Convex Cocompactness in Mod(S) via Quasiconvexity in RAAGs

Johanna Mangahas1 and Samuel Taylor2

1Brown University, 2University of Texas at Austin

December 8, 2013
Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated $G < \text{Mod}(S)$, TFAE:

- G acts cocompactly on its “weak hull”, is δ-hyperbolic, . . .
- Orbits of G are quasiconvex in $\text{Teich}(S)$
- Orbit maps of G into $\mathcal{C}(S)$ are quasi-isometric embeddings.
Convex cocompactness in mapping class groups

Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated $G < \text{Mod}(S)$, tfae:

- G acts cocompactly on its "weak hull", is δ-hyperbolic, . . .
- Orbits of G are quasiconvex in $\text{Teich}(S)$
- Orbit maps of G into $\mathcal{C}(S)$ are quasi-isometric embeddings.

\[
\begin{array}{cccccc}
1 & \rightarrow & \pi_1(S) & \rightarrow & E_G & \rightarrow & G & \rightarrow & 1 \\
\| & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & \pi_1(S) & \rightarrow & \text{Mod}(\hat{S}) & \rightarrow & \text{Mod}(S) & \rightarrow & 1
\end{array}
\]
Thms (Farb, Mosher; Hamenstädt; Kent, Leininger)

For finitely generated $G < \text{Mod}(S)$, TFAE:

- G acts cocompactly on its “weak hull”, is δ-hyperbolic, . . .
- Orbits of G are quasiconvex in $\text{Teich}(S)$
- Orbit maps of G into $\mathcal{C}(S)$ are quasi-isometric embeddings.

\[
\begin{align*}
1 & \rightarrow \pi_1(S) \rightarrow E_G \rightarrow G \rightarrow 1 \\
& \ | \ | \ | \ | \\
1 & \rightarrow \pi_1(S) \rightarrow \text{Mod}(\mathcal{S}) \rightarrow \text{Mod}(S) \rightarrow 1
\end{align*}
\]

Thms (Farb-Mosher, Hamenstädt)

E_G is word hyperbolic if and only if G is convex cocompact.

Mangahas (Brown), Taylor (UT) CC in Mod(S) via QC in RAAGs
Which subgroups of $\text{Mod}(S)$ are convex cocompact?

purely pseudo-Anosov subgroups

Examples of convex cocompact?

Q: Is \{ convex cocompact \} same as \{ f.g. all-pA \}?
Which subgroups of \(\text{Mod}(S) \) are convex cocompact?

purely pseudo-Anosov subgroups

(virtually) free

examples

convex cocompact

Q:

Is \{ convex cocompact \} same as \{ f.g. all-pA (v. free) \}?
RAAGs in mapping class groups

Definition

\[A_\Gamma = \langle v_i \mid \text{vertices of } \Gamma \mid [v_i, v_j] = id \text{ iff } (v_i, v_j) \text{ is an edge of } \Gamma \rangle \]

Thms (Koberda, Clay-Leininger-M, Crisp-Paris/-Weiss/-Farb)

Many ways to embed \(A_\Gamma \) in some \(\text{Mod}(S) \).
RAAGs in mapping class groups

Definition

\[A_\Gamma = \langle v_i \text{ vertices of } \Gamma \mid [v_i, v_j] = id \text{ iff } (v_i, v_j) \text{ is an edge of } \Gamma \rangle \]

Thm (Clay-Leininger-M)

For partially pA \(\{f_1, \ldots, f_n\} \) supported on connected, non-nested \(X_i \) with disjointess recorded in the graph \(\Gamma \), for large enough \(p_i \),

\[A_\Gamma \to \langle f_1^{p_1}, \ldots, f_n^{p_n} \rangle < ModS \]

is a quasi-isometric embedding.
Definition

\[A_\Gamma = \langle v_i \mid [v_i, v_j] = id \text{ iff } (v_i, v_j) \text{ is an edge of } \Gamma \rangle \]

Thm (Clay-Leininger-M)

*For partially pA \(\{f_1, \ldots, f_n\} \) supported on connected, non-nested \(X_i \) with disjointess recorded in the graph \(\Gamma \), for large enough \(p_i \),

\[A_\Gamma \to \langle f_1^{p_1}, \ldots, f_n^{p_n} \rangle < \text{ModS} \]

is an admissible* embedding.

*meaning \(A_\Gamma \hookrightarrow \text{Mod}(S) \):

(i) Comes with large subsurface curve complex projections, and

(ii) Word partial order matches subsurface partial order

Mangahas (Brown), Taylor (UT) \hspace{1cm} CC in Mod(S) via QC in RAAGs
Thm (M-Taylor)

If $A_\Gamma < \text{Mod}(S)$ is admissible and $G < A_\Gamma < \text{Mod}(S)$ is convex cocompact, then G is (word) quasiconvex in A_Γ.

Thm (M-Taylor)

Suppose $A_\Gamma < \text{Mod}(S)$ is admissible and $G < A_\Gamma$ is fin. gen. and K-quasiconvex. There exists $L = L(K, |\Gamma|)$ such that if $w \in G$ with $0 < |w| < L$ are pseudo-Anosov, then G is convex cocompact (thus all-pseudo-Anosov, thus free).

Corollary

All-pA $G < A_\Gamma < \text{Mod}(S)$ is convex cocompact in $\text{Mod}(S)$ if and only if it is word quasiconvex in A_Γ.
The Cayley graph of A_Γ completes to a CAT(0) cube complex \tilde{S}_Γ

Thm (Haglund 2008)

For $G < A_\Gamma$, TFAE:

- Exists (non-empty) convex subcomplex $C \subset \tilde{S}_\Gamma$ which is G-invariant and cocompact.
- G (word) quasiconvex in A_Γ (vertex orbits $G \cdot v$ are combinatorially q-convex in \tilde{S}_Γ.)
Convex cocompactness in RAAGs

The Cayley graph of A_{Γ} completes to a CAT(0) cube complex \tilde{S}_{Γ}

Thm (Haglund 2008)

For $G < A_{\Gamma}$, TFAE:

- Exists (non-empty) convex subcomplex $C \subset \tilde{S}_{\Gamma}$ which is G-invariant and cocompact.
- G (word) quasiconvex in A_{Γ} (vertex orbits $G \cdot v$ are combinatorially quasiconvex in \tilde{S}_{Γ}.)

Mangahas (Brown), Taylor (UT) CC in Mod(S) via QC in RAAGs
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \]

Mangahas (Brown), Taylor (UT) CC in Mod(S) via QC in RAAGs
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \]

\[X_0 \subset f_0 \]

Mangahas (Brown), Taylor (UT) | CC in \text{Mod}(S) via QC in RAAGs
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \]

\[Y_0 \supset g_0 \]

Thm (M-Taylor)
For any \(k \), \(\langle h_1, h_2, \ldots, h_k \rangle \sim = F_k \) is convex cocompact

Mangahas (Brown), Taylor (UT) CC in Mod(S) via QC in RAAGs
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \quad f_i = \rho^i f_0 \rho^{-i} \quad g_i = \rho^i g_0 \rho^{-i} \]
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \quad f_i = \rho^i f_0 \rho^{-i} \quad g_i = \rho^i g_0 \rho^{-i} \]

\[h = (\rho f_0 g_0)^n \]

Thm (M-Taylor)

For any \(k \), \(\langle h_1, h_2, \ldots, h_k \rangle \sim = F_k \) is convex cocompact.

Mangahas (Brown), Taylor (UT)
CC in Mod(S) via QC in RAAGs
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \quad f_i = \rho^i f_0 \rho^{-i} \quad g_i = \rho^i g_0 \rho^{-i} \]

\[h = (\rho f_0 g_0)^n = f_1 g_1 f_2 g_2 \cdots f_n g_n \in \langle f_i, g_i \rangle \quad \text{trans}(h) \sim 1/g \]
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \quad f_i = \rho^i f_0 \rho^{-i} \quad g_i = \rho^i g_0 \rho^{-i} \]

\[h_k = (\rho f_0^k g_0^k)^n = f_1^k g_1^k f_2^k g_2^k \cdots f_n^k g_n^k \in \langle f_i, g_i \rangle \quad \text{trans}(h_k) \sim 1/g \]
Interesting examples

\[n = g - 1 \quad \rho^n = \text{id} \quad f_i = \rho^i f_0 \rho^{-i} \quad g_i = \rho^i g_0 \rho^{-i} \]

\[h_k = (\rho f_0^k g_0^k)^n = f_1^k g_1^k f_2^k g_2^k \cdots f_n^k g_n^k \in \langle f_i, g_i \rangle \quad \text{trans}(h_k) \sim 1/g \]

Thm (M-Taylor)

For any \(k \), \(\langle h_1, h_2, \ldots, h_k \rangle \cong F_k \) is convex cocompact
Q: Construct a non-cyclic convex cocompact subgroup containing pseudo-Anosovs with $1/g^2$ translation length in curve complex.
Further questions

Q:

Construct a non-cyclic convex cocompact subgroup containing pseudo-Anosovs with $1/g^2$ translation length in curve complex.

Q:

Does G all-pseudo-Anosov imply G convex cocompact in $\text{Mod}(S)$?
Further questions

Q:
Construct a non-cyclic convex cocompact subgroup containing pseudo-Anosovs with $1/g^2$ translation length in curve complex.

Q:
Does G all-pseudo-Anosov imply G convex cocompact in $\text{Mod}(S)$?

Q:
Does $G < A_\Gamma$ all-loxodromic imply G (word) quasiconvex in A_Γ?

Mangahas (Brown), Taylor (UT)
CC in $\text{Mod}(S)$ via QC in RAAGs
Fun pictures

\[\pi_1 \left(\begin{array}{c} f_0 \\ f_1 \\ f_2 \end{array} \right) \]

= \left(\begin{array}{c} A \end{array} \right)

right-angled Artin group

\[\left(\begin{array}{c} f_0 \\ g_0 \\ f_1 \\ g_1 \\ f_2 \end{array} \right) \]

mapping class subgroup

\[\text{pseudo-Anosov} \]
Consequences of convex cocompactness in Mod(S)

Requirements for word hyperbolicity:

1. No subgroups \(BS(p, q) = \langle a, b | a^{-1}b^p a = b^q \rangle \)
2. Has finite \(K(G, 1) \) if torsion-free (in general, type \(FP_\infty \)).

Q: (Gromov, Farb-Mosher)

If \(G \) with finite \(K(G, 1) \) has no BS subgroups, is it hyperbolic?

Example (which might not exist)

If \(G \) is all-pA, then \(E_G \) has finite \(K(G, 1) \) and no BS subgroups.
Recall if \(G \) fails to be convex cocompact, it also fails hyperbolicity.

Q:

Does there exist free, non-quasiconvex \(G < A_\Gamma \) and admissible embedding \(A_\Gamma < \text{Mod}(S) \) such that \(G \) is all-pA?