A Recipe for “Short-word” Pseudo-Anosovs

Johanna Mangahas

University of Michigan, Ann Arbor

May 22, 2010
Mapping class group of S:

$$\text{Mod}(S) = \{ f : S \to S \mid f \text{ o.p. diffeo. } \} / \{ f \sim \text{id} \}$$
Mapping class group of S:

$\text{Mod}(S) = \{ f : S \to S | f \text{ o.p. diffeo. } \}/\{ f \sim id \}$

Nielsen-Thurston classification:

$f \in \text{Mod}(S)$ is either
Definitions

Mapping class group of S:

$\text{Mod}(S) = \{ f : S \rightarrow S | f \text{ o.p. diffeo. } \}/\{f \sim id\}$

Nielsen-Thurston classification:

$f \in \text{Mod}(S)$ is either

- finite-order
Mappings class group of S:

$$\text{Mod}(S) = \{ f : S \to S \mid f \text{ o.p. diffeo. } \}/\{ f \sim id \}$$

Nielsen-Thurston classification:

$f \in \text{Mod}(S)$ is either

- finite-order
- pseudo-Anosov
Definitions

Mapping class group of S:
\[\text{Mod}(S) = \{ f : S \to S \mid f \text{ o.p. diffeo. } \} / \{ f \sim id \} \]

Nielsen-Thurston classification:
\[f \in \text{Mod}(S) \text{ is either} \]
- finite-order
- pseudo-Anosov
- kind of pseudo-Anosov
Reducible mapping classes
Reducible mapping classes
Reducible mapping classes

\[\mathcal{A}(f) = \bigcup_i A_i \]
If \(a \) is pA on \(A \),
If a is pA on A, and b is pA on B,
If a is pA on A, and b is pA on B, is ab pseudo-Anosov on the whole surface?
If a is pA on A, and b is pA on B, is ab pseudo-Anosov on the whole surface? Not always, but ...
“Short-word” question

Question (Fujiwara)

Is there an upper bound, depending only on S, for distance from the identity to the nearest pseudo-Anosov, in any Cayley graph of any subgroup of $\text{Mod}(S)$?
“Short-word” question

Question (Fujiwara)

Is there an upper bound, depending only on S, for distance from the identity to the nearest pseudo-Anosov, in any Cayley graph of any subgroup of $\text{Mod}(S)$?

Theorem (Yes)

There exists a constant $K = K(S)$ with the property that, for any subset $\Sigma \subset \text{Mod}(S)$, there exists $f \in \langle \Sigma \rangle$ such that $|f|_{\Sigma} < K$ and f is pseudo-Anosov.
“Short-word” question

Question (Fujiwara)
Is there an upper bound, depending only on S, for distance from the identity to the nearest pseudo-Anosov, in any Cayley graph of any subgroup of $\text{Mod}(S)$?

Theorem (Yes, and more)
There exists a constant $K = K(S)$ with the property that, for any subset $\Sigma \subset \text{Mod}(S)$, there exists $f \in \langle \Sigma \rangle$ such that $|f|_\Sigma < K$ and $A(g) \subset A(f)$ for all $g \in \langle \Sigma \rangle$.
Proposition

There exists \(Q = Q(S) \) s.t. if pure reducibles \(a \) and \(b \) are pA on domains \(A \) and \(B \) resp., and \(A \cup B \) fills \(S \), then for any \(n, m \geq Q \),

- \(\langle a^n, b^m \rangle \cong \mathbb{F}_2 \)
- Elements of \(\langle a^n, b^m \rangle \) are pA except those conjugate to powers of \(a \) or \(b \).
- F.g. all-pA sbgps of \(\langle a^n, b^m \rangle \) are convex cocompact.
Proposition proof

In the curve complex $C(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $C(S)$.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

$$a \ast b \ast a \ast b \ast a \ast (\beta) \quad a \ast b \ast a \ast b \ast (\alpha) \quad a \ast b \ast a \ast (\beta) \quad a \ast b \ast a \ast b \ast a \ast (\beta)$$

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$.
Proposition proof

In the curve complex $C(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $C(S)$.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$. Use Masur-Minsky theorems.
Proposition proof

In the curve complex $\mathcal{C}(S)$ of S:

Show: if w not conjugate to a^k or b^k, $\langle w \rangle$ q.i.-embeds in $\mathcal{C}(S)$. Use Masur-Minsky theorems.
Theorem proof (idea)

Pair of pAs

“Special case”

“Nested” case: 1 pA, 1 reducible

\[a_1^P b_1^P a_1^{-P} \cdot b_1^P \text{ is pA on largest possible subsurface} \]
Extra: counterexample to naive question

\[a = x^k y^k \]
Extra: counterexample to naive question

\[a = x^k y^k \]
Extra: counterexample to naive question

\[b = y^{-k} z^k \]
Extra: counterexample to naive question

\[b = y^{-k}z^k \]
Extra: counterexample to naive question

\[ab = x^k y^k \cdot y^{-k} z^k = x^k z^k \]