Math 306 Section T Maple Lab #4 Spring 2015

DUE: Start of recitation, 4/21/15 (T3) or 4/23/15 (T2).

For this assignment, please download sample Maple code! available on UBlearns or at
http://www.nsm.buffalo.edu/~mangahas/Math306 /Samplecode.html.

This assignment involves the almost-linear system with phase portrait shown:

2'(t) = —ycos(z+y—1)
y'(t) =z cos(zx —y+1)

1. Complete the sample code by including the Maple commands to determine eigenvalues
and eigenvectors of the matrix corresponding to the critical point at (1.5708, -2.1416).

Next, modify the phaseportrait command to display the local phase portrait about
this critical point. Finally, classify this critical point: stable/unstable, asymptotically
stable/unstable, and node/spiral/center/saddle point.

2. Modify the entire procedure in order to locate two additional critical points. (If
Maple returns an error message regarding the parameter values, simply locate another
point.) For each of these points, alter the code to display the corresponding matrix,
eigenvalues, eigenvectors, and local phase portrait. Classify these points. (You should,
of course, choose 2 points other than the one used for part (1) above!)

3. Modify the final block of sample code (following restart:) to display a phase portrait
as similar as possible to the one above. This will not only require altering the
system of differential equations, but also experimenting with different ranges for ¢
and adding numerous initial conditions. It may be necessary to include 5-8 sets of
ICs in each quadrant to obtain a fairly complete phase portrait.

Note: in the following pages I've attached scans of the textbook’s Applications Manual,
which includes more details about the system in this problem, and how to use Maple to
analyze it. This is just for your reference and interest! You only need this first sheet
to complete the assignment, but you are welcome to use the scanned pages to help your
understanding.

1Code taken from Shared Software for 306, UB Department of Mathematics


http://www.nsm.buffalo.edu/~mangahas/Math306/Samplecode.html

Application 6.2

Phase Plane Portraits of Almost Linear Systems

Interesting and complicated phase portraits often result from simple nonlinear
perturbations of linear systems. For instance, the figure below shows a phase plane

portrait for the almost linear system
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Among the seven critical points marked with dots, we €€

in the first and third quadrants of the xy-plane;

e Apparent spiral points
e Apparent saddle points in the second and fourth quadrants, plus another one
on the positive X-axis;
e A critical point of undetermined character o the negative y-axis; and
e An apparently "yery weak" gpiral point at the origin - meaning one that is
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approached very s
Or @ SOUrce).

—ycos(x+y—1)
xcos(x -y +1)
2

X'
y'




Some ODE software systems can automatically locate and classify critical points.
For instance, Fig. 6.2.22 in the text shows a screen produced by John Polking's MATLAB
pplane program (cited in the Section 6.1 application). It indicates that the fourth-
quadrant critical point in the figure above has approximate coordinates (1.5708,
—2.1416), and that the coefficient matrix of the associated linear system has the positive
eigenvalue 4,~2.8949 and the negative eigenvalue A, ~ —2.3241. I therefore follows

from Theorem 2 in Section 6.2 that this critical point is, indeed, a saddle point of the
almost linear system
in (1).

With a general computer algebra system, you may have to do a bit of work
yourself — or tell the computer precisely what to do — in order to find and classify a
critical point. In the sections below, we illustrate this procedure using Maple,
Mathematica, and MATLAB. Once the critical-point coordinates o = 1.5708,
b=-2.1416 indicated above have been found, the substitution x =y + a, y=v+b

yields the translated system

du
di
dv
dr

(2.1416-\1)005(1.5708—11—v) fu,v)

(1.5708 + u)cos(4.7124 + u-v) = g(u,v).

If we substitute u =v =0 in the Jacobian matrix

of
ou
og
ou

we get the coefficient matrix

A - | 21416 21416
~11.5708 -1.5708

of the linear system corresponding to the almost linear system in (2).

Alternatively, one can circumvent the transiated system in (2) by looking at the
Taylor expansions

J(x.y) = D f(a,b)(x~a)+D, f(a,b)(y—b)+--

&(x,y) = D,g(a,b)(x—a)+ D, g(a,b)(y—b)+ -
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of the right-hand side functions in the original system (1), and retaining only the linear

terms in this expansion. We see from (5) that

D.f(@b) D,f(b) )
D.ga,b) D,g(a,b) (©)

is the coefficient matrix of the linearization of the system (1) that results when we

substitute u=x—a, v=y—b and retain only the terms that are linear in u and v.

In any event, we can then use our computer algebra system to find the
eigenvalues 4, ~2.8949 and A, ~—2.3241 ofthe matrix A, thereby verifying that

the critical point (1.5708, -2.1416) of (1) is, indeed, a saddle point.

Use a computer algebra system to find and classify similarly the other critical
points of (1) indicated in the figure above. Then investigate similarly an almost linear
system of your own construction. One convenient way to construct such a system is to
start with a linear or almost linear system and insert sine or cosine factors resembling the

ones in (1). For instance:

!

1. x'= xcosy y = ysinx

2. x'=—y+y'cosy y = —x—xsinx

Il

il

x' = yecos(Qx+y), y' = —xsin(x—3y)

4, X = —x-yrcos(x+y), Y =yt x?cos(x — )

1l

Using Maple
After we enter the right-hand side functions in (1),

1= -y*cos (x+y-1):
x*cos (x-y-1)

£
g :
we can proceed to solve numerically for a solution near (1.5, -2)

soln :=
fsolve ({£=0,g=0}, {x,v}, x=1..2, y=—3..—1);

{x=1.570796327,y = -2.141592654}
Thus our critical point (g, b) is given approximately by

a := rhs (solnil])
b := rhs(solni2])

.
r
.
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a :=1.570796327
b :=-2.141592654

To classify this critical point, we proceed to calculate first the partial derivatives

fx := evalf(subs(x=a,y=b,diff (f,x))):
fy := evalf (subs(x=a,y=b,diff (£f,y))):
gx := evalf(subs(x=a,y=b,diff(qg,x))):
gy := evalf (subs(x=a,y=b,diff(g,y))):

evaluated at (a, b), and then the Jacobian matrix in (6):

with (linalg) :
A := matrix(2,2, [fx,fy,gx,gy]l):

Finally, its eigenvalues are given by

eigenvals (3) ;
2.894893108, -2.324096781

Thus the eigenvalues 4, ~2.8949 and A, ~-2.3241 are real with opposite signs, so
the critical paint (1.5708, —2.1416) is, indeed, a saddle point of the system in (1).

Using Mathematica

After we enter the right-hand side functions in (1),

£ = -y*Cos[x+y~-1];
g = x*Cos[x-y+1];

we can proceed to solve numerically for a solution near (1.5, -2):

soln =
FindRoot[{f == 0, g == 0}, (x,1.5}, {y,-2}]

{x -> 1.5708, y -> -2.14159}

Thus our critical point (a, b) is given approximately by

a=x /. soln
b=y /. soln
1.5708
-2.14159

To classify this critical point, we proceed to set up the Jacobian matrix in (6)

>
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