Math 306 Section T

"Practice" Midterm Exam 1

February 17, 2015

Name:

This is a practice exam. For the real exam:

- Nothing on your desk except writing instruments and UB ID card.
- No electronics! I will keep track of time on the board.
- Like practice exam, the real exam has six questions, half of which involve qualitative analysis, curve sketching, and/or applications (note, you are not expected to memorize any specific mathematical models, just to be able to do the math in the context of a given model).
- Questions on the real exam are not guaranteed to be easier or harder than the practice exam; it's just for the sake of review and practice.
- Like the real exam, give yourself 80 minutes.

1. Find all solutions to the differential equation:

$$
y^{2} y^{\prime}+2 x y^{3}=6 x
$$

2. Find all solutions to the differential equation:

$$
x(x+y) y^{\prime}=y(x-y)
$$

3. Consider the differential equation $\frac{d x}{d t}=(x+2)(x-2) x$
(a) Find all equilibrium solutions and determine whether they are stable, unstable, or semistable.
(b) Sketch a slope field for this differential equation.
(c) Find the solution corresponding to the initial condition $\mathrm{x}(0)=1$.
(d) Sketch the solution curve corresponding to your answer for (b).
4. Suppose a body moves through a resisting medium with resistance proportional to velocity, so that $\frac{d v}{d t}=-k v$. Let $x(t)$ be the position of the body, so that $v(t)=\frac{d x}{d t}$.
(a) Solve for the function $x(t)$ in terms of the initial conditions $x_{0}=x(0)$ and $v_{0}=v(0)$.
(b) Show that the moving body only travels a finite distance, by computing $\lim _{t \rightarrow \infty} x(t)$.
(c) According to the model given by the differential equation $\frac{d v}{d t}=-k v$, if $v_{0}>0$, is velocity ever zero?
5. Consider the initial value problem

$$
\frac{d y}{d x}=2 \sqrt{y} \quad y(0)=y_{0}
$$

(a) Find all solutions to the differential equation.
(b) For which y_{0} does a unique solution exist?
(c) Show that, if $y_{0}=0$, two solutions exist. Explain why this does not contradict the theorem on existence and uniqueness of solutions to first-order ordinary differential equations.
6. Use the substitution $p=\frac{d y}{d x}$ to solve the differential equation below. You may leave your answer in terms of an integral if you use the fundamental theorem of calculus correctly.

$$
2 \sqrt{1-x^{2}} y^{\prime \prime}-\left(y^{\prime}\right)^{3} e^{-2 x}=\sqrt{4-4 x^{2}} y^{\prime}
$$

