk,Ω(A) is a measure on large gauge fields which have not been processed. It
roughly has the form

Dmk,Ω(A) =
k−1∏
j=0

δΩcj
(Aj+1 −QAj)δΩcj

(τAj)DAj,Ωcj (316)

• Dmk,Ω(Ψ) is a ”measure” on fermi fields which have not been processed. It has
the form up to normalization factors

Dmk,Ω(Ψ) =
k−1∏
j=0

Nj+1,Ωcj+1
exp

(
− |[Ψj+1 −Q(0)Ψj]|2Ωcj

)
DΨj,Ωcj

(317)
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• Gauge fields which do not appear in Dmk,Ω(A) and are not integrated out in the
fluctuation integral have the form Aj,δΩj = Ak,Ωj−Ωj+1

. These are active fields and
after k steps are collected into

Ak,Ω = (A0,Ωc1
, A1,δΩ1 , · · · , Ak−1,δΩk−1

, Ak,Ωk) δΩj = Ωj − Ωj+1 (318)

where Aj is defined on T−(k−j)
N−k The k-step axial gauge minimizer is the minimizer

of ‖dA‖2 on T−kN−k subject to the constraints Qk,ΩA = Ak,Ω and τk,ΩA = 0. Here
Qk,Ω = Qj on δΩj and τk,Ω is j-step axial gauge fixing on δΩj. The minimizer
has the form Ax

k,Ω = Hx
k,ΩAk,Ω. There is also a gauge equivalent Landau gauge

minimizer which minimzes ‖dA‖2 subject to the constraints Qk,ΩA = Ak,Ω and
Rk,ΩδA = 0. It has the form

Ak,Ω = Hk,ΩAk,Ω (319)

and this is what appears in the action.

The Amin
k,Ω+ is essentially the minimizer of ‖dAx

k,Ω‖2 in Ak subject to the constraints
QAk = Ak+1, τAk = 0 on Ωk+1.

• The free fermi action depends on the active fields

Ψk,Ω = (Ψ0,Ωc1
,Ψ1,δΩ1 , · · · ,Ψk−1,δΩk−1

,Ψk,Ωk) (320)

and has the form

Sk,Ω(A,Ψk,Ω, ψ) = |[Ψk,Ω −Qk,Ω(A)ψ]|2Ω1
+
〈
ψ̄,
(
Dek(A) + m̄k

)
ψ
〉

(321)

It is evaluated at the critical point in ψ = ψk,Ω(A) on T−kN−k which has the form

ψk,Ω(A) = Hk,Ω(A)Ψk,Ω (322)

• The main higher order interactions are contained in the polymer function

Ek(Ωk,A, ψ) =
∑
X⊂Ωk

Ek(X,A, ψ) (323)

where Ek(X,A, ψ) is identical with the global small field polymer function. In

particular it is O(e
1
4
k ), has all the symmetries, and is independent of the history

Ω. However it is evaluated at A = Ak,Ω and ψ = ψk,Ω(Ak,Ω) which remember
the history. But in the current small field region Ωk we do have Ak,Ω ≈ Ak and
ψk,Ω(Ak,Ω)) ≈ ψk(Ak)
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• The term Bk,Ω(A, ψ) is a boundary term which plays no role in renormalization.
It has the form

Bk,Ω =
∑
j

Bk,j,Ω

Bk,j,Ω =
∑
X

Bk,j,Ω(X)
(324)

Here in Bk,jΩ the sum is over polymers X made up of L−(k−j)M cubes which

intersect both Ωc
j,Ωj. In a suitable norm Bk,Ω is O(e

1
4
k ).

• The characteristic function χk(Ωk) is just a record of the bound |dAk,Ω| ≤ p(ek)

in Ωk. Since Ak = QkÃk,Ω in Ωk it also implies |dAk| ≤ p(ek) in Ωk. The Ck,Ω
collects the large field characteristic functions Cj,Ω from each single step.

In fact at this point we have to admit that the expansion is not a simple as stated.
For technical reasons we have to introduce more characteristic functions and get more
sums over small field regions. There is not just a sum over Ω also over several small
field regions.

Another point is that although the characteristic functions start out local, when we
translate to the minimizers of the action the locality is again compromised. Restoring
locality is a difficult technical problem. It is more difficult than the induced non-locality
in the action. There we could take advantage of analyticity in the fields, but here there
is no analyticity.

8.2 multiscale analysis

As in the global small field case a key role is played by the operators Hk,Ω and Hk,Ω(A)
which select the critical points of the action. Let us discuss in particular the fermion
case Hk,Ω(A). It has the form

Hk,Ω(A)Ψk,Ω = Sk,Ω(A)QT
k,Ω(−A)bk,Ω Ψk,Ω (325)

where the Greens functions is

Sk,Ω(A) =
[
Dek(A) + m̄k +QT

k,Ω(−A)bk,ΩQk,Ω(A)
]−1

Ω1

(326)

and bk,Ω = bjL
k−j on δΩj. Again the term QT

k,Ω(−A)bk,ΩQk,Ω(A) provides an effective

mass which is now O(Lk−j) in δΩj. Thus it increases the farther back we go in the
history, or the farther away we are from the current small field region Ωk. It provides a
king of soft boundary conditions, with the result that Sk,Ω(A) is going to have better
estimates than say [Dek(A) + m̄k +QT

k (−A)bkQk(A)]−1
Ω1

We need exponential decay estimates on the kernels of Sk,Ω(A) and hence Hk,Ω(A),
and we also need to be able to break it up into local pieces. Both these are accomplished
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by random walk expansions. In δΩj the operator Qk,Ω(A) averages over blocks with
width Lj-sites in an L−k lattice, so we are averaging over blocks of size L−(k−j). Cor-
respondingly our random walk expansion should be based on blocks of size L−(k−j)3M
in δΩj (which is itself a union of L−(k−j)M blocks).

A random walk is then a sequence

ω =
(
�0,�1,�2, . . . ,�n

)
(327)

such that �
i

is an L−(k−j)3M block if �i ∈ δΩj and such that �i,�i+1 overlap. We
have a multi-scale random walk expansion (for sufficiently regular background field A)

Sk,Ω(A) =
∑
ω

Sk,Ω,ω(A) (328)

where Sk,Ω,ω(A) only depends on A in ω. This leads to an exponenential decay estimate
of the form

|1∆xSk,Ω(A)1∆x′
f | ≤ CL−(k−j′)e−γdΩ(x,x′)‖f‖∞ (329)

where ∆x is an L−(k−j) block centered on x ∈ δΩj, and where dΩ(x, x′) is the length of
the shortest path from x to x′ with paths weighted by Lk−j when they pass through
δΩj.

Similarly the gauge operators Gk,Ω and HkΩ admit multiscale random walk expan-
sions.

These random walk expansion again permit the introduction of weakening parame-
ters. This is critical for preserving the localization of our effective actions as previously
discussed.

8.3 UV stability

The representation (315) now yields a stability result. Stopping the iteration at K with
N−K = O(1) the effective density is ρK(Ak, ψK). We make a final integral over Ak,Ψk

with axial gauge fixing and have the representation of the partition function

ZN(e) =

∫
δ(Q∗Ak)δ(τ ∗Ak)ρK(Ak, ψK)DΨkDAK (330)

Here Q∗, τ ∗ are defined with M -blocks rather than L-blocks. The density ρK(Ak, ψK)
is expressed as a sum

ρK(Ak, ψK) =
∑
Ω

ρK,Ω(Ak, ψK) (331)

which gives

ZN(e) =
∑
Ω

∫
δ(Q∗Ak)δ(τ ∗Ak)ρK,Ω(Ak, ψK)DΨkDAK (332)
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In this sum the final small field region ΩK is either the whole reduced torus T−KN−K or
it is not. In the first case the small field region is always maximal and we are in the
situation discussed in sections 6 and 7. In this case we have a small fixed number of
field variables and bounds independent of N and we can get a good estimate. In the
other case at some point in the iteration the large field region is not empty, and then
the same is true for subsequent iterations. These terms sum to an expression which is
O(en0

K ) for any n0. The contribution is much smaller than the global small field term.
Now dividing by the free partition function ZN(0) we have:

Theorem 3. (UV stability bound) Let the coupling constant e be sufficiently small and
choose counterterms as in theorem 2. Then for all N

1

2
≤
∣∣∣Z(N, e)

Z(N, 0)

∣∣∣ ≤ 3

2
(333)

This is a bound on the unit cube, but we could get a similar result starting with
any finite volume. We have assumed that e is sufficiently small but this could also
be relaxed. The important thing is that the running coupling constant ek be small
and this can always be arranged if we stop the iteration earlier. Finally it should be
possible to include source terms in the partition function and thereby generate results
for correlation functions.
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Remark. In the following expository papers are [17], [25], [30],[33].
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