Math 306 Section T

"Practice" Midterm Exam 2

April 7, 2015
name: Solutions
NAME:
\qquad

This is a practice exam. For the real exam:

- Nothing on your desk except writing instruments and UB ID card.
- No electronics! I will keep track of time on the board.
- Like practice exam, the real exam has six questions, half of which involve qualitative analysis, curve sketching, and/or applications (note, you are not expected to memorize any specific mathematical models, just to be able to do the math in the context of a given model).
- Questions on the real exam are not guaranteed to be easier or harder than the practice exam; it's just for the sake of review and practice.
- Like the real exam, give yourself 80 minutes.

1. Consider the differential equation:

$$
y^{(3)}+2 y^{\prime \prime}+2 y^{\prime}=0
$$

(a) How many linearly independent solutions do you expect, and why?
(b) Find the general solution.
(a) Three, since this is a 3rd-order linear DE w/ continuous (constant) coefficients.
(b) Char. eq $=r^{3}+2 r^{2}+2 r=r\left(r^{2}+2 r+2\right)$
roots are $r=0$ \& $r=\frac{1}{2}(-2 \pm \sqrt{4-8})=-1 \pm i$
general solution is $y(t)=c_{1}+c_{2} e^{-t} \cos t+c_{3} e^{-t} \sin t$

CHECK: $\quad y=c_{1}+c_{2} e^{-t} \cos t+c_{3} e^{-t} \sin t=y$

$$
\left.\left.\left.\left.\begin{array}{rl}
y^{\prime} & =c_{3} e^{-t} \cos t-c_{3} e^{-t} \cos t \\
& =\left[\begin{array}{c}
\left(c_{2}-c_{2}\right) e^{-t} \cos t-c_{2} e^{-t} \sin t \\
y^{\prime \prime}
\end{array}\right. \\
=\left[\begin{array}{l}
-\left(c_{2}+c_{3}\right) \\
-\left(c_{3}-c_{2}\right)
\end{array}\right] e^{-t} \cos t-\left(c_{2}+c_{3}\right) e^{-t} \sin t \\
-c_{3}-c_{2}-c_{3}
\end{array}\right] e^{-t} \sin t\right]=y^{\prime}\right]=y^{\prime \prime}\right]
$$

$$
\begin{aligned}
& y^{(3)}+2 y^{\prime \prime}+2 y^{\prime}= \\
& \underbrace{\left[\begin{array}{r}
2 c_{2}+2 c_{3} \\
-2 c_{2}+2 c_{3} \\
\hline
\end{array}\right]}_{0} e^{-t} \cos t+\underbrace{\left[\begin{array}{r}
2 c_{3}-2 c_{2} \\
+4 c_{2} \\
-2 c_{3}-2 c_{2}
\end{array}\right]}_{0} e^{-t} \sin t=0
\end{aligned}
$$

2. Solve the initial value problem:

$$
\begin{gathered}
y^{(4)}-16 y=0 \\
y(0)=1
\end{gathered} \quad y^{\prime}(0)=4 \quad y^{\prime \prime}(0)=4 \quad y^{(3)}(0)=0
$$

Char eqn: $r^{4}-16=\left(r^{2}-4\right)\left(r^{2}+4\right)=(r-2)(r+2)(r-2 i)(r+2 i)$
Gen soln:

$$
\begin{aligned}
& y=c_{1} e^{2 t}+c_{2} e^{-2 t}+c_{3} \cos (2 t)+c_{4} \sin (2 t) \\
& y^{\prime}=2 c_{1} e^{2 t}-2 c_{2} e^{-2 t}+2 c_{4} \cos (2 t)-2 c_{3} \sin (2 t) \\
& y^{\prime \prime}=4 c_{1} e^{2 t}+4 c_{2} e^{-2 t}-4 c_{3} \cos (2 t)-4 c_{4} \sin (2 t) \\
& y^{(3)}=8 c_{1} e^{2 t}-8 c_{2} e^{-2 t}-8 c_{4} \cos (2 t)+8 c_{3} \sin (2 t)
\end{aligned}
$$

$$
\begin{aligned}
I C_{s}: y(0) & =c_{1}+c_{2}+c_{3}=1 \\
y^{\prime}(0) & =2 c_{1}-2 c_{2}+2 c_{4}=4 \\
y^{\prime \prime}(0) & =4 c_{1}+4 c_{2}-4 c_{3}=4 \\
y^{(3)}(0) & =8 c_{1}-8 c_{2}-8 c_{4}=0
\end{aligned}
$$

ANS:

$$
y(t)=e^{2 t}+\sin (2 t) \longrightarrow y(0)=1
$$

CHECK:

$$
\begin{aligned}
& y^{\prime}(t)=2 e^{2 t}+2 \cos (2 t) \\
& y^{\prime \prime}(t)=4 e^{2 t}-4 \sin (2 t)
\end{aligned}
$$

$$
y^{\prime}(0)=4
$$

$$
y^{\prime \prime}(0)=4
$$

$$
y^{(3)}(t)=8 e^{2 t}-8 \cos (2 t)>y^{\prime 2}(0)=4
$$

$$
\Rightarrow-16 c_{4}=-16 \Longrightarrow c_{4}=1
$$

$$
-C_{3}=0
$$

$$
-2 c_{2}-c_{3}+\stackrel{\tilde{c_{4}}}{c_{4}}=1 \Rightarrow c_{2}=0
$$

$$
c_{1}+c_{2}+c_{3}=1 \Rightarrow c_{1}=1
$$

3. Find the general solution to the differential equation:

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+y(t)=2 t \sin (t)
$$

Char eqn: $r^{2}+2 r+1=(r+1)^{2}$
Complementary soln: $y_{c}=\left(c_{1}+c_{2} t\right) e^{-t}$
Method of undetermined coifs:

$$
\begin{gathered}
y_{p}=A t \sin t+B t \cos t+C \sin t+D \cos t \\
y_{p}^{\prime}=-B t \sin t+A t \cos t+(A-D) \sin t+(B+C) \cos t \\
y_{p}^{\prime \prime}=-A t \sin t-B t \cos t+(-B-B-C) \sin t+(A+A-D) \cos t \\
y_{p}^{\prime \prime}+2 y^{\prime}+y=(\overbrace{A-2 B-A}^{2}) t \sin t+(\overbrace{B+2 A-B)}^{0} \cos t \\
+(\underbrace{C+2 A-2 D-2 B-C}_{0}) \sin t+(\underbrace{D+2 B+2 C+2 A-D}_{0}) \cos t \\
-2 B=2 \Rightarrow B=-1 \quad 2 A=0 \Rightarrow A=0 \\
0=2 A-2 D-2 B \Rightarrow D=-2 D+2 \Rightarrow D=1 \\
2(A+B+C)=0 \Rightarrow-1+C=0 \Rightarrow C=1 \\
y(t)=\left(C+C_{2} t\right) e^{-t}-t \cos t+\sin t+\cos t
\end{gathered}
$$

$$
\begin{aligned}
\text { CHECK: } y^{\prime} & =c_{2} e^{-t}-\left(c_{1}+c_{2} t\right) e^{-t}+t \sin t-\cos t+\cos t-\sin t \\
y^{\prime} & =\left[\left(c_{2}-c_{1}\right)-c_{2} t\right] e^{-t}+t \sin t-\sin t \\
y^{\prime \prime} & =\left[\begin{array}{l}
\left.\left[\begin{array}{l}
\left(c_{2}-\left(c_{2}-c_{1}\right)\right. \\
\left(c_{1}-2 c_{2}\right)
\end{array}\right)+c_{2} t\right] e^{-t}+t \cos t+\sin t-\cos t \\
y^{\prime \prime}+2 y^{\prime}+y
\end{array}\right]\left[\begin{array}{c}
c_{1}-2 c_{2} \\
-2 c_{y}+2 c_{2} \\
t+c_{1}
\end{array}\right] e^{-t}+\left[\begin{array}{l}
c_{2}+ \\
-2 c_{2} \\
+c_{2}
\end{array}\right] e^{-t}+2 t \sin t+\frac{t \cos t+\cos t}{-\cos t+\cos t}
\end{aligned}
$$

4. Find the general solution to the system of DEs:

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{rr}
9 & 4 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]} \\
\left|\begin{array}{cc}
9-\lambda & 4 \\
-1 & 5-\lambda
\end{array}\right|=45+\lambda^{2}-14 \lambda+4=\lambda^{2}-14 \lambda+49=(\lambda-7)^{2} \\
{\left[\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow 2 x+4 y=0 \quad \begin{array}{l}
\text { let } y=1 \\
\text { then } x=-2
\end{array}}
\end{gathered}
$$

defect $=1: \quad\left[\begin{array}{l}1 \\ 0\end{array}\right]$ not a multiple of $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
create length-2 chain: $U_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$\frac{\text { ANS : }}{\left[\begin{array}{l}x \\ y\end{array}\right]=c_{1}\left[\begin{array}{cc}2 \\ -1 & -2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ -1\end{array}\right]=e_{2}^{7 t}+c_{2}\left(\left[\begin{array}{c}2 \\ -1\end{array}\right] t+\left[\begin{array}{l}1 \\ 0\end{array}\right]\right) e^{7 t}}$

$$
\begin{aligned}
& \text { CHECK: }\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=c_{1}\left[\begin{array}{c}
14 \\
-7
\end{array}\right] e^{7 t}+c_{2}\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right] e^{7 t}+\left(\left[\begin{array}{c}
14 \\
-7
\end{array}\right] t+\left[\begin{array}{l}
7 \\
0
\end{array}\right]\right) e^{7 t}\right) \\
&=c_{1}\left[\begin{array}{c}
14 \\
-7
\end{array}\right] e^{7 t}+c_{2}\left(\left[\begin{array}{c}
14 \\
-7
\end{array}\right] t+\left[\begin{array}{c}
9 \\
-1
\end{array}\right]\right) e^{7 t} \\
& {\left[\begin{array}{cc}
9 & 4 \\
-1 & 5
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
14 \\
-7
\end{array}\right] \quad\left[\begin{array}{cc}
9 & 4 \\
-1 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
9 \\
-1
\end{array}\right] }
\end{aligned}
$$

5. Consider the system of DEs:

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{rr}
1 & 4 \\
12 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

(a) Find the general solution.
(b) Find the solution satisfying JCs $x(0)=1$ and $y(0)=5$.
(c) Sketch the phase portrait for this system.
(a) $\left|\begin{array}{cc}1-\lambda & 4 \\ 12 & -1-\lambda\end{array}\right|=(1-\lambda)(-1-\lambda)-48=\lambda^{2}-1-48=\lambda^{2}-49=(\lambda-7)(\lambda+7)$

$$
\begin{aligned}
& \lambda=7 \leftrightarrow\left[\begin{array}{cc}
-6 & 4 \\
12 & -8
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \begin{array}{c}
-6 x+4 y=0 \\
y=(6 / 4) x=\frac{3 x}{2}
\end{array} \quad \text { evec }\left[\begin{array}{c}
2 \\
z_{2}
\end{array}\right] \\
& \lambda=-7 \rightarrow\left[\begin{array}{cc}
8 & 4 \\
12 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { ever }\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right] e^{7 t}+c_{2}\left[\begin{array}{c}
1 \\
-2
\end{array}\right] e^{-7 t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
3
\end{array}\right] c_{1}+\left[\begin{array}{c}
1 \\
-2
\end{array}\right] c_{2}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-4-3}\left[\begin{array}{cc}
-2 & -1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
5
\end{array}\right]=\frac{-1}{7}\left[\begin{array}{c}
-7 \\
7
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] e^{7 t}-\left[\begin{array}{c}
1 \\
-2
\end{array}\right] e^{-7 t}}
\end{aligned}
$$

(c)

$$
\text { CHECK: } \begin{gathered}
\text { (b) }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
14 \\
21
\end{array}\right] e^{7 t}+\left[\begin{array}{c}
7 \\
-14
\end{array}\right] e^{-7 t} \\
{\left[\begin{array}{rr}
1 & 4 \\
12 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
14 \\
21
\end{array}\right]} \\
{\left[\begin{array}{rr}
1 & 4 \\
12 & -1
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
7 \\
-14
\end{array}\right]}
\end{gathered}
$$

6. Consider the mass-spring system on the left, derived from the diagram on the right:

$$
\begin{aligned}
& x^{\prime \prime}=-3 x+2(y-x) \\
& y^{\prime \prime}=-2(y-x) \\
& x^{\prime \prime}=-5 x+2 y \\
& y^{\prime \prime}=2 x-2 y
\end{aligned}
$$

Set $m_{1,2}=1, k_{1}=3, k_{2}=2$, and $f(t) \equiv 0$.
(a) Rewrite this system of two 2nd-order DEs system as a system of four 1st-order DEs.
(b) Use the eigenvalue method to find the general solution to your answer for (a).
(a) Let $z_{1}=x \quad z_{2}=x^{\prime} \quad z_{3}=y \quad z_{4}=y^{\prime} \quad$ let $\quad z=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]^{\top}$
$\left.\rightarrow \xrightarrow{\rightarrow} \rightarrow \begin{array}{l}z_{1}^{\prime}=z_{2} \\ z_{2}^{\prime}=-5 z_{1}+2 z_{3} \\ z_{3}^{\prime}=z_{4} \\ z_{4}^{\prime}=2 z_{1}-2 z_{3}\end{array}\right]$
(b) $\bar{z}^{\prime}=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -5 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & -2 & 0\end{array}\right] \bar{z} \left\lvert\, \begin{array}{cccc}|A-\lambda I|= \\ A & 1 & 0 & 0 \\ -\lambda & \left|\begin{array}{rrrr} & \\ -5 & -\lambda & 2 & 0 \\ 0 & 0 & -\lambda & 1 \\ 2 & 0 & -2 & \cdots\end{array}\right|\end{array}\right.$
$\Delta=-\lambda\left[-\lambda\left(\lambda^{2}-(-2)\right)\right]-1\left|\begin{array}{ccc}-5 & 2 & 0 \\ 0 & -\lambda & 1 \\ 2 & -2 & -\lambda\end{array}\right|$
$=\lambda^{2}\left(\lambda^{2}+2\right)-\left[-5\left(\lambda^{2}-(-2)\right)-2(0-2)\right]=\lambda^{4}+2 \lambda^{2}-\left[-5\left(\lambda^{2}+2\right)+4\right]$
$=\lambda^{4}+7 \lambda^{2}+6=\left(\lambda^{2}+1\right)\left(\lambda^{2}+6\right)=0 \cdot \rho \frac{\lambda= \pm i, \pm \sqrt{6}}{\text { eigenvalues } 7}$
Case $\lambda=i$: solve for eigenvector \bar{V} :

continued on next page

Eigenuector $\left[\begin{array}{l}x_{1} \\ z_{2} \\ z_{2} \\ z_{1}\end{array}\right]$ for $\lambda=i \quad$ caltits

$$
z_{y}=\text { anything }
$$

$$
\begin{aligned}
& z_{3}=-i z_{4} \\
& z_{2}=y_{2} z_{3} \\
& z_{1}=-i z_{2}
\end{aligned}
$$

$\begin{aligned} & \text { eifnuecto } \\ & \text { taks form }\end{aligned}\left[\begin{array}{c}-i s / 2 \\ s / 2 \\ -i s \\ s\end{array}\right]=s\left[\begin{array}{c}-i / 2 \\ 1 / 2 \\ -i \\ 1\end{array}\right]$
We $s=1$, have evec $\left[\begin{array}{c}-1 / 2 \\ 1 / 2 \\ -i \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 1 / 2 \\ 0 \\ 1\end{array}\right]+i\left[\begin{array}{c}-1 / 2 \\ 0 \\ -1 \\ 0\end{array}\right]$

Have complex solution $s(t)=\bar{v} e^{i t}=$

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
0 \\
1 / 2 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 / 2 \\
0 \\
-1 \\
0
\end{array}\right]\right)(\cos (t)+i \sin (t)) \\
& \left.=\left(\left[\begin{array}{c}
0 \\
1 / 2 \\
0 \\
1
\end{array}\right] \cos (t)-\left[\begin{array}{c}
-1 / 2 \\
0 \\
-1 \\
0
\end{array}\right] \sin (t)\right)+i\left(\begin{array}{c}
-1 / 2 \\
0 \\
-1 \\
0
\end{array}\right] \cos (t)+\left[\begin{array}{c}
0 \\
1 / 2 \\
0 \\
1
\end{array}\right] \sin (t)\right) \\
& \operatorname{Re}(s(t))=\left[\begin{array}{c}
\frac{1}{2} \sin (t) \\
\frac{1}{2} \cos (t) \\
\sin (t) \\
\cos (t)
\end{array}\right]
\end{aligned}
$$

Two linemily indep ghas are $\operatorname{Re}(s(t)) \& \operatorname{Im}(s(t))=$ (b) $\left[\begin{array}{c}\frac{1}{2} \sin (t) \\ \frac{1}{2} \cos (t) \\ \sin (t) \\ \cos (t)\end{array}\right] \&\left[\begin{array}{c}-1 / 2 \cos (t) \\ 1 / \sin (t) \\ -\cos (t) \\ \sin (t)\end{array}\right]$
for shortened vescion of partoms find thas limenty sutevendent solution's.
optional: complete nolation, see next paye

Case $\lambda=\sqrt{6} i$; slue $(A-\sqrt{6} i I) y=0:$

1) $\frac{5}{\sqrt{6}}-\sqrt{6}=\frac{5}{\sqrt{6}}-\frac{6}{\sqrt{6}}=-1 / \sqrt{6}$

$$
\begin{aligned}
& {\left[\begin{array}{cccc:c}
-\sqrt{6} i & 1 & 0 & 0 & 0 \\
-5 & -\sqrt{6} i & 2 & 0 & 0 \\
0 & 0 & -\sqrt{6} i & 1 & 0 \\
2 & 0 & -2 & -\sqrt{6} i & 0
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & i / \sqrt{6} & 0 & 0 & 0 \\
0 & i(5 / \sqrt{6}-\sqrt{6}) & 2 & 0 & 0 \\
0 & 0 & 1 & 1 / \sqrt{6} & 0 \\
0 & -2 i / \sqrt{6} & -2 & -\sqrt{6} i & 0
\end{array}\right] \sim \Delta} \\
& {\left[\begin{array}{cccc:c}
1 & i / \sqrt{6} & 0 & 0 & 0 \\
0 & -i / 6 & 2 & 0 & 0 \\
0 & 0 & 1 & i / \sqrt{6} & 0 \\
0 & 1 & -\sqrt{6} i & 3 & 0
\end{array}\right] \leadsto\left[\begin{array}{cccc:c}
1 & i / \sqrt{6} & 0 & 0 & 0 \\
0 & 1 & 2 \sqrt{6} i & 0 & 0 \\
0 & 0 & 1 & 1 / 6 & 0 \\
0 & 0 & -3 \sqrt{6} i & 3 & 0
\end{array}\right] \leadsto\left[\begin{array}{cccc:c}
1 & i / \sqrt{6} & 0 & 0 & 0 \\
0 & 1 & i 2 \sqrt{6} & 0 & 0 \\
0 & 0 & 1 & 1 / 6 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

$$
z_{4}=\text { anythif; } z_{3}=-1 / 5 z_{4} ; \quad z_{2}=-i 2 \sqrt{6} z_{3} ; \quad z_{1}=-i / \sqrt{6} z_{2}
$$

$\left.\left.\begin{array}{l}\text { eignvec } \\ = \\ s\end{array}\right] \begin{array}{c}2 i / \sqrt{6} \\ -2 \\ -i / \sqrt{6} \\ 1\end{array}\right] \quad$ chrole $s=1$, eifevee $:\left[\begin{array}{c}i \sqrt{\frac{2}{3}} \\ -2 \\ -i \sqrt{6} \\ 1\end{array}\right]=\left(\left[\begin{array}{c}0 \\ -2 \\ 0 \\ 1\end{array}\right]+i\left[\begin{array}{c}\sqrt{3} \\ 0 \\ -\sqrt{6} \\ 0\end{array}\right]\right)=\bar{V}$
Soln $\bar{V} e^{i \sqrt{6} t}=\left(\left[\begin{array}{c}0 \\ 2 \\ 0 \\ 1\end{array}\right]+i\left[\begin{array}{c}\sqrt{3 / 3} \\ 0 \\ -\sqrt{6} \\ 0\end{array}\right]\right)(\cos \sqrt{6 t}+i \sin \sqrt{6 t})=$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right]} \\
\cos \sqrt{6} t-\left[\begin{array}{c}
76 \\
0 \\
\sqrt{6} \\
0
\end{array}\right] \sin \sqrt{6 t}+i\left(\left[\begin{array}{c}
\sqrt{73} \\
0 \\
-8 \\
0
\end{array}\right] \cos \sqrt{6 t}+\left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right] \sin \sqrt{6 t}\right)
\end{array}\right.
$$

$$
R e=\left[\begin{array}{c}
-\sqrt{2} / 3 \sin \sqrt{6} t \\
-2 \cos \sqrt{6} t \\
+\sqrt{6} \sin \sqrt{6} t \\
\cos \sqrt{6} t
\end{array}\right]
$$

$$
I_{m}\left[\begin{array}{c}
\sqrt{6} \cos \sqrt{6} t \\
-2 \sin \sqrt{6} t \\
-\sqrt{6} \cos \sqrt{6} t \\
\sin \sqrt{6} t
\end{array}\right]
$$

generat soln: $\left[\begin{array}{c}z_{1} \\ z_{2} \\ z_{3} \\ z_{4}\end{array}\right]=C_{1}\left[\begin{array}{c}\frac{1}{2} \sin (t) \\ \frac{1}{2} \cos (t) \\ \sin (t) \\ \cos (t)\end{array}\right]+C_{2}\left[\begin{array}{c}-\frac{1}{2} \cos (t) \\ \left.\frac{2}{2} \sin t\right) \\ -\cos (t) \\ \sin t)\end{array}\right]+C_{3}\left[\begin{array}{c}-\sqrt{2} / 3 \sin \sqrt{6} t \\ -2 \cos \sqrt{6} t \\ \sqrt{76} \sin \sqrt{6} t \\ \cos \sqrt{6} t\end{array}\right]+C_{4}\left[\begin{array}{c}\sqrt{3} \cos \sqrt{6} t \\ 2 \sin \sqrt{6} t \\ -\sqrt{1 / 6} \cos \sqrt{6} t \\ \sin \sqrt{6} t\end{array}\right]$
In particulan, $x(t)=z_{1}=\frac{c_{1}}{2} \sin (t)-\frac{c_{2}}{2} \cos (t)-c_{3} \sqrt{\frac{2}{3}} \sin (\sqrt{6} t)+c_{4} \sqrt{\frac{8}{3}} \cos (\sqrt{6} t)$

$$
y(t)=z_{3}=c_{1} \sin (t)-c_{2} \cos (t)+c_{3} \sqrt{6} \sin (\sqrt{6} t)-c_{4} \sqrt{\frac{1}{6}} \cos (\sqrt{6} t)
$$

CHECK:

$$
\begin{aligned}
& x^{\prime}=\left(\frac{c_{2}}{2}\right) \sin (t)+\left(\frac{c_{1}}{2}\right) \cos (t)-2 c_{4} \sin (5 t)-2 c_{3} \cos \sqrt{6} t \\
& x^{\prime \prime}=\frac{-c_{1}}{2} \sin (t)+\frac{c_{2}}{2} \cos (t)+2 \sqrt{6} c_{3} \sin \sqrt{6} t-2 \sqrt{6} \cos \sqrt{6} t \\
& -5 x+2 y= \\
& \begin{aligned}
\left(-\frac{5}{2}+2\right. \\
-1 / 2
\end{aligned} C_{1} \sin (t)+\left(\frac{5}{2}-2\right) C_{2} \cos (t)+\left(\sqrt[5]{\frac{2}{3}}+\frac{2}{\frac{1}{6}}\right) C_{3} \sin (\sqrt{b} t)+\left(-5 \sqrt{2}-2 \sqrt{\frac{1}{6}}\right) \cos \sqrt{b} t \\
& =6 \sqrt{\frac{2}{3}} \cdot \sqrt{2} \frac{12}{\sqrt{2}}=2 \sqrt{6} \\
& y^{\prime}=c_{2} \sin (t)+c_{1} \cos (t)+c_{4} \sin (\sqrt{6} t)+c_{3} \cos (\sqrt{6} t) \\
& y^{\prime \prime}=-c_{1} \sin (t)+c_{2} \cos (t)-\sqrt{6} c_{3} \sin (\sqrt{6} t)+\sqrt{6} c_{y} \cos (\sqrt{6} t) \\
& 2 x-2 y=. \\
& \underbrace{(1-2)}_{-1} c_{1} \sin (t)+\underbrace{(-1+2) c_{2} \cos (t)}_{+1}+\underbrace{(-2 \sqrt{3}}_{-\frac{4}{\sqrt{6}}-\frac{2}{\sqrt{6}}}-2 \sqrt{6}) c_{3} \sin (\sqrt{6} t) \\
& +\left(\sqrt[2]{\left.\frac{2}{3}+2 \sqrt{b}\right) C_{4} \cos (8 t)}\right.
\end{aligned}
$$

