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Abstract. For a polynomial f (x) in (Zp ∩Q)[x] of degree d ≥ 3 let L( f ⊗ Fp; T) be the L function
of the exponential sum of f mod p. Let NP ( f ⊗ Fp) denote the Newton polygon of L( f ⊗ Fp; T).
Let HP (Ad) denote the Hodge polygon of Ad , which is the lower convex hull in R2 of the points
(n, n(n+1)

2d ) for 0 ≤ n ≤ d − 1. Let Ad be the space of degree-d monic polynomials parameterized

by their coefficients. Let GNP (Ad ;Fp) := inf
f∈Ad (Fp)

NP (f ) be the lowest Newton polygon over

Fp if exists. We prove that for p large enough GNP (Ad ;Fp) exists and we give an explicit formula
for it. We also prove that there is a Zariski dense open subset U defined over Q in Ad such that for
f ∈ U (Q) and for p large enough we have NP ( f ⊗ Fp) = GNP (Ad ;Fp); furthermore, as p goes to
infinity their limit exists and is equal to HP (Ad). Finally we prove analogous results for the space
of polynomials f (x) = xd + ax with one parameter. In particular, for any nonzero a ∈ Q we show
that limp→∞ NP ((xd + ax) ⊗ Fp) = HP (Ad).

1. Introduction. In this paper d is an integer ≥ 3. Let Ad be the d-
dimensional affine space identified with the space of degree-d monic polyno-
mials parameterized by their coefficients. We always assume that p is a prime
coprime to d. Let Qp and Zp be the algebraic closure of Qp and its ring of
integers respectively. Let f (x) a polynomial of one variable in Ad(Zp ∩ Q). Let

E(x) = exp (
∑∞

j=0
xpj

pj ) be the Artin-Hasse exponential function. Let γ be a root of

log (E(x)) in Qp with ordp γ = 1
p−1 . Then E(γ) is a primitive p-th root of unity.

Denote it by ζp. It is observed that Zp[γ] = Zp[ζp]. For every � ≥ 1, recall the
exponential sums of the reduction f ⊗ Fp of f modulo p

S�( f ⊗ Fp) :=
∑

x∈Fp�

ζ
TrFp�/Fp

( f (x)⊗Fp)

p .

The L-function of the exponential sum of f ⊗ Fp is defined by

L( f ⊗ Fp; T) := exp

( ∞∑
�=1

S�( f ⊗ Fp)
T�

�

)
.(1)
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It is well known (or simply using the Weil Conjecture for curves combined with
(3) below) that

L( f ⊗ Fp; T) = 1 + b1T + b2T2 + · · · + bd−1Td−1 ∈ Z[ζp][T].(2)

Let ordp (·) denote the unique extension of the (additive) p-adic valuation in
Qp to Qp. We also denote by ordp (·) the p-adic valuation of the content of a
power series over Zp (see [10, pages 209 and 181] for its standard definition).
Define the Newton polygon of the L-function of f ⊗ Fp, denoted by NP ( f ⊗ Fp),
as the lower convex hull of the points (n, ordp bn) in R2 for 0 ≤ n ≤ d−1, where
we set b0 = 1. The Hodge polygon of f , denoted by HP (Ad), is the lower convex
hull in R2 of the points (n, n(n+1)

2d ) for 0 ≤ n ≤ d − 1. It is known that HP (Ad)
is a lower bound of NP ( f ⊗ Fp) (see [17, Propositions 2.2 or 2.3]) and that if
p ≡ 1 mod d then NP ( f ⊗ Fp) = HP (Ad) for every f ∈ Ad(Q) (see [16, (3.11)]).

The main results of this paper are Theorems 1.1, 5.1 and 6.2. Theorem 1.1
was a conjecture of Daqing Wan, proposed in the following form in the number
theory seminar at Berkeley in the fall of 2000 (see also [18, Section 2.5] for
developments related to this topic). This theorem follows from Theorem 5.1.

THEOREM 1.1. There is a Zariski dense open subset U defined over Q in Ad

such that for all f (x) ∈ U(Q) we have

lim
p→∞

NP ( f ⊗ Fp) = HP (Ad).

Remark 1.2. The case d = 3 follows from [16, (3.14)], and the case d = 4 is
discussed in [6, Corollary 4.7]. The first slope case was proved recently by an
elementary method in [12] (see also [13]). Results concerning Wan’s conjecture
“over Q” are forthcoming in [22].

Theorem 1.1 yields an answer toward questions (in one variable case) pro-
posed by Katz which asked how the Newton polygon of the L function of expo-
nential sums varies with the prime p (see Katz’s questions and Sperber’s example
on page 151 of [7, Chapter 5.1]). For more developments in these directions see
[14], [15] and [2] and their bibliographies.

Let Xf : yp − y = f (x) ⊗ Fp be an Artin-Schreier curve over Fp. The Newton
polygon of Xf , denoted by NP (Xf ⊗ Fp), is the p-adic Newton polygon of the
numerator of the Zeta function Zeta (Xf ⊗ Fp; T) of Xf over Fp. It is well known
that (see, for example, [3, Section VI, (93)])

Zeta (Xf ⊗ Fp; T) =
NQ(ζp)/Q (L( f ⊗ Fp; T))

(1 − T)(1 − pT)
,(3)

where the norm NQ(ζp)/Q being interpreted as the product of the conjugates of
L( f ⊗ Fp; T) in Q(ζp) over Q, the automorphism acting trivially on the variable
T . Thus NP ( f ⊗Fp) is precisely equal to NP (Xf ⊗Fp) shrunk by a factor of 1

p−1
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horizontally and vertically, which is denoted by
NP (Xf ⊗Fp)

p−1 . From these remarks
the following corollary is obvious.

COROLLARY 1.3. There exists a Zariski dense open subset U defined over Q in
Ad such that for every f ∈ U(Q) we have

lim
p→∞

NP (Xf ⊗ Fp)
p − 1

= HP (Ad).

Remark 1.4. (a) The behavior of NP (xd ⊗ Fp) is well understood. For the
reader’s convenience we describe them briefly below. Let σ be a permutation in
the symmetric group Sd−1 such that for every 1 ≤ n ≤ d − 1 we let σ(n) be
the least positive residue of pn mod d. Write σ as a product of disjoint cycles
(including 1-cycles). Let σi be a �i-cycle in σ. Let λi :=

∑
n/(d�i) where the sum

ranges over all n in the standard representation of the �i-cycle σi. Arrange σi in
such an order that λ1 ≤ λ2 ≤ · · · . For every σi in σ let the pair (λi, �i) of rational
numbers represent the line segment of (horizontal) length �i and of slope λi. The
joint of line segments (λi, �i) is the lower convex hull consisting of line segment
(λi, �i)’s connected at their end-points. The eigenvalues of L(xd⊗Fp; T) are Gauss
sums (see [8, chapter III]). By the Stickelberger theorem (see [20, Chapter 6]),
the p-adic Newton polygon of L(xd ⊗ Fp; T) and hence NP (xd ⊗ Fp) is the joint
of (λi, �i)’s. (I thank Kiran Kedlaya for discussions here.)

(b) For every d ≥ 3 the Newton polygon NP (xd ⊗ Fp) does not have a limit
as p approaches ∞. Indeed, it is clear from the above that for p ≡ 1 mod d the
Newton polygon is equal to the Hodge polygon while for p ≡ −1 mod d the
Newton polygon is a straight line of slope 1/2.

This paper is organized as follows. In Section 2 notations and terminologies
are introduced. Using Dwork’s p-adic analysis, we define the Fredholm polygon
of f (x) over Fp and show that it is equal to NP ( f ⊗ Fp). Section 3 is a key
step in the proof; it constructs an nth generic polynomial, denoted by f tn

n , proves
that they are nonzero and hence defines some Zariski dense open subset Vn in
Ad−1. It is recommended that the reader skip Section 3 at first and continue with
Section 4, where we immediately apply Dwork’s p-adic theory to determine the
Fredholm polygon. In Section 5 we prove that in some Zariski dense open subset
the Fredholm polygon and Newton polygon coincide if p is large enough. We
prove Theorem 5.1 there. Finally in Section 6 we study the families f (x) = xd +ax
and prove Theorem 6.2 there.

Acknowledgments. It is my great pleasure to thank Alan Adolphson and
Steven Sperber who exposed me to Dwork theory during the Dwork trimester
in Italy (2001). I thank Hanfeng Li, Daqing Wan, and the referees for careful
reading and very helpful comments on earlier versions. Most of all I thank Bjorn
Poonen for generously sharing ideas and answering questions.



672 HUI JUNE ZHU

2. Dwork p-adic theory. The fundamental material in our exposition fol-
lows [3, Sections II and III] (see also [5] [4] and [1]). Recall that p is a prime num-
ber coprime to d. Let f (x) = xd +

∑d−1
i=1 aixi ∈ Fp[x]. Let f (x) = xd +

∑d−1
i=1 aixi ∈

(Zp ∩ Q)[x] and ad = 1 such that reduction of f (x) at p is equal to f (x). For
any a0 ∈ Zp

⋂
Q, by a simple computation with (1), one easily concludes that

L(( f + a0) ⊗ Fp; T) = L( f ⊗ Fp; ζa0
p T). Thus we have

NP (( f + a0) ⊗ Fp) = NP ( f ⊗ Fp).(4)

Write �̂a = (â1, . . . , âd−1) where âi is the Teichmüller lifting of ai, that is,
âi ≡ ai mod p and âp

i = âi. Let �a := (a1, . . . , ad−1) ∈ (Zp ∩ Q)d−1. Let θ(x) =
E(γx), where E(·) and γ are as defined in Section 1. Then we may write θ(x) =∑∞

m=0 λmxm for λm ∈ Zp[ζp]. Note the following properties,

ordp λm ≥ m
p − 1

;(5)

for 0 ≤ m ≤ p − 1 we have,

λm =
γm

m!
and ordp λm =

m
p − 1

.(6)

Let �A = (A1, . . . , Ad−1) be a vector of variables and �m = (m1, . . . , md−1). Write
�A�m for the monomial Am1

1 · · ·A
md−1
d−1 . Let Gn(�A) = 0 for n < 0. For every integer

n ≥ 0 let

Gn(�A) :=
∑
m�≥0∑d
�=1

�m�=n

λm1 · · ·λmd
�A�m.(7)

Clearly we observe that Gn(�A) ∈ Zp[ζp][�A], that is, Gn(�A) is a polynomial in
variable �A and with coefficients in Zp[ζp]. For all integers m1, . . . , md ≥ 0 such
that

∑d
�=1 �m� = n, we have d(m1 + · · · + md) ≥ ∑d

�=1 �m� = n and so min (m1 +
· · · + md) =

⌈ n
d

⌉
. Therefore by (7) we have

ordp Gn(�A) ≥ min (m1 + · · · + md)
p − 1

≥
⌈ n

d

⌉
p − 1

≥ n
d(p − 1)

.(8)

Let G(X) :=
∏d

i=1 θ(âiXi) ∈ Zp[ζp][[X]]. We have

G(X) =


 ∞∑

m1=0

λm1 âm1
1 Xm1


 · · ·


 ∞∑

md=0

λmd âmd
d Xdmd


 =

∞∑
n=0

Gn(�̂a)Xn.
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Let C0(�A) = 1, and for every n ≥ 1 let

Cn(�A) :=
∑

1≤u1<u2<···<un

∑
σ∈Sn

sgn (σ)
n∏

i=1

Gpui−uσ(i) (�A),(9)

where sgn (σ) is the signature of the permutation σ in the nth symmetric group Sn.
It can be verified that this definition makes sense and that Cn(�A) ∈ Zp[ζp][[�A]].

LEMMA 2.1. Let p be a prime coprime to d. For f (x) = xd +
∑d−1

i=1 aixi ∈
(Zp ∩ Q)[x], write �a = (a1, . . . , ad−1). Let �̂a = (â1, . . . , âd−1) be Teichmüller lifting
of �a = (a1, . . . , ad−1). Then

L( f ⊗ Fp; T) = 1 + b1(�a)T + · · · + bd−1(�a)Td−1(10)

=
1 +

∑∞
n=1 ( − 1)nCn(�̂a)Tn

(1 − pT)(1 +
∑∞

n=1 ( − 1)nCn(�̂a)pnTn)
,

where b1(�a), . . . , bd−1(�a) ∈ Z[ζp].

Proof. The first equality is a rephrasing of (2). For every positive integer �
let

S∗� ( f ⊗ Fp) :=
∑

x∈F∗
p�

ζ
TrFp�/Fp

( f (x)⊗Fp)

p .

Let

L∗( f ⊗ Fp; T) := exp

( ∞∑
�=1

S∗� ( f ⊗ Fp)
T�

�

)
.

Note that S∗� ( f ⊗ Fp) = S�( f ⊗ Fp) − 1 so

L∗( f ⊗ Fp; T) = exp

( ∞∑
�=1

(S�( f ⊗ Fp) − 1)

)
(11)

= (1 − T) exp

( ∞∑
�=1

S�( f ⊗ Fp)
T�

�

)

= (1 − T)L( f ⊗ Fp; T).

For any c > 0 and b ∈ R let L(c, b) be the set of power series defined by

L(c, b) :=

{ ∞∑
n=0

AnXn | An ∈ Qp(ζp), ordp An ≥ cn
d

+ b

}
.
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Let L(c) :=
⋃

b∈R L(c, b). From (8) we have G(X) =
∑∞

n=0 Gn(�̂a)Xn lie in L(1/(p−
1)). For any

∑
BnXn in L(c), let ψ be the Hecke operator from L(c) to L(cp)

given by ψ(
∑

BnXn) =
∑

BpnXn. Let α1 := ψ · G(X) be the endomorphism of
L(p/(p− 1)) defined by the composition of the multiplication map by G(X) then
ψ, namely,

α1

( ∞∑
i=0

BiX
i

)
=

∞∑
i=0


 ∞∑

j=0

Gpi−j(�̂a)Bj


Xi.

Choose the standard monomial basis {1, x, x2, . . .} for the p-adic space L(p/(p−
1)). Then the Qp(ζp)-endomorphism α1 of L(p/(p− 1)) has a matrix representa-
tion by {Gpi−j(�̂a)}i,j≥0. We denote this matrix by F1. By the Dwork trace formula
(see [3, Section III]) we have

L∗( f ⊗ Fp; T) =
det (1 − F1T)

det (1 − F1pT)
.

For the first row (i.e., i = 0) of F1, we have Gpi−j(�̂a) = 0 for all j ≥ 1 and
G0(�̂a) = 1. By (9) we have

det (1 − F1T) = (1 − T) det (1 − {Gpi−j(�̂a)T}i,j≥1) = (1 − T)
∞∑

n=0

( − 1)nCn(�̂a)Tn.

Therefore, by (11) we have

(1 − T)L( f ⊗ Fp; T) = L∗( f ⊗ Fp; T) =
(1 − T)

∑∞
n=0 ( − 1)nCn(�̂a)Tn

(1 − pT)
∑∞

n=0 ( − 1)nCn(�̂a)pnTn
.

By simplification of the above formula, our assertion follows.

PROPOSITION 2.2. Let the Fredholm polygon of f ⊗Fp, denoted by FP ( f ⊗Fp),
be the lower convex hull of points (n, ordp Cn(�̂a)) in R2 for 0 ≤ n ≤ d − 1. Then

NP ( f ⊗ Fp) = FP ( f ⊗ Fp).

Proof. By (10) we have

L( f ⊗ Fp; T)(1 − pT)(1 − C1pT + C2p2T2 − · · ·) = 1 − C1T + C2T2 − · · · .

The (p-adic) Newton polygon of 1 − C1T + C2T2 − · · · has only positive slopes
(see [3, III]), so the Newton polygon of 1−C1pT + C2p2T2 −· · · has every slope
> 1. On the other hand, the Newton polygon of L( f ⊗ Fp; T) is symmetric in
the sense that for every slope segment α there is a slope segment 1 − α of the
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same horizontal length. This property is derived from the same fact for New-
ton polygons of Zeta functions of abelian varieties and hence of Artin-Schreier
curves (see, for example, [11, Introduction]). Thus the slopes of NP ( f ⊗ Fp)
are positive and < 1. Note that the power series 1 − C1T + C2T2 − · · · is en-
tire (see [9, page 121] for a proof), so are the three factors on the left-hand
side. By the p-adic Weierstrass preparation theorem (see [9, IV.4 Theorem 14]),
NP ( f ⊗Fp) coincides with the p-adic Newton polygon of 1−C1T + · · ·+(−1)d−1

Cd−1Td−1.

We remark that it is not generally true that L( f ⊗Fp; T) = 1−C1(�̂a)T + · · · +
( − 1)d−1Cd−1(�̂a)Td−1.

3. Generic polynomials and Zariski dense subsets. The following no-
tations and conventions are adopted for the remainder of this section. Given
a polynomial as a sum (or several sums) of polynomials, its formal expansion
means the formal summation of its monomials (so one does not do “arithmetic,”
e.g, cancellations, among its terms). For any �m = (m1, . . . , md−1) ∈ Zd−1

≥0 let

|�m| =
∑d−1

�=1 m� and �m! = m1! · · ·md−1!. Fix an integer r with 1 ≤ r ≤ d − 1 and
gcd (d, r) = 1. Let 1 ≤ n ≤ d − 1.

3.1. The residue matrix rn Let 1 ≤ i, j ≤ d − 1. Let rij be the least

nonnegative residue of −(ri − j) mod d. That is, rij := d
⌈

ri−j
d

⌉
− (ri − j). Let r′ij

be the least nonnegative residue of ri − j mod d.

LEMMA 3.1. Let rn be the matrix rn := {rij}1≤i,j≤n. Then 0 ≤ rij ≤ d − 1
and there are no two identical entries in any row (column). In rd−1 for every
1 ≤ i ≤ d − 1 one has rij = 0 if and only if j = r′i1 + 1.

Proof. By definition, rij is the least nonnegative residue of −(ri− j) mod d so
we have 0 ≤ rij ≤ d−1. We prove for rows. The argument for columns is almost
identical. Suppose we have rij = rij′ then ri− j ≡ ri− j′ mod d by definition. Then
j ≡ j′ mod d. Since 1 ≤ j, j′ ≤ n ≤ d − 1 we have j = j′. So there are no identical
entries in any row of rn. Note that r is coprime to d so for every 1 ≤ i ≤ d − 1
there is a unique 1 ≤ j ≤ d−1 (more precisely j = r′i1 +1) such that ri ≡ j mod d.
This is equivalent to rij = 0 by definition. This proves the last assertion.

Let Ad be an auxiliary variable. Define a homogeneous auxiliary polynomial
Ḋn := det ({Ad−rij}1≤i,j≤n) of degree n in Q[A1, . . . , Ad]. Note that

Ḋn =
∑
σ∈Sn

sgn (σ)
n∏

i=1

Ad−ri,σ(i) =
∑
σ∈Sn

sgn (σ)
d−1∏
k=0

A
#{1≤i≤n|ri,σ(i)=k}
d−k .(12)

LEMMA 3.2. There is a unique highest-lexicographic-order-monomial in the
formal expansion of Ḋn in Q[A1, . . . , Ad].



676 HUI JUNE ZHU

Proof. It is a combinatorial problem and we shall give an intuitive proof. We
shall do so by verifying the correctness of the following algorithm which can
really be used to obtain the desired highest-lexicographic-order-monomial.

Fix a residue matrix rn. Let σ be a permutation in Sn awaiting to be defined.
For every entry in rn with ri0,j0 = 0, assign σ(i0) := j0 and cross off the i0-row and
the j0-column; Let �0 be the number of all such entries. For every leftover entry
in rn with ri1,j1 = 1, assign σ(i1) := j1 and cross off the i1-row and the j1-column;
Let �1 be the number of all such entries. Continue this process until all entries
are crossed off.

It is straightforward to verify that this algorithm uniquely defines a permu-
tation σ by the first statement in Lemma 3.1. Moreover, σ yields the highest-
lexicographic-order-monomial. Indeed, from (12) one notes that �0 is the highest-
Ad-exponent in the formal expansion of Ḋn; and �1 is the highest-Ad−1-exponent
in a monomial containing A�0

d ; and so on. Thus σ yields the (unique) highest-

lexicographic-order-monomial A�0
d A�1

d−1 · · ·A
�d−1
1 in the formal expansion of Ḋn.

LEMMA 3.3. Let M be the (unique) highest-lexicographic-order-monomial of
formal expansion of Ḋn derived in Lemma 3.2. Then M|Ad=1 is the (unique) highest-
lexicographic-order-monomial of lowest degree in the formal expansion of Ḋn|Ad=1.

Proof. It is clear that the evaluation map Ḋn → Ḋn|Ad=1 (on the formal expan-
sions) yields a bijective map sending the set of highest-Ad-exponents monomials
in the formal expansion of Ḋn to the set of lowest-degree-monomials in the formal
expansion of Ḋn|Ad=1. Applying the same argument for the rest of the variables
inductively, we conclude our assertion immediately.

3.2. The nth generic polynomial f tn
n For any 0 ≤ s ≤ n one obtains a

nonempty subset in Zd−1
≥0

Ms
ij :=

{
�m = (m1, m2, . . . , md−1) ∈ Zd−1

≥0 |
d−1∑
�=1

�md−� = rij + ds

}
.

Recall �A := (A1, . . . , Ad−1), and �A�m := Am1
1 · · ·A

md−1
d−1 . For 1 ≤ i, j ≤ d − 1 let

δij :=

{
0 for j < r′i1 + 1

1 for j ≥ r′i1 + 1.
(13)

For 0 ≤ s ≤ n and 1 ≤ i, j ≤ n define an auxiliary polynomial

Hs
ij(�A) :=

∑
�m∈Ms

ij

hs
�m,i,j

�A�m(14)
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where

hs
�m,i,j :=

( ri1−1
d + n)( ri1−1

d + n − 1) · · · ( ri1−1
d − δij + s + 1 − |�m|)

�m!
.

LEMMA 3.4. Let 0 ≤ s ≤ n and 1 ≤ i, j ≤ n.
(a) The polynomial Hs

ij(�A) in Q[�A] is nonzero and is supported on every �m ∈
Ms

ij. The degree of its monomials ranges from s +
⌈

rij+s
d−1

⌉
up to rij + ds, where the

maximal degree is attained at exactly one monomial A
rij+ds
d−1 while the minimal degree

is attained at one or more monomials.
(b) The polynomial Hs

ij(�A) has a constant term if and only if s = rij = 0; it has
a linear term if and only if s = 0 and rij �= 0, in which case this linear monomial is
exactly Ad−rij .

Proof. (a) Since gcd (r, d) = 1 we have −(ir−1) �≡ 1 mod d. Hence ri1−1
d /∈ Z

and hs
�m,i,j �= 0. Now it remains to show

max
�m∈Ms

ij

|�m| = rij + ds, min
�m∈Ms

ij

|�m| = s +
⌈

rij + s
d − 1

⌉
.

For �m ∈ Ms
ij we have |�m| ≤ ∑d−1

�=1 �md−� = rij + ds and the equality holds
precisely for m1 = · · · = md−2 = 0 and md−1 = rij + ds. For �m ∈ Ms

ij one has

clearly (d − 1)|�m| ≥ ∑d−1
�=1 �md−� = rij + ds. So

|�m| ≥
⌈

rij + ds
d − 1

⌉
= s +

⌈
rij + s
d − 1

⌉
.

It is easy to see that there are m1, . . . , md−1 ≥ 0 satisfying

d−1∑
�=1

m� =
⌈

rij + ds
d − 1

⌉
and

d−1∑
�=1

(d − �)m� = rij + ds.(15)

For example, let κ be the least nonnegative residue of −(rij + ds) mod (d − 1)

then let m1 =
⌈

rij+ds
d−1

⌉
−κ, m2 = κ and let the rest m� = 0. This says that there are

�m ∈ Ms
ij with |�m| =

⌈
rij+ds
d−1

⌉
.

(b) Suppose Hs
ij(�A) has a linear term, then by part (a) we have s +

⌈
rij+s
d−1

⌉
= 1,

which implies s = 0 and rij �= 0. In this case the only solution to (15) is md−rij = 1
and m� = 0 for all � �= rij. So the linear monomial is Ad−rij . In the same vein we
obtain the assertion about the constant term.
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For 1 ≤ n ≤ d − 1 and 0 ≤ t ≤ cn, let

cn :=
1
d

(
max
σ∈Sn

n∑
i=1

ri,σ(i) − min
σ∈Sn

n∑
i=1

ri,σ(i)

)
;(16)

St
n :=

{
σ ∈ Sn |

n∑
i=1

ri,σ(i) = min
σ∈Sn

n∑
i=1

ri,σ(i) + dt

}
;(17)

f t
n(�A) :=

∑
s0+s1+···+sn=t

s0,...,sn≥0

∑
σ∈S

s0
n

sgn (σ)
n∏

i=1

Hsi
i,σ(i)(�A).(18)

Note that cn ≤ n. The polynomial f t
n(�A) ∈ Q[�A] will play a central role in this

paper.

LEMMA 3.5. (Key-Lemma) Let 1 ≤ n ≤ d − 1. Then there exists t with 0 ≤
t ≤ cn such that the polynomial f t

n(�A) �= 0. Let tn be the least such t. Let Vn be the
complement in Ad−1 of the variety defined by f tn

n = 0. Then Vn is a Zariski dense
open subset defined over Q of Ad−1.

Proof. It suffices to prove the first assertion. We first show that among
the lowest-degree-terms in the formal expansion of

∑cn
t=0 f t

n there is a unique
highest-lexicographic-order-monomial. This suffices because the polynomial f t

n
(for some t) whose formal expansion contains this unique monomial has to be
nonzero.

Partition the summands of the formal expansion of
∑cn

t=0 f t
n into two parts:

cn∑
t=0

f t
n =

cn∑
t=0

∑′ ∑
σ∈S

s0
n

sgn (σ)
n∏

i=1

Hsi
i,σ(i)(�A) +

cn∑
t=0

∑′′ ∑
σ∈S

s0
n

sgn (σ)
n∏

i=1

Hsi
i,σ(i)(�A)

where
∑′ ranges over the set of all s0, . . . , sn ≥ 0 with s1 = · · · = sn = 0 and

s0 = t while
∑′′ ranges over the set of all s0, . . . , sn ≥ 0 with s0 + · · · + sn = t

and s� ≥ 1 for some � = 1, . . . , n. Denote them by H′(�A) and H′′(�A), respectively.
Note that Sn =

⋃cn
t=0 St

n, by which we find

H′ =
∑
σ∈Sn

sgn (σ)
n∏

i=1

H0
i,σ(i)(�A).

Let µ, µ′ and µ′′ denote the lowest degrees in the formal expansions of
∑cn

t=0 f t
n,

H′ and H′′, respectively. By Lemma 3.4(a), we have µ′′ =
∑n

i=1

(
si +

⌈
ri,σ′(i)+si

d−1

⌉)
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for some σ′ ∈ Sn. By the definition of H′′ we have si ≥ 1 for some 1 ≤ i ≤ n.
Thus

∑n
i=1

⌈
ri,σ′(i)
d−1

⌉
< µ′′. On the other hand, we have

µ ≤ µ′ = min
σ∈Sn

n∑
i=1

⌈
ri,σ(i)

d − 1

⌉
≤

n∑
i=1

⌈
ri,σ′(i)

d − 1

⌉
.

Combining these above, we have µ ≤ µ′ < µ′′. Hence µ = µ′ < µ′′ and it follows
that all degree-µ monomials in the formal expansion of

∑cn
t=0 f t

n lie in the formal
expansion of H′.

Recall from Lemma 3.4(b) that for every i the lowest-degree-monomial of
H0

i,σ(i) is 1 or Ad−ri,σ(i) depending on ri,σ(i) = 0 or not, respectively. Then the set of
degree-µ monomials of the formal expansion of H′ is equal to the set of degree-µ
monomials in Ḋn|Ad=1 by a perusal of the definition of Ḋn in (12). This finishes
the proof by Lemma 3.3.

4. Fredholm polygons. Let notations be as in previous sections. This sec-
tion will study the shape of Fredholm polygons of f ∈ Ad−1. We do this by
considering the p-adic valuation of the content of Gpi−j(�A) ∈ Zp[ζp][�A] and that
of the Cn(�A) ∈ Zp[ζp][[�A]]. We shall consider Gpi−j(�A) as formal expressions in
Zp[�A][γ].

Throughout this section we adopt the following convention. Fix an integer r
with 1 ≤ r ≤ d − 1 and gcd (r, d) = 1. Let p be a prime that p ≡ r mod d. Let
�a = (a1, . . . , ad−1) ∈ (Q ∩ Zp)d−1. Let n be an integer with 1 ≤ n ≤ d − 1. For
any rational number R let γ>R denote the terms in Qp(ζp)[[�A]] whose coefficients
have p-adic valuation > R/(p−1). We also use it to denote algebraic numbers in
Qp(ζp) with p-adic valuation > R/(p−1) and this should not cause any confusion.
We define γ≥R analogously. Let

Mn := min
σ∈Sn

n∑
i=1

⌈
pi − σ(i)

d

⌉
.

LEMMA 4.1. For any s ≥ 0 we have

cn = max
σ∈Sn

n∑
i=1

⌈
pi − σ(i)

d

⌉
− Mn ≤ n;(19)

Mn =
n(n + 1)(p − 1)

2d
+

1
d

min
σ∈Sn

n∑
i=1

ri,σ(i);(20)

Ss
n =

{
σ ∈ Sn |

n∑
i=1

⌈
pi − σ(i)

d

⌉
= Mn + s

}
.(21)
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Proof. Suppose σ1,σ2 ∈ Sn are minimizer and maximizer of
∑n

i=1

⌈
pi−σ(i)

d

⌉
,

respectively. Note that
⌈

Ppi−j
d

⌉
=

pi−j+rij
d thus

max
σ∈Sn

n∑
i=1

⌈
pi − σ(i)

d

⌉
− Mn =

1
d

(
max
σ∈Sn

n∑
i=1

ri,σ(i) − min
σ∈Sn

n∑
i=1

ri,σ(i)

)
= cn.

For any i, since 1 ≤ σ(i) ≤ d − 1, we have

⌈
pi − σ2(i)

d

⌉
≤
⌈

pi − σ1(i)
d

⌉
+ 1.

Taking sum both sides and get

max
σ∈Sn

n∑
i=1

⌈
pi − σ(i)

d

⌉
≤ Mn + n.

This proves (19). Since

n∑
i=1

⌈
pi − σ(i)

d

⌉
=

n(n + 1)(p − 1)
2d

+
1
d

n∑
i=1

ri,σ(i),

we see that (20) and (21) follows.

For 0 ≤ s, t ≤ cn, and i, j ≥ 1 let

Ks
ij(�A) :=

∑
�m∈Ms

ij

�A�m

�m!
(⌈

pi−j
d

⌉
+ s − |�m|

)
!
.(22)

f t
n,p(�A) :=

∑
s0+···+sn=t
s0,...,sn≥0

∑
σ∈S

s0
n

sgn (σ)
n∏

i=1

Ksi
i,σ(i)(�A).(23)

For p ≥ d2, one notes that Hs
ij(�A), Ks

ij(�A) ∈ Zp[�A], hence f t
n(�A), f t

n,p(�A) ∈
Zp[�A]. But f t

n(�A) evaluates at �A = �a while f t
n,p(�A) at �A = �̂a.

LEMMA 4.2. Let p ≥ (d2 + 1)(d − 1). Then f t
n(�A) ≡ unf t

n,p(�A) mod p for some
p-adic unit un, where the reduction is taken at coefficients. Moreover, f t

n(�a) ≡
unf t

n,p(�̂a) mod p.

Proof. Since p ≥ d2 − 1 we always have 1 ≤
⌈

pi−1
d

⌉
+ n ≤ p − 1. Then

un :=
n∏

i=1

(⌈
pi − 1

d

⌉
+ n

)
!

is a p-adic unit in Zp.
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Recall δij defined in (13). It is an elementary exercise to get

⌈
pi − 1

d

⌉
=

pi + ri1 − 1
d

≡ ri1 − 1
d

mod p

⌈
pi − j

d

⌉
=
⌈

pi − 1
d

⌉
− δij ≡

ri1 − 1
d

− δij mod p.

Then we have

Hs
ij(�A) ≡

∑
�m∈Ms

ij

(⌈
pi−1

d

⌉
+ n

) (⌈
pi−1

d

⌉
+ n − 1

)
· · ·

(⌈
pi−j

d

⌉
+ s + 1 − |�m|

)
�m!

�A�m

≡
∑

�m∈Ms
ij

(⌈
pi−1

d

⌉
+ n

)
!

�m!
(⌈

pi−j
d

⌉
+ s − |�m|

)
!
�A�m

≡
(⌈

pi − 1
d

⌉
+ n

)
! Ks

ij(�A) mod p.

Our first assertion follows easily. The second assertion follows from the fact that
�a ≡ �̂a mod p.

PROPOSITION 4.3. Let p ≥ (d2 + 1)(d − 1). For any 1 ≤ i, j ≤ n we have

Gpi−j(�A) =
cn∑

s=0

γ
⌈ pi−j

d

⌉
+sKs

ij(�A) + γ>
⌈ pi−j

d

⌉
+cn .(24)

det{Gpi−j(�A)}1≤i,j≤n =
cn∑
t=0

γMn+tf t
n,p(�A) + γ>Mn+cn .(25)

Proof. For 0 ≤ s ≤ cn, m� ≥ 0 and m1 +· · ·+md =
⌈

pi−j
d

⌉
+s, since p ≥ d2−1,

we have m� ≤
⌈

pi−j
d

⌉
+ cn ≤ p − 1. And by (6) and (7), we have

Gpi−j(�A) =
∑

m1+···+md≤
⌈ pi−j

d

⌉
+cn∑d

�=1
�m�=pi−j

λm1 · · ·λmd
�A�m + γ>

⌈ pi−j
d

⌉
+cn

=
cn∑

s=0

∑ γm1+···+md�A�m

m1! · · ·md!
+ γ>

⌈ pi−j
d

⌉
+cn ,

where the last sum ranges over all m� ≥ 0 such that m1 + · · · + md =
⌈

pi−j
d

⌉
+ s

and
∑d

�=1 �m� = pi − j. It is easy to see that this is a subset of Ms
ij. Conversely,
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if �m ∈ Ms
ij then

d−1∑
�=1

m� ≤
d−1∑
�=1

�md−� = rij + ds ≤ d − 1 + ds ≤
⌈

pi − j
d

⌉
+ s,

since p ≥ (d2 + 1)(d − 1). Set md =
⌈

pi−j
d

⌉
+ s −∑d−1

�=1 m�, then m1 + · · · + md =⌈
pi−j

d

⌉
+ s and

∑d
�=1 �m� = pi − j where m� ≥ 0. Thus we have

Gpi−j(�A) =
cn∑

s=0

γ
⌈ pi−j

d

⌉
+s

∑
�m∈Ms

ij

�A�m

�m!
(⌈

pi−j
d

⌉
+ s − |�m|

)
!

+ γ>
⌈ pi−j

d

⌉
+cn .

To prove (25) we have

det{Gpi−j(�A)}1≤i,j≤n =
∑
σ∈Sn

sgn (σ)
n∏

i=1

Gpi−σ(i)(�A)

=
∑
σ∈Sn

sgn (σ)
n∏

i=1

cn∑
si=0

(
γ
⌈ pi−σ(i)

d

⌉
+siKsi

i,σ(i)(�A)+γ>
⌈ pi−σ(i)

d

⌉
+cn

)

=
cn∑

s0=0

∑
σ∈S

s0
n

sgn (σ)
cn−s0∑
�=0

γMn+s0+�

×
∑

s1+···+sn=�

n∏
i=1

Ksi
i,σ(i)(�A) + γ>Mn+cn

=
cn∑
t=0

γMn+t


 ∑

s0+···+sn=t

∑
σ∈S

s0
n

sgn (σ)
n∏

i=1

Ksi
i,σ(i)(�A)


+γ>Mn+cn ,

where the second equality follows from (24) and the third from Lemma 4.1.

LEMMA 4.4. Let p ≥ (d2 + 1)(d − 1). Then ordp Cn(�̂a) ≥ Mn+tn
p−1 for all �a ∈

(Zp ∩ Q)d−1, and the equality holds if and only if �a ∈ Vn(Fp).

Proof. First we show that

Cn(�A) =
cn∑
t=0

γMn+tf t
n,p(�A) + γ>Mn+cn .(26)

By (9) and (25) it suffices to show that if there is a t with ut > n then

min
σ∈Sn

ordp

n∏
t=1

Gput−uσ(t) (�A) >
Mn + cn

p − 1
.(27)
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Since
∑n

t=1 ut >
∑n

i=1 i, we have

1
p − 1

n∑
t=1

⌈
put − uσ(t)

d

⌉
≥ 1

p − 1

n∑
t=1

put − uσ(t)

d
(28)

=
1
d

n∑
t=1

ut

≥ 1
d

n∑
i=1

i +
1
d

=
1

p − 1

n∑
i=1

pi − δ(i)
d

+
1
d

for any δ ∈ Sn. For p ≥ (d2 + 1)(d − 1) > d2 − d + 1 we have

1
p − 1

n∑
i=1

⌈
pi − δ(i)

d

⌉
≤ 1

p − 1

n∑
i=1

pi − δ(i)
d

+
n

p − 1
(29)

≤ 1
p − 1

n∑
i=1

pi − δ(i)
d

+
d − 1
p − 1

<
1

p − 1

n∑
i=1

pi − δ(i)
d

+
1
d

for any δ ∈ Sn. Therefore,

min
σ∈Sn

ordp

n∏
t=1

Gput−uσ(t) (�A) ≥ 1
p − 1

min
σ∈Sn

n∑
t=1

⌈
put − uσ(t)

d

⌉

>
1

p − 1
max
δ∈Sn

n∑
i=1

⌈
pi − δ(i)

d

⌉
=

Mn + cn

p − 1
,

where the first inequality is due to (8), the second inequality by (28) and (29),
and the last by (19).

Let 0 ≤ t < tn. We have f t
n(�A) = 0 and hence by Lemma 4.2 we have

f t
n,p(�̂a) ≡ 0 mod p. So

ordp (γMn+tf t
n,p(�̂a)) ≥ Mn + t

p − 1
+ 1 >

Mn + cn

p − 1
.

Therefore, for all �a ∈ (Zp ∩ Q)d−1 by (26) we have

Cn(�̂a) = f tn
n,p(�̂a)γMn+tn + γ>Mn+tn .
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So

ordp Cn(�̂a) ≥ Mn + tn
p − 1

and the equality holds if and only if f tn
n,p(�̂a) ≡ f tn

n (�a) �≡ 0 mod p. This proves the
lemma.

5. Generic Newton polygons. Let the generic Newton polygon of Ad over
Fp be the lowest Newton polygon over all f ∈ Ad(Fp), that is,

GNP (Ad; Fp) := inf
f∈Ad(Fp)

NP (f ).

Note that it is equal to inff∈Ad(Zp∩Q) NP ( f ⊗ Fp) and one does not know a
priori whether this infimum exists. Note that Wan has shown that the generic
Newton polygon over Fp defined by GNP (Ad; Fp) := inff∈Ad(Fp) NP (f ) exists by
the Grothendieck specialization theorem (see [19, Section 1.1]). In the theorem
below we show that GNP (Ad; Fp) exists for p large enough. One may ask if it
is true that GNP (Ad; Fp) = GNP (Ad; Fp) for p large enough.

We shall proceed to prove Theorem 5.1 below by first introducing some
notations. Let ε0 = 0 and for 1 ≤ n ≤ d − 1 let

εn :=
minσ∈Sn

∑n
i=1 ri,σ(i) + dtn

d(p − 1)
,(30)

where rij and tn are defined in Section 3.1 and Lemma 3.5, respectively. One
observes easily

Mn + tn
p − 1

=
n(n + 1)

2d
+ εn.(31)

Note that 0 ≤ rij ≤ d − 1 for all 1 ≤ i, j ≤ d − 1, and tn ≤ cn ≤ n ≤ d − 1 by
(19), so we have εn ≤ n(2d−1)

d(p−1) . Thus εn goes to 0 as p approaches ∞.
For every integer r with 1 ≤ r ≤ d − 1 and gcd (r, d) = 1, let Wr :=⋂d−1

n=1 Vn (recall from Key-Lemma 3.5 that Vn consists of all f ∈ Ad−1 whose
coefficients �a satisfy f tn

n (�a) �= 0.) Let W :=
⋂

1≤r≤d−1
gcd (r,d)=1

Wr. Consider the nat-

ural projection map ι: Ad → Ad−1 by ι( f ) = �a = (a1, . . . , ad−1) for every
f = xd + ad−1xd−1 + · · · + a0 ∈ Ad. Let U := ι−1(W). For every residue class
r denote by f tn

n,r the f tn
n in Lemma 3.5, then U consists of all f ∈ Ad whose

coefficients satisfy
∏

r
∏d−1

n=1 f tn
n,r(�a) �= 0 where r ranges over all 1 ≤ r ≤ d − 1

coprime to d. Since
∏

r
∏d−1

n=1 f tn
n,r is a nonzero polynomial over Q by Lemma 3.5,

one concludes that U is Zariski dense open in Ad over Q. One notes that,
even though U(Fp) is not necessarily nonempty, it is nonempty when p is large
enough.
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THEOREM 5.1. Let notations be as above.
(a) For p large enough (depending only on d) GNP (Ad; Fp) exists and is equal

to the lower convex hull of points (n, n(n+1)
2d + εn) for 0 ≤ n ≤ d − 1, each of which

is a vertex.
(b) Fix f ∈ Ad(Q). For p large enough (depending only on d and f ) we have

NP ( f ⊗ Fp) ≥ GNP (Ad; Fp)

where the equality holds for all p large enough if and only if f ∈ U(Q). Here ≥
means “lies above”.

(c) For f ∈ U(Q) we have

lim
p→∞

NP ( f ⊗ Fp) = HP (Ad).

Proof. (a) Because of (4), we consider f (x) ∈ Ad(Zp ∩ Q) with no constant
term, that is, f (x) = xd +

∑d−1
i=1 aixi. By Lemma 4.4, for p large enough we have

ordp Cn(�̂a) ≥ n(n + 1)
2d

+ εn

for all 0 ≤ n ≤ d − 1 and the equality holds if and only if �a ∈ W(Fp). On the
other hand, by the remarks preceding the theorem, εn approaches 0. Thus for p
large enough the lower convex hull of points (n, n(n+1)

2d + εn) with 0 ≤ n ≤ d − 1
passes all these points as vertices. By Proposition 2.2, for p large enough,

ordp bn(�a) ≥ n(n + 1)
2d

+ εn(32)

and the equality holds if and only if �a ∈ W(Fp). Now (a) clearly follows.
(b) Now let f (x) = xd + ad−1xd−1 + · · ·+ a1x + a0 ∈ Ad(Q). Note that (32) says

for p large enough,

NP ( f ⊗ Fp) = NP ((xd + ad−1xd−1 + · · · + a1x) ⊗ Fp) ≥ GNP (Ad; Fp)

where the equality holds if and only if (a1, . . . , ad−1) ∈ W(Fp). Note that a
rational number N is nonzero if and only if N is not divisible by all primes
large enough. Thus for p large enough the above equality holds if and only if
(a1, . . . , ad−1) ∈ W(Q), that is, f ∈ U(Q). This proves (b). Note that (c) follows
from (a) and (b).

Remark 5.2. (1) Let d ≥ 3. Let generic polynomial Fd :=
∏

r
∏d−1

n=1 f tn
n,r where

r ranges over 1 ≤ r ≤ d − 1 coprime to d. From the theorem above, the set of
polynomials f (x) = xd + · · · + a1x + a0 ∈ Ad(Q) with NP ( f ⊗ Fp) = GNP (Ad)
corresponds precisely to the set of (a0, . . . , ad−1) ∈ Qd with Fd|�A=(a1,...,ad−1) �= 0.
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(2) In practice, for any d ≥ 3 one may compute the polynomial Pd :=∏
r
∏� d−1

2 �
n=1 f tn

n in Q[�A] where r ranges over all 2 ≤ r ≤ d − 1 with gcd (r, d) = 1.
(Remark: One notes that the r = 1 case is explained in remarks before Theo-
rem 1.1. One also notes that NP ( f ⊗ Fp) is symmetric in the sense that every
slope α segment comes with a slope 1−α segment with the same length.) Then
every f (x) = xd + ad−1xd−1 + · · · + a0 ∈ Ad(Q) with Pd|�A=(a1,...,ad−1) �= 0 satisfies

limp→∞ NP ( f ⊗ Fp) = HP (Ad).

6. Generic Newton polygon for xd + ax. Recall d ≥ 3. In this section we
consider the Newton polygon of the L function of exponential sums of f (x) =
xd + ax over Q. This family has drawn some attention recently (see [21] for some
progress). When a = 0 see Remark 1.4(b). Let Ad(1) denote the space of all
such f (x) with parameter a. Let GNP (Ad(1); Fp) be the corresponding analog of
GNP (Ad; Fp).

Let r be 1 ≤ r ≤ d − 1 coprime to d. Recall that r′ij is the least nonnegative

residue of ri−j mod d. That is, r′ij = ri−j−d
⌊

ri−j
d

⌋
. Let M′

n := minσ∈Sn

∑n
i=1 r′i,σ(i).

Let S′n be the subset of σ ∈ Sn with
∑n

i=1 r′i,σ(i) = M′
n. Let ε′0 := 0; for n ≥ 1 and

for p ≡ r mod d let

ε′n :=
(d − 1)M′

n

d(p − 1)
.

LEMMA 6.1. Let 1 ≤ n ≤ d − 1 and p ≡ r mod d. The following statements
are equivalent:

(1) σ ∈ S′n;
(2) σ(i) ≤ r′i1 + 1 for all 1 ≤ i ≤ n;
(3) r′i,σ(i) = r′i1 − σ(i) + 1 for all 1 ≤ i ≤ n;

(4)
⌊

pi−1
d

⌋
=
⌊

pi−σ(i)
d

⌋
for all 1 ≤ i ≤ n.

Proof. Define δ′ij := 0 if j ≤ r′i1 + 1 and δ′ij := 1 if j > r′i1 + 1. From Lemma 3.1
one notes that r′11 + 1, . . . , r′n1 + 1 are n distinct integers in the interval [1, d − 1].
So there exists σ ∈ Sn such that σ(i) ≤ r′i1 + 1 for every 1 ≤ i ≤ n, that is,
δ′i,σ(i) = 0 for every 1 ≤ i ≤ n. Thus minσ∈Sn

∑n
i=1 δ

′
i,σ(i) = 0 and it is achieved if

and only if (2) holds.
By recalling Lemma 3.1, it is straightforward to see that

r′ij = r′i1 − j + 1 + δ′ij(d − 1).

Thus for any σ ∈ Sn,

n∑
i=1

r′i,σ(i) =
n∑

i=1

(r′i1−σ(i)+1)+(d−1)
n∑

i=1

δ′i,σ(i) =
n∑

i=1

r′i1−
n(n − 1)

2
+(d−1)

n∑
i=1

δ′i,σ(i).
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One notes that (1) holds if and only if
∑n

i=1 r′i,σ(i) achieves its minimum, and if
and only if

∑n
i=1 δ

′
i,σ(i) = 0 by the previous paragraph. Thus (1), (2) and (3) are

equivalent to each other. Since r′ij = pi−j−d� pi−j
d �, it is easy to see (3) and (4) are

equivalent to each other. This proves the lemma.

By the lemma above, M′
n =

∑n
i=1 (r′i1 − σ(i) + 1). So one gets an explicit

formula

ε′n =
(d − 1)(

∑n
i=1 r′i1 − n(n−1)

2 )

d(p − 1)
.

Note that ε′n converges to 0 as p approaches ∞.

THEOREM 6.2. (a) For p large enough (depending only on d) GNP (Ad(1); Fp)
exists and is equal to the lower convex hull of points (n, n(n+1)

2d +ε′n) for 0 ≤ n ≤ d−1,
each of which is a vertex.

(b) Fix f = xd + ax ∈ Ad(Q). For p large enough (depending only on d and a)
we have

NP ( f ⊗ Fp) ≥ GNP (Ad(1); Fp),

where the equality holds for all p large enough if and only if a �= 0. Here ≥ means
“lies above.”

(c) For any a �= 0 we have

lim
p→∞

NP ((xd + ax) ⊗ Fp) = HP (Ad).

LEMMA 6.3. Let p ≡ r mod d. Let a ∈ Q ∩ Zp and let â be the Teichmüller
lifting of a mod p. Let p ≥ d. For any 1 ≤ i, j ≤ d − 1 we have

Gpi−j = γr′ij+
⌊ pi−j

d

⌋
âr′ij

1

r′ij!
⌊

pi−j
d

⌋
!

+ γ>r′ij+
⌊ pi−j

d

⌋
.

Proof. Note that Gpi−j =
∑
λm1λmd âm1 where the sum ranges in m1 + dmd =

pi − j with m1, md ≥ 0. But in this range of m1 and md, one notices that the
minimum of m1 + md is achieved precisely at m1 = r′ij and md = � pi−j

d �, that

is, min (m1 + md) = r′ij + � pi−j
d �. The rest of the proof is analogous to Proposi-

tion 4.3.

LEMMA 6.4. Let p ≡ r mod d and p ≥ (d − 1)3 + 2. Let 1 ≤ n ≤ d − 1. Then
we have

Cn = γ(p−1)( n(n+1)
2d +ε′n)âM′

n f ′n,p + γ>(p−1)( n(n+1)
2d +ε′n),
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where

f ′n,p :=
∑
σ∈S′n

sgn (σ)
n∏

i=1

1

r′i,σ(i)!
⌊

pi−σ(i)
d

⌋
!
.

Proof. The proof is analogous to Lemma 4.4, so we will only give an outline.
First one shows that for 1 ≤ n ≤ d − 1 one has

Cn =
∑
σ∈Sn

sgn (σ)
n∏

i=1

Gpi−σ(i) + γ≥(p−1)( n(n+1)
2d + 1

d ).(33)

Since r′ij = pi − j − d
⌊

pi−j
d

⌋
, we have

r′ij +
⌊

pi − j
d

⌋
=

pi − j
d

+
d − 1

d
r′ij.

Thus

min
σ∈Sn

n∑
i=1

(
r′i,σ(i) +

⌊
pi − σ(i)

d

⌋)
=

(p − 1)n(n + 1)
2d

+
(d − 1)M′

n

d

= (p − 1)
(

n(n + 1)
2d

+ ε′n

)
.

Consequently the minimum is achieved precisely at all σ ∈ S′n. Note that p ≥
(d − 1)3 + 2 implies that (p − 1)( n(n+1)

2d + 1
d ) > (p − 1)( n(n+1)

2d + ε′n). By (33) and
Lemma 6.3 we have

Cn = γ(p−1)( n(n+1)
2d +ε′n)âM′

n
∑
σ∈S′n

sgn (σ)
n∏

i=1

1

r′i,σ(i)!
⌊

pi−σ(i)
d

⌋
!

+ γ>(p−1)( n(n+1)
2d +ε′n).

The lemma follows.

LEMMA 6.5. Let notation and hypothesis be as in Lemma 6.4. Then

ordp Cn ≥ n(n + 1)
2d

+ ε′n

and the equality holds if and only if a �≡ 0 mod p.

Proof. Let

un :=
n∏

i=1

r′i1!
(⌊

pi − 1
d

⌋
!
)

.
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By Lemma 6.1, one sees that

unf ′n,p =
∑
σ∈S′n

sgn (σ)
n∏

i=1

r′i1!
r′i,σ(i)!

.

By Lemma 6.1, we have

unf ′n,p =
∑
σ∈S′n

sgn (σ)
n∏

i=1

(r′i1(r′i1 − 1) · · · (r′i1 − (σ(i) − 2))

=
∑
σ∈Sn

sgn (σ)
n∏

i=1

(r′i1(r′i1 − 1) · · · (r′i1 − (σ(i) − 2)),

where we set (r′i1(r′i1 − 1) · · · (r′i1 − (σ(i) − 2)) := 1 if σ(i) = 1. One observes that
this is equal to the determinant of a matrix M shown as below

M =




1 r′11 r′11(r′11 − 1) · · ·
1 r′21 r′21(r′21 − 1) · · ·

...

1 r′n1 r′n1(r′n1 − 1) · · ·




.

Under natural column transformation M becomes a Vandermonde matrix, we get

unf ′n,p = det M = det




1 r′11 (r′11)2 · · ·
1 r′21 (r′21)2 · · ·

...

1 r′n1 (r′n1)2 · · ·




=
∏

1≤i<k≤n

(r′k1 − r′i1).

As in Lemma 3.1, one notes that r′i1 �= r′k1 for any i < k. One also notes that un

is a p-adic unit. Therefore, f ′n,p �≡ 0 mod p for all p.

Proof of Theorem 6.2. Theorem 6.2 follows from Lemma 6.5, using the same
arguments as in the proof of Theorem 5.1.
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