Math 306 Section T
 Midterm Exam 1

February 19, 2015
name: Solution Key

Problem	Points	Maximum	Problem	Points	Maximum
1		6	4		10
2		8	5		8
3		8	6		10
Subtotal		22	Subtotal		28
			Total		50

Please read the problems carefully and indicate your solutions clearly!
No credit awarded for unclear answers or unclear work.

1. (6 points) Find the general solution to the differential equation :

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x}-2 y \\
& y^{\prime}+2 y=e^{x} \longleftarrow \text { LINEAR } \\
& P(x)=2 \quad \int P(x) d x=2 x+C \quad \rho(x)=e^{\int P(x) d x}=e^{2 x} \\
& \underbrace{e^{2 x} y^{\prime}+2 e^{2 x} y=e^{3 x}} \\
& \frac{d}{d x}\left(e^{2 x} y\right)=e^{3 x} \\
& e^{2 x} y+C=\int e^{3 x} d x \\
& e^{2 x} y=\frac{1}{3} e^{3 x}-C \\
& y=\frac{e^{x}}{3}-\frac{C}{e^{2 x}}
\end{aligned}
$$

2. (8 points) The temperature $y(t)$ of an object placed in a warm water bath at time t is modeled by the equation below, where $k>0$ is a constant.

$$
\frac{d y}{d t}=k(80-y)
$$

(a) Find the solution $y(t)$ in terms of the initial condition $y(0)=T_{0}$.
(b) Sketch the solution curve for $T_{0}=100$.

Tip: though not required, sketching a slope field may help with part (b).

$$
\begin{aligned}
& \text { Observe } y(x)=80 \text { is an equilibrium solution. } \\
& \int \frac{1}{80-y} d y=\int k d t \Longrightarrow-\ln |80-y|=k t+c \text { assumes } y \neq 80 \\
& \Rightarrow \ln |80-y|=-k t-c \\
& \Rightarrow|80-y|=e^{-k t} e^{-c} \\
& \begin{array}{l}
\Rightarrow 80-y=A e^{-k t} \quad A=\left\{\begin{array}{ccc}
e^{-c} & \varphi & 80>y \\
-e^{-c} & \varphi & 80<y \\
0 & \rho & y=80
\end{array}\right. \\
=A e^{0}=A
\end{array} \\
& y(0)=T_{0} \Rightarrow 80-T_{0}=A e^{0}=A \\
& \text { (a) } y=80-\left(80-T_{0}\right) e^{-k t}
\end{aligned}
$$

3. (8 points) Find all solutions to the differential equation:

$$
x y+y^{2}-x^{2} y^{\prime}=0 \quad(x>0)
$$

First observe that $y(x)=0$ is a solution. There are two ways to find the general sol' n.:

METHOD 1: $D \mathcal{E}$ is homogeneous

$$
\begin{aligned}
& \frac{y}{x}+\left(\frac{y}{x}\right)^{2}-y^{\prime}=0 \\
& v=\frac{y}{x} \quad y=v x \quad y^{\prime}=v+v^{\prime} x \\
& v+v^{2}-\left(v+v^{\prime} x\right)=0 \Longrightarrow \\
& v^{2}=v^{\prime} x=x \frac{d v}{d x} \Rightarrow \\
& -\frac{1}{v^{2}}=\ln (x)+C \\
& -\frac{1}{y}=\ln (x)+C \\
& \left.y=\frac{1}{x} d x \Rightarrow \ln c e x>0\right) \\
& o r y=0
\end{aligned}
$$

METHOD 2: DE is Bernoulli

$$
\begin{aligned}
& y^{\prime}-\frac{1}{x} y=\frac{1}{x^{2}} y^{2} \\
& v=y^{1-2}=\frac{1}{y} \quad y=\frac{1}{v} \quad y^{\prime}=-\frac{1}{v^{2}} v^{\prime} \\
& -\frac{1}{v^{2}} v^{\prime}-\frac{1}{x} \cdot \frac{1}{v}=\frac{1}{x^{2}} \cdot \frac{1}{v^{2}} \Longrightarrow \\
& v^{\prime}+\frac{1}{x} \cdot v=-\frac{1}{x^{2}} \\
& \rho=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=|x|=x \quad(\sin c e \quad x>0) \\
& x v^{\prime}+v=x\left(-\frac{1}{x^{2}}\right)=-\frac{1}{x} \\
& \frac{d}{d x}(x v)=-\frac{1}{x} \\
& x v+c=\int-\frac{1}{x} d x \\
& x v=-\ln |x|+c=-\ln (x)+c \\
& \quad x \\
& \quad x=-\ln (x)+c \Rightarrow y=\frac{-x}{\ln (x)+c} \\
& 0
\end{aligned}
$$

4. (10 points) Consider the initial value problem

$$
y^{\prime}=\sqrt{1-y^{2}} \quad y(0)=y_{0}
$$

(a) Suppose $y_{0}=0$. Find the corresponding solution $y(x)$ that is defined for all x.
(b) For which y_{0} does a solution exist?
(c) For which y_{0} does a unique solution exist?

Tip: sketching a slope field may help you answer correctly.
First observe that y^{\prime} is defined for $-1 \leq y \leq 1$ only.
Also notice $y(x)=-1 \& \quad y(x)=1$ are (equilibrium) solutions.
Assuming $y \neq \pm 1$, we may write:
$\int \frac{1}{\sqrt{1-y^{2}}} d y=\int 1 d x=x+c \Longrightarrow \arcsin (y)=x+c$ Recall arsine is defined for $-1 \leq y \leq 1$ \Leftarrow and has range $-\frac{\pi}{2} \leq \arcsin (y) \leq \frac{\pi}{2}$:
Therefore the solution

$$
y=\sin (x+c)
$$

is valid only on the interval

$$
-\frac{\pi}{2} \leq x+C \leq \frac{\pi}{2}
$$

The solution valid for all x is:

$$
y(x)= \begin{cases}-1 & x+c \leq-\frac{\pi}{2} \\ \sin (x+c) & -\frac{\pi}{2} \leq x+c \leq \frac{\pi}{2} \\ 1 & x+c \geq \frac{\pi}{2}\end{cases}
$$

Through $y(0)=0$, the solution is:
above, a sketch of $y(x)$ clefined in a. Notice slopes y^{\prime}
(a)

$$
y(x)= \begin{cases}-1 & x \leq-\frac{\pi}{2} \\ \sin (x) & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ 1 & x \geq \frac{\pi}{2}\end{cases}
$$ are never negative, another clue that $y=\sin (x+c)$ doe not work as a solution for all values of x.

(b) We found solutions for I.C. $y(0)=y_{0}$ where $-1 \leq y_{0} \leq 1$
(c) By theorem or observation, these are unique for $-1<y_{0}<1$
5. (8 points) Use the substitution $p=\frac{d y}{d x}$ to solve the differential equation:

$$
y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0
$$

There are multiple ways to solve this problem.
Let $p=\frac{d y}{d x}=y^{\prime}$. Then $y^{\prime \prime}=\frac{d}{d x} p=p^{\prime}$. It is also true $p^{\prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=\frac{d p}{d y} \cdot p$.
METHOD 1: $p^{\prime}+p^{2}=0 \Rightarrow \frac{d p}{d x}=-p^{2} \Rightarrow \int \frac{-1}{p^{2}} d p=\int d x=x+C \quad(\varphi \quad p \neq 0)$

$$
\begin{array}{ll}
\Rightarrow-\frac{1}{p}=x+c \Rightarrow p=\frac{-11}{x+c} \Rightarrow \frac{d y}{d x}=\frac{-1}{x+C} & \\
& \ln |x+c|+\ln \left(e^{B}\right) \\
\Rightarrow y=\int \frac{-1}{x+c} d x=-\ln |x+c|+B & \\
& \\
& \ln \mid e^{B} x+e^{B} C \\
&
\end{array}
$$

METHOD 2: $\frac{d p}{d y} \cdot p+p^{2}=0 \Rightarrow \frac{d p}{d y}=-p(\varphi p \neq 0) \Rightarrow \int \frac{1}{p} d p=\int-1 d y=-y+C$

$$
\Rightarrow \ln |p|=-y+c \Rightarrow|p|=e^{-y} e^{c} \Rightarrow p=A e^{-y} \quad \text { where } A= \pm e^{c} \neq 0
$$

Method La: $x=\int\left(\frac{d x}{d y}\right) d y=\int \frac{1}{p} d y$ since $p=\frac{d y}{d x}$

$$
=\int \frac{e^{y}}{A} d y=\frac{1}{A} e^{y}+B \Longrightarrow A x-A B=e^{y} \text { or } y=\ln (C x+D)
$$

Method 2b: $\frac{d y}{d x}=A e^{-y} \Rightarrow \int \frac{e^{y}}{A} d y=\int x d x=x+B \Rightarrow$

$$
\frac{1}{A} e^{y}=x+B \Longrightarrow A x+A B=e^{y} \text { or } y=\ln (C x+D)
$$

Any of the boxed answers is acceptable. In full generality, the solution is:
$y(x)=\ln (A x+B)$ where $A>0$, for $x>-B / A$,
$y(x)=\ln (A x+B)$ where $A<0$, for $x<-B / A$, or
$y(x)=C$ (note, the last solution is equivalent to

$$
\left.y=\ln (O x+B) \text { where } B=e^{c}\right)
$$

6. (10 points) Suppose P people live in an isolated community. Let $y(t)$ represent the number of these people infected at time t by a new virus. The rate of infection is modeled by

$$
\frac{d y}{d t}=y(P-y)
$$

(a) Find all equilibrium solutions and indicate whether they are stable, unstable, or semistable.
(b) Given the initial condition $y(0)=P / 4$, determine $y(t)$. This models the situation where 25% of people are infected at the start.
(c) According to this model, if $y(0)$ is positive, what is the limit of $y(t)$ as $t \rightarrow \infty$?

Tip: though not required, sketching a slope field may help with this problem.
$y(t)=0$ \& $y(t)=P$ are equilibrium solutions.

By checking the sign of $\frac{d y}{d t}$ for $y<P, \quad 0<y<P, \& y>P$ we see (a) $y=P$ is STABLE \& $y=0$ is UNSTABLE

$$
\Longrightarrow\left|\frac{y}{P-y}\right|=\frac{1}{3} e^{P t} \quad \begin{aligned}
& \text { For } y(0)=P / 4, \quad\left|\frac{y}{P-y}\right|=\frac{1}{3}>0 . \\
& \text { Because solutions are unique, sol, }
\end{aligned}
$$

Because solutions are unique, solution curve stays within $0<y<P$.
Thus $y>0 \& P-y>0$, so $\left|\frac{y}{P-y}\right|=\frac{y}{P-y}$.

$$
\frac{y}{P-y}=\frac{1}{3} e^{p t} \Rightarrow y=\frac{1}{3} e^{P t}(P-y) \Rightarrow y\left(1+\frac{e^{p t}}{3}\right)=\frac{p}{3} e^{P t} \Rightarrow y(t)=\frac{\frac{p}{3} e^{P t}}{1+e^{P t} / 3}=\frac{p}{3 e^{-P t}+1}
$$

(c) $\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} \frac{\frac{p}{3} e^{p t}}{\frac{1}{3} e^{p t}}=P$. (This can also be inferred from sketch of slope field/solin curve.)

$$
\begin{aligned}
& \int \frac{1}{y(P-y)} d y=\int 1 d t=t+C \\
& \frac{1}{y(P-y)}=\frac{A}{y}+\frac{B}{P-y} \quad \int \frac{\frac{1}{P}}{y}+\frac{\frac{1}{P}}{P-y} d y=t+C \\
& 1=A(P-y)+B y \\
& =A P+(B-A) y \\
& \Rightarrow A P=1 \Rightarrow A=1 / p \\
& \ln |y|-\ln |P-y|=P t+C_{2}
\end{aligned}
$$

