DUE: Monday, March 23rd, 4pm to box in 244 Mathematics Building
(1) A warm-up; note parts (b)-(d) correspond to 5.1 Problem 1. Let

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & -3 \\
4 & 7
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{cc}
3 & -4 \\
5 & 1
\end{array}\right]
$$

Compute (a) $\mathbf{A}+\mathbf{B}$; (b) $3 \mathbf{A}-2 \mathbf{B}$; (c) $\mathbf{A B}$; (d) $\mathbf{B A}$.
(2) Consider the mass-spring system described in 4.1 Example 1:

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right), \\
& m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)+f(t)
\end{aligned}
$$

By defining $y_{1}=x_{1}, y_{2}=x_{1}^{\prime}, y_{3}=x_{2}, y_{4}=x_{2}^{\prime}$, transform the system above to an equivalent 4 -dimensional first order system.
(3) Define the following vectors:

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right] \quad \mathbf{y}^{\prime}=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
y_{3}^{\prime} \\
y_{4}^{\prime}
\end{array}\right] \quad \mathbf{f}(t)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
f(t)
\end{array}\right]
$$

Write the matrix \mathbf{Q} for which the answer to (2) is expressed in matrix notation by

$$
\mathbf{y}^{\prime}=\mathbf{Q y}+\mathbf{f}(t)
$$

(4) Consider the two-dimensional first order system of differential equations:

$$
\begin{aligned}
& x_{1}^{\prime}=a x_{1}+b x_{2} \\
& x_{2}^{\prime}=c x_{1}+d x_{2}
\end{aligned}
$$

(a) Assuming $b \neq 0$, use the first equation to solve for x_{2} in terms of x_{1}, x_{1}^{\prime}.
(b) Derive your answer to (a) to write x_{2}^{\prime} in terms of $x_{1}^{\prime}, x_{1}^{\prime \prime}$.
(c) Substitute your answers for (a) and (b) to obtain a second-order differential equation fulfilled by x_{1}.

Also 4.2 Problems $2^{*}, 6^{*}, 10$ and 5.1 Problems $\mathbf{1 7}, 22,27,30,31,36,39,42$. *Phase portraits not required for now.

Notice 5.1, 22, 27, and 30 have three parts each: (a) show each \mathbf{x}_{i} is a solution, (b) show each list of solutions is linearly independent, and (c), write the general solution. To do part (a), you should compute $\mathbf{M x}_{i}$ and \mathbf{x}_{i}^{\prime} and show they are equal for each i. Here \mathbf{M} is the matrix in the given differential equation $\mathbf{x}^{\prime}=\mathbf{M x}$.

