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Abstract. We prove that finitely generated purely loxodromic
subgroups of a right-angled Artin group A(Γ) fulfill equivalent con-
ditions that parallel characterizations of convex cocompactness in
mapping class groups Mod(S). In particular, such subgroups are
quasiconvex in A(Γ). In addition, we identify a milder condition
for a finitely generated subgroup of A(Γ) that guarantees it is free,
undistorted, and retains finite generation when intersected with
A(Λ) for subgraphs Λ of Γ. These results have applications to
both the study of convex cocompactness in Mod(S) and the way
in which certain groups can embed in right-angled Artin groups.

1. Introduction

1.1. Overview. Let Γ be a finite simplicial graph with vertex set V (Γ)
and edge set E(Γ), and let A(Γ) be the corresponding right-angled
Artin group. That is, we write

A(Γ) ∼= 〈V (Γ) | [vi, vj] = 1 if and only if {vi, vj} ∈ E(Γ)〉.

Right-angled Artin groups have occupied an important position in
geometric group theory in recent years. Their intrinsic algebraic struc-
ture has been of interest since the 1980s [Dro87, Ser89, Mih68]. Right-
angled Artin groups also played a key role in the study of three man-
ifold topology, culminating in Agol’s resolution of the virtual Haken
conjecture [Ago13, KM12, Wis11]. Right-angled Artin groups are also
a prototypical class of CAT(0) groups, and have figured importantly in
the study of mapping class groups of surfaces [CW04, CLM12, Kob12,
KK13, KK14b, MT13].

In this article, we concentrate on this lattermost aspect of right-
angled Artin group theory, where we think of right-angled Artin groups
both as commonly occurring subgroups of mapping class groups of sur-
faces, and as algebraically similar to mapping class groups themselves.
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In particular, we study a class of finitely generated subgroups of right-
angled Artin groups, called purely loxodromic subgroups. These are cer-
tain classes of finitely generated free subgroups of right-angled Artin
groups which we prove are (in a very strong sense) quasiconvex in the
ambient right-angled Artin group, and which have quasi-isometric orbit
maps to the right-angled Artin group analogue of the curve complex,
i.e. the extension graph.

From this last perspective, we show that purely loxodromic sub-
groups of right-angled Artin groups are analogous to convex cocompact
subgroups of mapping class groups of surfaces. Convex cocompact sub-
groups are a class of subgroups of mapping class groups distinguished
by Farb and Mosher [FM02] and which have natural and useful geo-
metric properties. Indeed, our main theorem represents the analog
to an open question for mapping class groups that has received much
attention in recent years. (See Section 1.3 for details.) We shall see
that, combining our results with earlier results of the second and third
author, purely loxodromic subgroups of right-angled Artin groups gen-
erally provide an explicit source of convex cocompact subgroups of
mapping class groups.

From our main theorem (Theorem 1.1), that strong quasiconvex-
ity properties are implied by an element-wise condition on a finitely
generated subgroup of a right-angled Artin group, several applica-
tions of general interest follow. For example, as referenced above, re-
cent groundbreaking results imply that many geometrically significant
groups embed as quasiconvex subgroups of right-angled Artin groups
[Ago13, HW14]. We show that when such a group contains distorted
subgroups (e.g. fiber subgroups of fibered 3–manifold groups or free-
by-cyclic groups) there are elements of these subgroups that map to
relatively simple elements of the right-angled Artin group. In particu-
lar, the images of these elements have non-cyclic centralizers in A(Γ).
See the discussion after Theorem 1.2 below for details.

1.2. Main results. When a right-angled Artin group A(Γ) does not
decompose as a direct product, its typical (as in [Sis11]) elements are
what we call loxodromic. Equivalently, these are its Morse elements,
its elements with contracting axes, its elements that act as rank-one
isometries on the CAT(0) space associated to A(Γ), and its elements
with cyclic centralizers [Ser89, BC12, BF09]. In [KK14a], loxodromic
elements are characterized as those with unbounded orbit in the action
of A(Γ) on its extension graph Γe, a hyperbolic space introduced by
the first author and Kim to study embeddings between right-angled
Artin groups in [KK13]. Here we study purely loxodromic subgroups
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of A(Γ): those in which every non-trivial element is loxodromic. Such
subgroups exist in no short supply—in fact, they are typical [TT]; see
Section 2.4 for details. Our main result is the following:

Theorem 1.1. Suppose H < A(Γ) is finitely generated and A(Γ) does
not decompose as a direct product. Then the following are equivalent.

(1) Some (any) orbit map from H into Γe is a quasi-isometric em-
bedding.

(2) H is stable in A(Γ).
(3) H is purely loxodromic.

A subgroup H of a finitely generated group G is stable if it is undis-
torted and quasigeodesics in G between points in H have uniformly
bounded Hausdorff distance (see Section 6 for details). This property
was defined by the third author and Durham in [DT14], where they
also show that it implies that H is quasiconvex with respect to any
word metric on G. We remark that both stability and condition (2)
are strong properties about global geometry—the embedding of the
subgroup in either a relevent space or the ambient group—whereas (1)
can be read as a purely algebraic condition (that every element in H
has cyclic centralizer). In fact, the proof goes through a fourth equiv-
alence, join-busting (we give the definition in Section 1.4), which may
be considered a local, combinatorial condition.

A milder condition on H < A(Γ) is that none of its nontrivial ele-
ments conjugate into a subgroup generated by a star of Γ (see Section
2.2 for complete definitions). In that case, we say that H is star-free.
For this more general class of subgroups of A(Γ), we have

Theorem 1.2. If H < A(Γ) is finitely generated and star-free, then

(1) H is a free group,
(2) H is undistorted in A(Γ), and
(3) We have

HΛ = H ∩ A(Λ)

is finitely generated, for any subgraph Λ ⊂ Γ.

The main content of Theorem 1.2 is its last two points; statement (1)
is known to specialists. Statement (2) indicates that, among the mul-
tiple known constructions of distorted subgroups in right-angled Artin
groups, “star-words” are a necessary common feature. In particular,
it is a recent theorem of Hagen–Wise that a hyperbolic free-by-cyclic
group G has a finite index subgroup G′ that quasi-isometrically embeds
in a right-angled Artin group A(Γ) [HW14, HW13]. Theorem 1.2 im-
plies that the fiber subgroup of G′ ≤ A(Γ), which is always distorted,
necessarily contains words that are conjugate into star subgroups.
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Regarding the third statement of Theorem 1.2, it is not generally true
that a finitely generated free subgroup of A(Γ) must intersect A(Λ) in
a finitely generated group; we give a counterexample in Section 8. We
call statement (3) the Hanna Neumann property for free subgroups of
right-angled Artin groups.

1.3. Motivation from mapping class groups. In the mapping class
group Mod(S), typical (as in [Riv08, Mah11, Sis11]) elements are pseudo-
Anosov. Here pseudo-Anosov mapping classes may be defined as those
with unbounded orbit in the mapping class group action on its associ-
ated curve graph C(S), a famously hyperbolic space [MM99]. Pseudo-
Anosov elements are also alternately characterized by being Morse,
having virtually infinite cyclic centralizers, and having contracting axes
in relevant spaces [Beh06, Min96].

Farb and Mosher [FM02] introduced the notion of convex cocom-
pact subgroups of Mod(S), which they defined as the finitely gener-
ated subgroups with quasiconvex orbit in Teichmüller space. Such sub-
groups are purely pseudo-Anosov, meaning all infinite-order elements
are pseudo-Anosov. Subsequent work has led to alternate characteri-
zations: Kent and Leininger, and, independently, Hamenstädt, proved
the equivalence of convex cocompactness and (1) below, while Durham
and Taylor proved the equivalence of convex cocompactness and (2).

Theorem 1.3 ([DT14, Ham05, KL08]). A finitely generated H <
Mod(S) is convex cocompact if and only if either of the following equiv-
alent conditions hold:

(1) Some (any) orbit map from H into C(S) is a quasi-isometric
embedding.

(2) H is stable in Mod(S).

Postponing to Section 1.4 our comments on the apparent similarities
between Theorems 1.1 and 1.3, let us first remark that Theorem 1.3
does not include the element-wise condition known to be necessary for
convex cocompactness: that the group H is purely pseudo-Anosov. In
fact, this is an open question that has received much recent attention.

Question 1.4 (Farb–Mosher). Are finitely generated, purely pseudo-
Anosov subgroups necessarily convex cocompact?

So far, this question has been answered only in special cases. It is
easily seen to be true for subgroups of Veech groups, which preserve a
hyperbolic disk isometrically embedded in Teichmüller space [KL07].
A more significant case is resolved by [DKL12] (generalizing [KLS09])
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who answer affirmatively for subgroups of certain hyperbolic 3-manifold
groups embedded in Mod(S).

Theorem 1.1 completes the affirmative answer for a third case, the
family of mapping class subgroups studied by the second and third au-
thors in [MT13]. That paper considers what the authors call admissible
embeddings ofA(Γ) in Mod(S), whose abundant existence is established
in [CLM12]. The central result of [MT13] is that, if A(Γ) < Mod(S)
is admissible, then finitely generated H < A(Γ) < Mod(S) is convex
cocompact if and only if it is purely pseudo-Anosov and quasiconvex in
A(Γ) using the standard word metric. Since for any embedding of A(Γ)
into Mod(S), pseudo-Anosov elements in the target are the images of
loxodromic elements of A(Γ), Theorem 1.1 renders the quasiconvex
condition redundant:

Corollary 1.5. If A(Γ) < Mod(S) is an admissible embedding, then
any finitely generated H < A(Γ) < Mod(S) is convex cocompact if and
only if it is purely pseudo-Anosov.

1.4. Motivation from right-angled Artin group geometry. From
another point of view, Theorem 1.1 can be read as an affirmative an-
swer for the right-angled Artin group analogue of Question 1.4. More
precisely, Question 1.4 asks whether for a finitely generated subgroup
H ≤ A(Γ), the element-wise condition of being pseudo-Anosov is strong
enough to guarantee the global property of being convex cocompact.
Theorem 1.1 gives a positive answer to the corresponding question
within a right-angled Artin group. The analogy arises from parallel
conditions (1) and (2) in Theorems 1.1 and 1.3, along with the corre-
sponding characterizations of loxodromic elements in A(Γ) and pseudo-
Anosov elements in Mod(S). We refer to [KK14a] for a detailed account
of the analogy between Γe and C(S).

The proof of Theorem 1.1 establishes the equivalence of (1)-(3) via
a fourth condition, that H is join-busting. Let Γ be a connected and
anti-connected graph, and let H < A(Γ) be a finitely generated purely
loxodromic subgroup. For a natural number N , we say that H is N–
join-busting if whenever w ∈ H is a reduced word in A(Γ) and β ≤ w
is a join subword, then `A(Γ)(β) ≤ N . (Join subwords are defined in
Section 2.2; they are the portions of the word w that live in flats of
A(Γ).) We say H is join-busting if it is N–join-busting for some N .
Intuitively, geodesics between elements in a join-busting subgroup can
spend only bounded bursts of time in embedded Z⊕ Z flats.

1.5. Organization of paper. Section 2 fixes notation and background
about right-angled Artin groups, including in Section 2.4 a summary of
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results about extension graphs and recipes for producing many purely
loxodromic subgroups.

An important tool for the proof of Theorem 1.1 are what we call
disk diagrams, which are dual to van Kampen diagrams and relate to
the cubical structure of A(Γ). These are defined in Section 3 and yield
useful lemmas collected in Section 4.

In Section 5, we prove Theorem 5.2, that finitely generated purely
loxodromic subgroups are join-busting. In Section 6, we prove that
join-busting subgroups fulfill Statement (2) of Theorem 1.1 (Corollary
6.2), and we give more details on that condition, called stability, which
is a kind of strong quasiconvexity.

We prove Theorem 1.1 in Section 7, and Theorem 1.2 in Section 8.

1.6. Acknowledgments. The first named author is partially supported
by NSF grant DMS-1203964. The second named author is partially
supported by NSF DMS-1204592. The third named author is partially
supported by NSF grant DMS-1400498

2. Background

2.1. Coarse geometry. For metric spaces (X, dX) and (Y, dY ) and
constants K ≥ 1 and L ≥ 0, a map f : X → Y is a (K,L)-quasi-
isometric embedding if for all x1, x2 ∈ X,

1

K
dX(x1, x2)− L ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + L.

A quasi-isometric embedding is simply a (K,L)–quasi-isometric em-
bedding for some K,L. If the inclusion map of a subgroup H into the
finitely generated group G is a quasi-isometric embedding, we say H is
undistorted in G (this is independent of the word metric on G).

When a quasi-isometric embedding f : X → Y has the additional
property that every point in Y is within a bounded distance from the
image f(X), we say f is a quasi-isometry and X and Y are quasi-
isometric.

Where I is a subinterval of R or Z, we call a (K,L)-quasi-isometric
embedding f : I → Y a (K,L)-quasi-geodesic. If K = 1 and L = 0,
then f : I → Y is a geodesic. When we refer to a K-quasigeodesic, we
mean a (K,K)-quasigeodesic as we have defined it here.

A subset C ⊂ X is K-quasiconvex if for any x, y ∈ C and any
geodesic [x, y] between x, y in X,

[x, y] ⊂ NK(C),
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where NK(·) denotes the K-neighborhood. We say C is quasiconvex if
it is K-quasiconvex for some K. When we speak of a quasiconvex sub-
group H of a group G, we have fixed a word metric on G with respect to
some finite generating set (changing generating sets can change which
subgroups are quasiconvex).

A quasi-geodesic γ in a metric space X is called Morse or stable if
every (K,L)–quasi-geodesic with endpoints on γ is within a bounded
distance of γ, depending only on K and L. For a finitely generated
group G and g ∈ G, g is called a Morse element of G if 〈g〉 is a Morse
quasigeodesic in G with respect to some (any) generating set for G. A
generalization of stability to subgroups H ≤ G is recalled in Section 6.

2.2. RAAGs, graphs, joins, and stars. Fix a finite, simplicial graph
Γ with vertex set V (Γ) and edge set E(Γ), where edges are unordered
pairs of distinct vertices. The right-angled Artin group with defining
graph Γ is the group presented by

〈v ∈ V (Γ) : [v, w] = 1 if and only if {v, w} ∈ E(Γ)〉.

A graph Γ is a join if there are nonempty subgraphs J1, J2 ⊂ Γ such
that Γ = J1 ∗J2. Here, the star notation means that every vertex of J1

is adjacent to every vertex of J2.
We call the generators v ∈ V (Γ) the vertex generators of A(Γ) and

note that whenever we say that an element g ∈ A(Γ) is represented
by a word w, we always mean a word in the vertex generators. Call a
word w representing g ∈ A(Γ) reduced if it has minimal length among
all words representing g. Throughout, we use equality “=” on words
to denote equality in the group A(Γ), i.e. w = w′ if and only if w
and w′ represent the same element in A(Γ). If g ∈ A(Γ) and w is a
reduced word representing g, we say that v ∈ V (Γ) is in the support of
w, written v ∈ supp(w), if either v or v−1 occurs as a letter in w. It is
well-known that the support of g ∈ A(Γ) is well-defined, independent
of reduced representative.

We say a simplicial graph is connected if it is connected as a simplicial
complex. The opposite graph of a simplicial graph Γ is the graph Γopp,
whose vertices are the same as those of Γ, and whose edges are {{v, w} |
{v, w} /∈ E(Γ)}. A simplicial graph is anti-connected if its opposite
graph is connected. Note that a graph is anti-connected if and only if
it does not decompose as a nontrivial join.

Of particular importance are the subgroups of A(Γ) that nontrivially
decompose as direct products. Say that an induced subgraph J of Γ is a
join (or subjoin) of Γ if J itself is a join subgraph. We call the induced
subgroup A(J) ≤ A(Γ) (or one of its conjugates) a join subgroup. An
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element g ∈ A(Γ) is said to be a join word if g is conjugate into a join
subgroup of A(Γ). It is a theorem of Servatius [Ser89] that g ∈ A(Γ)
lives in a Z⊕ Z subgroup of A(Γ) if and only if g is a join subword of
A(Γ). (This is part of Theorem 2.2 below).

Let v ∈ V (Γ) be a vertex. The star of v, written St(v), is the vertex
v together with the link of v, written Lk(v), which is the set of vertices
adjacent to v. A star subgroup is a subgroup of a right-angled Artin
group generated by the vertices in a star. Note that a star of a vertex
is always a join, but the converse is generally not true. A reduced word
w ∈ A(Γ) is a star word if it is conjugate into a star subgroup of A(Γ).
Note again that a star word is always a join word, but the converse is
generally not true.

2.3. The Salvetti complex and its hyperplanes. In the study of
the geometry of a right-angled Artin group, it is often useful to consider
a canonical K(G, 1) for a right-angled Artin group A(Γ), called the
Salvetti complex ofA(Γ), which we denote by S(Γ). For the convenience
of the reader, we recall a construction of S(Γ).

Let n = |V (Γ)|. We consider the 1–skeleton of the unit cube In ⊂ Rn

with the usual cell structure, and we label the 1–cells of In which
contain the origin by the vertices of Γ. If K is a complete subgraph of
Γ, we attach the corresponding sub-cube of In labeled by the relevant
1–cells. Doing this for every complete subgraph of Γ, we obtain a
subcomplex X(Γ) ⊂ In. We write S(Γ) = X(Γ)/Zn, where we have
taken the quotient by the usual Zn–action on Rn.

It is easy to check that S(Γ) is a compact cell complex and that
π1(S(Γ)) ∼= A(Γ). By the Milnor–Schwarz Lemma, we have that A(Γ)

is quasi-isometric to S̃(Γ), the universal cover of S(Γ). By construction,

the labeled 1–skeleton of S̃(Γ) is also the Cayley graph of A(Γ) with
respect to the generating set V (Γ). Consequently, reduced words in

A(Γ) correspond to geodesics in S̃(Γ)(1), which we call combinatorial

geodesics. We refer to distance in S̃(Γ)(1) as combinatorial distance.

By combinatorial quasiconvexity, we mean quasiconvexity in S̃(Γ)(1).

It is well-known that S̃(Γ) is a CAT(0) cube complex. This structure
will be important to our proofs, so we record some relevant definitions
here. In S(Γ), each edge ev (labeled by the generator v) is dual to
a hyperplane Hv determined as follows: let m be the midpoint of ev.
For every sub-cube ev × Ik in X(Γ), the midcube dual to ev is the set
m× Ik; we define Hv as the image in S(Γ) of all midcubes dual to ev.
Observe that, by construction, Hv and Hu intersect if and only if v and
u commute. The lifts of hyperplanes in S(Γ) define similarly labeled
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hyperplanes dual to edges in S̃(Γ). Each of these latter hyperplanes

separates S̃(Γ) into two convex sets. It follows that the combinatorial
distance between a pair of vertices equals the number of hyperplanes

in S̃(Γ) separating those vertices.

2.4. Extension graphs and a profusion of purely loxodromic
subgroups. In this section, we record some facts about the extension
graph Γe, and we establish the existence of many purely loxodromic
subgroups of right-angled Artin groups.

Let Γ be a finite simplicial graph. The extension graph Γe of Γ is the
graph whose vertices are given by {vg | v ∈ V (Γ), g ∈ A(Γ)}, and whose
edges are given by pairs {{vg, wh} | [vg, wh] = 1}. Here, vg = g−1vg.

Note that the conjugation action of A(Γ) on itself induces an action
of A(Γ) on Γe by isometric graph automorphisms.

Theorem 2.1 (See [KK13], [KK14a]). Let Γ be a finite, connected,
and anti-connected simplicial graph with at least two vertices.

(1) The graph Γe is connected.
(2) The graph Γe has infinite diameter.
(3) The graph Γe is locally infinite.
(4) The graph Γe is quasi-isometric to a regular tree of infinite va-

lence. In particular, Γe is δ–hyperbolic.
(5) The action of A(Γ) on Γe is acylindrical. In particular, every

nonidentity element of A(Γ) is elliptic or loxodromic, depending
on whether its orbits in Γe are bounded or unbounded.

(6) A nontrivial cyclically reduced element of A(Γ) is elliptic if and
only if its support is contained in a subjoin of Γ. In particular,
A(Γ) contains a loxodromic element.

(7) Any purely loxodromic subgroup of A(Γ) is free.

Hence, using Theorem 2.1, we refer to an element of A(Γ) as loxo-
dromic if it acts as a loxodromic isometry of Γe. Combining results of
[Ser89, BC12, KK14a] we state the following characterization of loxo-
dromic elements of A(Γ) for easy reference to the reader.

Theorem 2.2 (Characterization of loxodromics). Let g ∈ A(Γ). The
following are equivalent:

(1) g is loxodromic.

(2) g acts as a rank 1 isometry on S̃(Γ).
(3) The centralizer CA(Γ)(g) is cyclic.
(4) g is not conjugate into a join subgroup, i.e. g is not a join

subword.
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A single loxodromic element of A(Γ) generates an infinite, purely
loxodromic subgroup of A(Γ). Items (4) and (5) of Theorem 2.1 allow
us to produce many non-cyclic purely loxodromic subgroups:

Proposition 2.3. Let λ ∈ A(Γ) be a loxodromic element. There is an
N which depends only on Γ such that the normal closure ΛN of λN in
A(Γ) is purely loxodromic.

Proof. We have that Γe is a δ–hyperbolic graph on which A(Γ) acts
acylindrically. By [DGO11], Theorem 2.29, we have N � 0 for which
the normal closure ΛN of λN is purely loxodromic and free, and this
constant N depends only on the hyperbolicity and acylindricity con-
stants of the A(Γ) action on Γe. �

We remark that, if a finite set of loxodromic elements of A(Γ) is pair-
wise independent (i.e., no two elements have conjugate powers), then
a standard argument in hyperbolic geometry proves that sufficiently
high powers of these elements generate a purely loxodromic group.
Moreover, by following the arguments in [DGO11], one can verify a
generalization of Propositon 2.3: there exist powers of these elements
whose normal closure (as a set) is purely loxodromic.

Proposition 2.3 shows that there are enough loxodromic elements in
A(Γ) for them to be present in every nontrivial normal subgroup:

Theorem 2.4. Let Γ be an anti-connected graph with at least two ver-
tices, and let 1 6= G < A(Γ) be a normal subgroup. Then G contains a
loxodromic element of A(Γ).

It is very easy to produce counterexamples to Theorem 2.4 if one
omits the hypothesis that Γ be anti-connected.

Proof of Theorem 2.4. Let 1 6= g ∈ G be any element, and let λ ∈ A(Γ)
be loxodromic. Let N be the constant furnished by Proposition 2.3.
Consider the element [g, λN ] ∈ G ∩ ΛN . If this commutator is the
identity then g commutes with λN , so that these two elements have a
common power. In particular, g is loxodromic. If the commutator is
not the identity then it represents a nontrivial loxodromic element of
G, since ΛN is purely loxodromic. �

We remark that Behrstock, Hagen, and Sisto [BHS] have very re-
cently introduced a different curve complex analogue, called the con-
tact graph, associated to RAAGs and more generally CAT(0) cubical
groups. Such a group’s action on its contact graph may be used to
define “loxodromic” elements in the group. In the RAAG case, the

contact graph CS̃(Γ) is equivariantly quasi-isometric to the extension
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graph Γe, except for in a few sporadic cases. Therefore both definitions
of loxodromic elements coincide, and one may add to Theorem 1.1 a

statement (1’), replacing Γe with CS̃(Γ).
Finally, we note forthcoming work by the third author and Tiozzo

[TT], which proves that typical subgroups of appropriate A(Γ) are
purely loxodromic. More precisely, let µ be a probability measure on
A(Γ) whose support generates A(Γ) as a semigroup, and consider k
independent random walks on A(Γ) whose increments are distributed
according to µ. They prove that the subgroup generated by the nth
step of each random walk is purely loxodromic with probability going
to 1 as n goes to infinity.

3. Disk diagrams in RAAGs

Our main technical tool are the disk diagrams introduced in [CW04]
(as “dissections of a disk”) and further detailed in [Kim08]. We present
the general theory here for the convenience of the reader.

3.1. Construction of a disk diagram. Suppose that w is a word in
the vertex generators of A(Γ) and their inverses which represents the
identity element in A(Γ). A disk diagram for w is a combinatorial tool
indicating how to reduce w to the empty word. Before giving a formal
definition, we show how to construct such a diagram.

Figure 1. Disk diagram for the identity word
abbāaaāb̄dcd̄abab̄āb̄dd̄āc̄ā, where x̄ is the inverse of x.

Consider the loop in S(Γ) determined by the word w, which we
continue to denote by w. This is the map w : S1 → S(Γ) that, starting
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at a basepoint in S1, parameterizes an edge path in S(Γ) spelling the
word w. (Throughout this paper, an edge path in S(Γ), or its universal
cover, spells a word w if w is the word obtained by recording the
labels on the oriented edges traversed by the path according to its
orientation.) Since w represents the trivial word in A(Γ), this map is
null homotopic in S(Γ). Denote by f : D → S(Γ) an extension of the
loop w to the unit disk, and homotope f rel ∂D so that it is transverse
to the hyperplanes of S(Γ). After doing so, all preimages of hyperplanes
through f consist of simple closed curves and properly embedded arcs.
Using standard techniques in combinatorial topology, perform a further
homotopy rel ∂D to remove all simple closed curve components in the
preimage and to ensure that no properly embedded arcs intersect more
than once. After performing such a homotopy, the preimage of each
hyperplane in S(Γ) is a collection of properly embedded disjoint arcs.

For the hyperplane Hv in S(Γ) dual to the edge ev representing v,
there are two co-orientations corresponding to the two orientations of
the edge ev. We label each of these two co-orientations on Hv either v
or v−1 corresponding to the label on the oriented edge. By pulling back
the co-orientation of Hv, we likewise label the co-orientation of each arc
in the preimage of Hv. This is to say that an arc in the preimage of
Hv is labeled with both the symbol v and a transverse arrow. Crossing
the arc in the direction indicated by the arrow corresponds to reading
the label v and crossing in the reverse direction reads the label v−1.
The oriented disk D together with this collection of labeled, co-oriented
properly embedded arcs is called a disk diagram for w and is denoted
by ∆. See Figure 1.

3.2. Formal definition. Our disk diagrams follow the definition in
[Kim08]. For a word w representing the trivial element in A(Γ), a disk
diagram (or dual van Kampen diagram) ∆ for w in A(Γ) is an oriented
disk D together with a collection A of co-oriented, properly embedded
arcs in general position, satisfying the following:

(1) Each co-oriented arc of A is labeled by an element of V (Γ) or its
inverse such that arcs with opposite orientations have inverse
labels. Moreover, if two arcs of A intersect then the generators
corresponding to their labels are adjacent in Γ.

(2) With its induced orientation, ∂D represents a cyclic conjugate
of the word w. In other words, there is a point ∗ ∈ ∂D such
that traversing ∂D according to its orientation starting at ∗ and
recording the labels of the arcs of A so encountered spells the
word w.
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We think of the boundary of D as subdivided into edges and labeled
according to the word w, such that the label on an oriented edge in this
subdivision agrees with the label on the co-oriented arc of A meeting
this edge. In this way, each arc of A corresponds to two letters of w
which are represented by oriented edges on the boundary of ∆.

While not required by the definition, it is convenient to restrict our
attention to tight disk diagrams, in which arcs of A intersect at most
once.

3.3. Interchangeable interpretations. In Section 3.1, we saw that
any word representing the identity has a disk diagram induced by a
null-homotopy f : D → S(Γ). Here we show how any disk diagram can
be induced by such a map. This uses the duality, observed in [CW04]
and detailed in [Kim08], between disk diagrams and the more familiar
notion of van Kampen diagrams. For a general discussion of the latter,
see [Sap14] or [LS01]. We recall the relevant details here.

A van Kampen diagram X ⊂ S2 for a word w representing the
identity in A(Γ) is a simply connected planar 2–complex equipped with
a combinatorial map into S(Γ) whose boundary word is w. Such a map
may be expressed by labeling the oriented 1–cells of the diagram X
with vertex generators and their inverses in such a way that every 2–
cell represents a (cyclic conjugate of) a relator of A(Γ), i.e. a 2–cell of
S(Γ). The boundary word of X is the cyclic word obtained by reading
the labels of ∂X, and X represents a null-homotopy of its boundary.

Figure 2. On left, a van Kampen diagram for the same
identity word shown in Figure 1. On right, the dual disk
diagram; its arcs continue to a single “vertex at infinity,”
not shown (compare to Figure 1 in [Kim08]).

While X itself is not necessarily a disk, it has a small neighborhood
in S2 which deformation retracts onto X, and which is a disk D. The
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composition of the retract from D to X and the map of X into S(Γ)
gives a map f : D → S(Γ) such that pre-images of hyperplanes are
properly embedded arcs in D which induce a disk diagram for w.

It is shown in [Kim08] that any disk diagram for w is dual in S2

to a van Kampen diagram with boundary word w, and vice versa. In
particular, given a disk diagram, one obtains a van Kampen diagram
by simply taking its dual complex; see Figure 2.

3.4. Surgery and subwords. Starting with a disk diagram ∆ for
w, one can often extract useful information about a subword of w by
surgering ∆ along properly embedded arcs. In details, suppose that γ
is a properly embedded, oriented arc in ∆ which is either an arc of A
or transverse to the arcs of A. Traversing γ according to its orientation
and recording the labels of those arcs of A so crossed according to their
co-orientation spells a word y in the standard generators. We say the
word y is obtained from label reading along γ.

In particular, starting with a subword w′ of w, any oriented arc γ
of D which begins at the initial vertex of w′ and ends at the terminal
vertex of w′ produces a word y via label reading such that w = y in
A(Γ). To see this, note that the arc γ cuts the disk D into two disks D′

and D′′, one of which (say D′) determines the homotopy (and sequence
of moves) to transform the word w′ into y. This is to say that the disk
D′ along with arcs coming from ∆ is a disk diagram for the word w′ȳ,
and we say that this diagram is obtained via surgery on ∆. This simple
observation will be important to our arguments.

Here let us record a few lemmas enabled by surgery. The first appears
as Lemma 2.2 in [Kim08].

Lemma 3.1. Suppose an arc of A in a disk diagram ∆ for the identity
word w cuts off the subword w′, i.e., w = svw′v−1t, where s, w′, and
t are subwords and v, v−1 are letters at the ends of the arc. Then
w′ ∈ St(v).

We omit the proof, which is straightforward, and can be found in
[Kim08].

If a subword in a disk diagram has the property that no two arcs
emanating from it intersect, let us say that this subword is combed in
the disk diagram. The property of being combed will be important in
Sections 4 and 5.

Lemma 3.2. Suppose w is a word representing the identity and b is a
subword of w, so w is the concatenation of words a, b, and c. Let ∆ be
a disk diagram for w.
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Then there exists a word b′ obtained by re-arranging the letters in b,
such that b′ = b and there exists a disk diagram ∆′ for ab′c in which
b′ is combed, arcs emanating from b′ have the same endpoint in the
boundary subword c̄a as their counterpart in b, and arcs that both begin
and end in c̄a are unchanged in ∆′.

Furthermore, there exists a word b′′ obtained by deleting letters in b′,
such that b′′ = b and there exists a disk diagram ∆′′ for ab′′c which is
precisely ∆′ without the arcs corresponding to the deleted letters.

Proof. Start with any tight disk diagram ∆ for w and consider the arcs
emanating from b. If a pair of arcs from b intersect, they cut out a piece
of the disk in which one can find an innermost intersection between
arcs from b, meaning arcs emanating from letters x and z so that b
decomposes as sxyzt, no arc from a letter in the subword y intersects
any other arc, and arcs from x and z intersect at a point p. This means
that all arcs that start in y end in y. Consequently, one can divide
the disk with an arc γ which is disjoint from A and which divides
the boundary into two components, one of which corresponds to y.
Surgery using γ shows that y equals the identity. Then sxyzt = szyxt.
Let b1 = szyxt and let w1 = ab1c.

We now describe a tight disk diagram ∆1 for w1 in which the num-
ber of intersections among arcs emanating from b1 is one less than the
number of intersections among arcs emanating from b in the original
disk diagram. In ∆, divide the arcs from x and z into proximal and
distal segments, corresponding respectively to the part of the arc be-
tween b and the intersection point p and the part of the arc between
p and its other endpoint on the boundary. Because ∆ is tight, an arc
intersects the proximal part of the x arc if and only if it intersects the
proximal part of the z arc.

Let the arc z′ consist of the proximal part of x and the distal part
of z, and let x′ consist of the proximal part of z and the distal part of
x. It is evident that x′ and z′ may be perturbed in a neighborhood of
p, to be disjoint. Then ∆1 is obtained by switching boundary letters x
and z, and replacing their corresponding arcs with the arcs x′ and z′.
See Figure 3. By repeating this process as many times as the original
number of intersections between arcs from b in ∆, we obtain a disk
diagram ∆n for wn in which the subword bn is combed, and bn is equal
to b and obtained by rearranging its letters.

To obtain b′′ and ∆′′, delete arcs with both ends in b′, by again finding
innermost such arcs, which come from subwords of the form vv−1. �
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Figure 3. On the left, part of ∆; on the right, part of ∆1.

3.5. Reducing diagrams. In our applications, disk diagrams will come
with some additions structure. Let h be a word in the vertex genera-
tors of A(Γ), which is not assume to be reduced in any sense. Let w
denote a reduced word in the vertex generators which represents the
same group element, i.e. w = h in A(Γ). Then, the word hw̄ represents
the identity in A(Γ) and so it is the boundary of some disk diagram ∆.
(Here w̄ denotes the inverse of the word w.) In this situation, we record
that the boundary of ∆ consist of two words h and w̄ and we draw the
diagram as in Figure 4. We sometimes refer to a disk diagram con-
structed in this way as a reducing diagram as it represents a particular
way of reducing h to the reduced word w. For such disk diagrams, ∂D
is divided into two subarcs (each a union of edges) corresponding to the
words h and w; we call these subarcs the h and w subarcs, respectively.

w

h

Figure 4. Segmented orientation in a reducing diagram.

Suppose that ∆ is a disk diagram that reduces h to the reduced
word w. Since w is already a reduced word, no arc of A can have
both its endpoints on the w subarc of ∂D. Otherwise, one could surger
the diagram to produce a word equivalent to w with fewer letters.
Hence, each arc of A either has both its endpoints on the subarc of
∂D corresponding to h, or it has one endpoint in each subarc of ∂D.
In the former case, we call the arc (and the letters of h corresponding
to its endpoints) noncontributing since these letters do not contribute
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to the reduce word w. Otherwise, the arc is called contributing (as is
the letter of h corresponding the endpoint contained in the h subarc of
∂D). If h as a word is partitioned into a product of subwords abc, then
the contribution of the subword b to w is the set of letters in b which
are contributing. We remark that whether a letter of h is contributing
or not is a property of the fixed disk diagram that reduces h to w.

For Section 8, we loosen the definition of a reducing diagram so that
the word w is only partially reduced. That is, rather than requiring
w be minimal length in A(Γ), we simply require that no arc in ∆ has
both endpoints in w. Then it is clear that w still has length in A(Γ)
no longer than that of h.

4. Disk diagram applications

In this section we consider elements of H a finitely generated, star-
free subgroup of A(Γ); such subgroups include but are more general
than purely loxodromic subgroups. In Section 8 we include a short
proof that star-free subgroups are necessarily free, but we do not re-
quire that knowledge here. We do note that, by finite generation, the
inclusion of H into A(Γ) is proper with respect to any word metric on
both groups.

Here we employ disk diagrams, described in Section 3, to derive
several useful lemmas about finitely generated, star-free subgroups. Fix
a finite generating set S for H and a reduced word representative for
each generator in S. An element h ∈ H can be expressed as a geodesic
word in H, that is, h = h1 · · ·hn such that hi ∈ S and n is minimal.
We use a disk diagram with boundary word (h1 · · ·hn)h−1, where h
and each hi are written as reduced words in A(Γ). In other words,
we concatenate the reduced word representatives for the hi to obtain
a word representing h = h1 · · ·hn and consider a reducing diagram for
this word. With our choices fixed, we call such a reducing diagram for
h simply a disk diagram for h ∈ H. Recall that every letter in the disk
diagram is connected by an arc to its inverse somewhere else in the disk
diagram, and if arcs intersect, the corresponding generators commute.

Lemma 4.1 (Cancellation diameter). Suppose H is a finitely gener-
ated, star-free subgroup of A(Γ). There exists D = D(H) with the
following property: If in a disk diagram for h ∈ H, a letter in hi is
connected to a letter in hj, then j − i < D.

Proof. Suppose in a disk diagram for h ∈ H, a letter g in hi is connected
to a letter g−1 in hj. By Lemma 3.1, hi · · ·hj = σMτ , where M is in
the star of g, and σ, τ are a prefix of hi and suffix of hj respectively.



18 THOMAS KOBERDA, JOHANNA MANGAHAS, AND SAMUEL J. TAYLOR

Therefore, if the lemma is false, there a sequence of reduced-in-H
words

hti(t) · · ·htj(t) = σtMtτt

as above, with j(t)−i(t) increasing. Because Γ is finite and H is finitely
generated, we may pass to a subsequence so that the Mt are in the star
of the same generator, and furthermore we have constant σt = σ and
τt = τ , while Mt 6= Ms for s 6= t. Then for any s 6= t,

hsi(s) · · ·hsj(s)(hti(t) · · ·htj(t))−1 = σMsM
−1
t σ−1

which is conjugate into a star, a contradiction. �

Consider hi · · ·hj a subword of h = h1 · · ·hn reduced in H as above.
For D the constant of Lemma 4.1, we have

Lemma 4.2. The subword hi · · ·hj may be written as σWτ , where the
letters in σ come from hi−D · · ·hi−1 when i > D, and from h1 · · ·hi−1

otherwise; the letters in τ come from hj+1 · · ·hj+D when j ≤ n − D
and from hj+1 · · ·hn otherwise; and the letters in W correspond to the
contribution of hi · · ·hj to the reduced word for h in A(Γ).

Proof. Consider a disk diagram for (h1 · · ·hn)h−1, and let b be the sub-
word hi · · ·hj. Lemma 3.2 provides a word b′′ = b and a disk diagram
for (h1 · · ·hi−1b

′′hj+1 · · ·hn)h−1 in which all arcs emanating from b′′ ter-
minate in hj+1 · · ·hnh−1h1 · · ·hi−1 and no two arcs from b′′ intersect.
Then it is clear that b′′ partitions into subwords σ,W , and τ , whose
arcs connect to h1 · · ·hi−1, h, and hj+1 · · ·hn respectively. Recall that
the disk diagram furnished by Lemma 3.2 differs from the original only
by removing or shuffling endpoints of arcs in b. Lemma 4.1 implies
that the arcs that do not contribute to h end within the subwords
claimed. �

Lemma 4.3 (Bounded non-contribution). Given H a finitely gener-
ated, star-free subgroup of A(Γ), there exists K = K(H) such that, if
hi · · ·hj is a subword of a reduced word for h in H which contributes
nothing to the reduced word for h in A(Γ), then j − i < K.

Proof. Consider a vanishing subword, that is, a subword that con-
tributes nothing to the reduced word for h in A(Γ). By Lemma 4.1, this
subword hi · · ·hj reduces in A(Γ) to LR, where the letters in L come
from hi · · ·hi+D−1 and the letters in R come from hj−D+1 · · ·hj. There-
fore `A(Γ)(LR) ≤ 2D · max{`A(Γ)(hi)}, so there are only finitely many
elements in A(Γ) that might equal LR. Since the inclusion H → A(Γ)
is proper, there is a K ≥ 0 so that no word in H of length greater than
K reduces to a work in A(Γ) of length less then 2D · max{`A(Γ)(hi)}.
Hence, j − i = |hi · · ·hj|H ≤ K. �
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Proposition 4.4 (Undistorted). Finitely generated star-free subgroups
are quasi-isometrically embedded.

Proof. For h ∈ H < A(Γ) fulfilling the hypotheses, we have

`H(h)/(K + 1) ≤ `A(Γ)(h) ≤ `H(h) ·max{`A(Γ)(hi)}
where K is from Lemma 4.3. �

5. Join-busting in purely loxodromic subgroups

Recall that H is N–join-busting if, for any reduced word w repre-
senting h ∈ H, and any join subword β ≤ w, we have `A(Γ)(β) ≤ N .
In this section we prove that purely loxodromic subgroups of A(Γ) are
N–join-busting. Before proving this result (Theorem 5.2 below), let us
introduce some terminology. A word w in a join subgroup A(J) < A(Γ)
is said to be M–homogeneous with respect to J if every subword w′ of
w with length at least M contains every letter appearing in J . Note
that w is always M–homogeneous for M = `A(Γ)(w).

Lemma 5.1. Let H be a finitely generated subgroup of A(Γ). Suppose
hk ∈ H is a sequence of words with reduced decomposition akwkbk,
where wk are join subwords and `A(Γ)(wk)→∞. Then for some M ≥ 1
there exists such a sequence in H so that the wk are M–homogeneous
with respect to the same join.

Proof. Since there are only finitely many joins in the graph Γ, after
passing to a subsequence, we may assume that the wk are supported on
a common join. If there is no M so that the sequence wk is eventually
M–homogeneous, then we can find arbitrarily large subwords of wk

supported on a proper subjoin. After again passing to a subsequence,
we may assume that these subjoins are constant. In this manner, we
obtain a new sequence of words h2

k = a2
kw

2
kb

2
k such that |w2

k| → ∞
and the letters of w2

k are contained in a common proper subjoin of
the support of wk. Now either w2

k are eventually M–homogeneous, for
some M ≥ 1, or we may iterate the process. Since there are only finitely
many joins, each of finite size, this process terminates in a sequence of
words in H which contribute M–homogeneous subwords of unbounded
size and supported on the same join in Γ. �

Theorem 5.2. Let H < A(Γ) be finitely generated and purely loxo-
dromic. There exists an N = N(H) such that H is N–join-busting.

Proof. Fix a finite free generating set S for H and reduced word repre-
sentatives for each generator in S. Suppose the contrary of the theorem,
so that we have a sequence {hk} ⊂ H of elements with reduced decom-
positions hk = akwkbk, where the wk are join subwords of unbounded
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length. Fix disk diagrams for (hk)−1(akwkbk) so that arcs emanating
from wk do not intersect each other, using Lemma 3.2. Recall that we
refer to this condition when we say that the arcs for wk are combed in
the disk diagram. By specifying this, we also fix a particular reduced
word representing wk. Note that here our disk diagram reduces hk,
written as a concatenation of our fixed representatives from S, to the
reduced word akwkbk.

By Lemma 5.1, we may suppose that the wk are M–homogeneous
for some uniform M , and that these contributions are supported on the
same join J . Recall that this assumption implies that every subword of
wk of length at least M uses each letter coming from the subgraph J .
Because, in the proof of the lemma, our final wk are subwords of our
original wk, they retain the property that arcs emanating from them do
not intersect in our fixed disk diagrams (they are combed), and so we
can think of the wk as having fixed reduced form representatives. We
may also assume that `A(Γ)(wk) ≥ kM , by passing to a subsequence.

Each hk is represented in its disk diagram by a unique geodesic word
h1,k · · ·hs(k),k, where the hn,k are from our fixed generating set S.. For
k ≥ 2, let hI(k),k be the H–generator connected by an arc to the Mth
letter of wk, and hJ(k),k to the (`A(Γ)(wk) − M + 1)th letter of wk.
Because the arcs from wk are combed, I(k) ≤ J(k). For k sufficiently
large, depending on how many times the vertices of J correspond to
letters in a free generator for H, J(k)− I(k) > 1. In that case we may
set i(k) = I(k) + 1 and j(k) = J(k) − 1 and consider the nonempty
subword hi(k),k · · ·hj(k),k.

The subword h′k = hi(k),k · · ·hj(k),k is the largest whose contribution
to wk is M–deep, meaning that the subword contributes to wk but none
of its arcs connect to either the first or last M letters of wk. Because
the arcs of wk are combed, all letters of wk between the first and last
sets of M do connect to h′k, and therefore j(k)− i(k) is unbounded. In
particular, for sufficiently large k, we may consider the subwords

h′′k = hi(k)+D,k · · ·hj(k)−D,k

for D the constant from Lemma 4.1.
We may apply Lemma 4.2 and see that h′′k may be written as σkWkτk,

where the letters for σk correspond to arcs in h′′k that connect to
hi(k) · · ·hi(k)+D−1, and the letters for τk correspond to arcs in h′′k that
connect to hj(k)−D+1 · · ·hj(k). The letters in Wk correspond precisely
to the arcs in h′′k that connect to akwkbk. Any arc in h′′k that connects
to either ak or bk must cross the arcs from either the first or the last M
letters of wk; by our assumption of M–homogeneity, this means that
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those arcs correspond to letters that commute with all of J . In partic-
ular, every letter in Wk either belongs to J (if it is contributed to wk)
or is joined with all of J (if it is contributed to either ak or bk).

Now observe that there are only finitely many possibilities for σk and
τk, so we may pass to a subsequence where these are constant. That
is, we have a sequence

h′′′t = σWtτ

of words in H where `H(h′′′t ) is unbounded and each letter in Wt either
belongs to J or is joined with J . In particular we have h′′′s 6= h′′′t in this
sequence, and

h′′′t (h′′′s )−1 = (σWtτ)(τ−1W−1
s σ−1)

which is conjugate to WtW
−1
s . But WtW

−1
s is a join word, since it is

supported on J joined with {letters in Wt,Ws not in J}. This contra-
dicts that H is purely loxodromic. �

6. Stability of join-busting subgroups

Let G be a finitely generated group and let H ≤ G be a finitely
generated subgroup. We say that H is stable in G if H is undistorted
in G (i.e. H → G is a quasi-isometric embedding), and for any K ≥ 1
there is anM = M(K) ≥ 0 such that any pair ofK–quasigeodesics inG
with common endpoints in H have Hausdorff distance no greater than
M . This definition was introduced by the third author and Durham
in [DT14]. It is clear that stable subgroups of G are quasiconvex with
respect any word metric on G. In this section we prove that join-
busting subgroups of A(Γ) are stable. This will come as a corollary to
Theorem 6.1 below.

Say that an element g ∈ A(Γ) is N–join-busting if for any reduced
word w representing g and any join subword w′ of w, `A(Γ)(w

′) ≤ N . Of
course, a subgroup in A(Γ) is join-busting if and only if its nontrivial
elements are N–join-busting for some uniform N .

Theorem 6.1. Given K ≥ 1 and N ≥ 0, there exists M = M(K,N)
satisfying the following. Suppose g ∈ A(Γ) is N–join-busting and let w
be a combinatorial geodesic from v to gv. If p is a K–quasigeodesic edge

path in S̃(Γ) also joining v to gv, then the Hausdorff distance between
w and p is no more than M .

Proof. As before, we identify the edge paths p and w with the cor-
responding sequence of oriented edges, and hence the corresponding
word representing g ∈ A(Γ). As w is a geodesic path, it corresponds
to a reduced word representing g, which we continue to denote by w.
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We wish to bound the distance between the paths w and p. To do
this, we first fix a disk diagram ∆ realizing the reduction of p to the
reduced form w. For concreteness, suppose that ∆ is obtained from
a map f : D → S(Γ) as in Section 3. Retaining the same notation,

replace f with the lift f : D → S̃(Γ) such that portion of the boundary

of D representing p (or w) is mapped to the paths in S̃(Γ) spelling p
(or w). We immediately see that for any two points x, y ∈ ∂D, the
combinatorial distance between f(x) and f(y) is no greater than the
number of arcs of A crossed by any path in D from x to y.

Set B = 3N+1. Let b and d be oriented edges in w that are separated
by no fewer that B−2 edges of w. We first claim that if β and δ are the
arcs of A with endpoints in b and d, respectively, then, no arc of A can
intersect both β and δ. To see this, let w′ = b . . . d be the length ≥ B
subpath (subword) of w beginning with the edge b and terminating
with the edge d. If there is an arc ε ∈ A meeting both β and δ then
the subdiagram obtained via surgery corresponding to a concatenation
of a portion of β, ε, and δ shows that w′ ∈ st(β) · st(ε) · st(δ). Here,
we have continued to use the symbols β, ε, and δ to denote the vertex
generators labeling these arcs. Hence, w′ can be written as a product
of 3 join words and since |w′| ≥ B = 3N + 1, one of these join words
must have length greater than N . (Technically, we have that w′ has
some reduced spelling that is a product of 3 join words and so one of
the join words in this latter spelling has length greater than N .) This
contradicts the assumption that g is N–join-busting. Hence, no arc
of A crosses both β and δ. In particular, we see that β and δ do not
intersect.

This implies that we can decompose the geodesic w into subpaths as
follows:

w = e1 · w1 · e2 · w2 . . . en−1 · wn,

where `(wi) = B − 1 for 1 ≤ i ≤ n − 1, `(wn) ≤ B − 1, (n − 1)B <
l(w) ≤ nB, and each ei is a single edge with the property that if we
denote by αi the arc of A with endpoint in ei, then no arc of A crosses
any two of the αi. In particular, αi and αj are disjoint for i 6= j.

Since the αi ∈ A have their other endpoint in edges of the path p,
we have an induced decomposition:

p = p0 · e1 · p1 · e2 · p2 . . . en−1 · pn.
Set li = `(αi) to be the number of arcs of A that αi intersects (i.e. the
combinatorial length of the path αi), and set l0, ln = 0. We have the
following basic fact:

`(pk) ≥ lk + lk+1 − `(wk),(1)
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for all 0 ≤ k ≤ n. (Here we have set w0 to be the empty word.) To see
this, note that any arc of A which crosses αk must either cross the path
pk or wk, since the four paths in the above inequality form of subdisk
of ∆ and no arcs cross both αk and αk+1. As the same is true for arcs
crossing αk+1, this proves the inequality.

Now set M = 2((K + 1)(B + 1) + K) and let ei+1, . . . , ej−1 be any
maximal consecutive sequence for which li+1, . . . , lj−1 > M . For future
reference, note that any ek with lk > M lives in such a sequence. If no
such ei exist then it is easy to see that the paths p and w have Hausdorff
distance bounded in terms of B,M , and K, and we are done.

For this maximal sequence, consider the subpath of w

w′ = ei · wi · ei+1 · wi+1 . . . ej−1 · wj−1 · ej
and note that li, lj ≤M by maximality. Further, (j−i−1)B ≤ `(w′) ≤
(j − i)(B + 1). The subpath w′ induces the following subpath of p

p′ = ei · pi · ei+1 · pi+1 . . . ej−1 · pj−1 · ej,
and using the fact that p is a K–quasigeodesic and li, lj ≤ M , we see
that

`(p′) ≤ K(2M + `(w′)) +K

≤ K`(w′) + 2MK +K.

However, combining Inequality (1) together with the assumption that
M < lk for i+ 1 ≤ k ≤ j − 1 gives

2M(j − i− 1) ≤ 2

j−1∑
k=i+1

lk(2)

≤ `(p′) + `(w′)(3)

≤ (K + 1)`(w′) + 2MK +K.(4)

Assuming j − i− 1 ≥ 1 and dividing, we have

M ≤ K + 1

2
· `(w′)

j − i− 1
+K · M

j − i− 1
+

K

j − i− 1

≤ K + 1

2
· (B + 1)

j − i
j − i− 1

+K · M

j − i− 1
+

K

j − i− 1

≤ (K + 1)(B + 1) +K · M

j − i− 1
+K.

Since M = 2((K + 1)(B + 1) +K), the above inequality implies that

M ≤ 1

2
M +K · M

j − i− 1
,
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but this is only possible if j − i ≤ 2K + 1. This imposes the uniform
bound, `(w′) ≤ (K

2
+ 1)(B + 1). Returning to Inequality (2) with this

new information, we see that

max
i≤k≤j

lk ≤
j−1∑

k=i+1

lk

≤ 1

2
(K + 1)`(w′) +MK +

1

2
K.

≤ 1

2
(K + 1)(2K + 1)(B + 1) +MK +

1

2
K.

If we denote this last quantity by L, we see that L depends only on K
and N . Since any 1 ≤ k ≤ n with lk > M occurs in such a sequence
investigated above, we have lk ≤ L. Hence, for any 1 ≤ k ≤ n,

`(pk) ≤ K(2L+ (B − 1)) +K.

Hence, any vertex on the path p lies at distance at most

1

2
(K(2L+ (B − 1)) +K) + L

from the geodesic w. Further, any vertex on w lies at distance at most
1
2
(B−1)+L from the path p. This completes the proof of the theorem

by setting

S =
1

2
(K(2L+ (B − 1)) +K) + L,

where B = 3N + 1 and

L =
1

2
(K + 1)(2K + 1)(B + 1) +MK +

1

2
K

for M = 2((K + 1)(B + 1) +K). �

Corollary 6.2 (Join-busting implies stable). Suppose H ≤ A(Γ) is a
finitely generated, join-busting subgroup. Then H is stable in A(Γ). In
particular, H is combinatorially quasiconvex in A(Γ).

Proof. Suppose that H is N–join-busting. By Proposition 4.4, H is
undistorted in A(Γ). Hence, to prove stability of H in A(Γ) it suffices
to show that for any elements h1, h2 ∈ H there is a geodesic γ in A(Γ)
joining h1 to h2 such that if α is a K–quasigeodesic in A(Γ) also joining
h1 to h2, then the Hausdorff distance between α and γ is bounded by
M , depending only on K and N .

To see this, note that g = h−1
1 h2 ∈ H is N–join-busting by definition.

By Theorem 6.1, if we denote by w a geodesic in A(Γ) from 1 to g,
then the Hausdorff distance between w and h−1

1 · α is bounded by M ,
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where M depends only on N and K. (Here, we are using the identifica-
tion between the Cayley graph of A(Γ) with its vertex generators and

S̃(Γ)(1).) Setting γ = h1 · w completes the proof of the corollary. �

7. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1.

Proof. Suppose H < A(Γ) is finitely generated. First let us prove that
(3) implies (1), that is, if H is purely loxodromic then the orbit map
of H into Γe is a quasi-isometric embedding. By Theorem 5.2, we
know that, for any element of H written as a geodesic word in A(Γ),
the length of any join subword is bounded. As star subwords are join
subwords, this implies that star-length is bi-Lipschitz to A(Γ)–length
for elements in H. On the other hand, orbit distance in Γe is quasi-
isometric to star-length [KK14a]. Moreover, Proposition 4.4 says that
| · |H is bi-Lipschitz to | · |A(Γ) for elements in H. Therefore we may con-
clude that, for H a purely loxodromic, finitely generated subgroup of
A(Γ), the orbit map of (H, |·|H) into Γe is a quasi-isometric embedding.
The converse is immediate: if H → Γe is a quasi-isometric embedding,
no element of H can be elliptic, because these have bounded orbit, and
right-angled Artin groups are torsion-free.

We have seen in Corollary 6.2 that join-busting implies stability;
this and Theorem 5.2 proves that (3) implies (2). The converse follows
from the observation that, if a subgroup is stable, all its Z–subgroups
are stable, and therefore generated by loxodromic elements. To see
the latter claim, consider the cyclic subgroup generated by an elliptic
element w, whose centralizer contains some nontrivial c with 〈c, w〉 ∼=
Z ⊕ Z. If we represent w and c by reduced words, then the edge
paths corresponding to cnwnc−n and wn are a pair quasigeodesics whose
Hausdorff distance grows with n. Therefore 〈w〉 is not stable.

�

8. The Hanna Neumann property for star-free subgroups

In this section we complete the proof of Theorem 1.2. Let v ∈ V (Γ),
and let

Gv = 〈{w | w ∈ V (St(v))}〉,
i.e. the subgroup of A(Γ) generated by the vertices in the star of v. We
say that such a group Gv is a star subgroup of A(Γ). Let H < A(Γ) be
a subgroup. We say that H is star-free if for every 1 6= g ∈ H, we have
that g is not conjugate into a star subgroup of A(Γ). In other words,
there is no choice h ∈ A(Γ) and v ∈ V (Γ) such that gh ∈ Gv. In the
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language of [KK14a], H is star-free if for every 1 6= g ∈ H, a cyclically
reduced conjugate of g always has star length at least two.

Note that a purely loxodromic subgroup of A(Γ) is star-free, but the
converse is false. For example, one can take

F2 × F2
∼= 〈a, c〉 × 〈b, d〉.

If Γ is a square labeled cyclically by the vertices {a, b, c, d}, we have
that

A(Γ) ∼= 〈a, c〉 × 〈b, d〉.
Note that A(Γ) has no loxodromic elements in this case, but any cycli-
cally reduced word with full support is star-free. The subgroup 〈abcd〉
is cyclic, and every element is star-free. The following proposition
gives the exact relationship between star-free and purely loxodromic
subgroups of A(Γ):

Proposition 8.1. Let H ≤ A(Γ) be a finitely generated subgroup.
Then H is purely loxodromic if and only if H is star-free and com-
binatorially quasiconvex.

Proof. If H is purely loxodromic, then it is star-free by definition and
quasiconvex (with respect to any generating set) by Theorem 1.1.

Now suppose that H is star-free and combinatorially quasiconvex but
not purely loxodromic. As conjugating H preserves these conditions,
we may suppose that there is a join J ≤ Γ such that

HJ = H ∩ A(J) 6= 〈1〉.
Since both H and A(J) are combinatorially quasiconvex in A(Γ), HJ

is combinatorially quasiconvex in A(J). Since J is a join, J = X ∗ Y
where X and Y are nonempty subgraphs of Γ each of which is contained
in some star of Γ. This implies that HJ ≤ A(J) = A(X)× A(Y ) and

HJ ∩ A(X) = HJ ∩ A(Y ) = 〈1〉,
because H is star-free.

Let K ≥ 0 be the quasiconvexity constant for HJ ≤ A(J) = A(X)×
A(Y ). If hi ∈ HJ are distinct elements whose word lengths go to
infinity, then hi = xiyi and the lengths of either xi ∈ A(X) or yi ∈ A(Y )
also go to infinity. Suppose |xi|A(J) →∞. Then since the concatenation
[1, xi] ∪ [xi, xiyi] is a geodesic in A(J) = A(X) × A(Y ) and HJ is K-
quasiconvex, there must be a sequence pi ∈ A(X) and qi ∈ A(Y ) with
piqi ∈ HJ and |qi|A(Y ) ≤ K. As there are only finitely many elements
of A(Y ) of length no greater than K, there are i 6= j with qi = qj.
Then

1 6= piqi(pjqj)
−1 = pip

−1
j ∈ HJ ∩ A(X),



The geometry of purely loxodromic subgroups of right-angled Artin groups 27

a contradiction. �

Star-free subgroups are always free, even without the assumption of
finite generation:

Proposition 8.2. Let H < A(Γ) be a star-free subgroup. Then H is
free.

In particular, we obtain part (1) of Theorem 1.2. The proof of this
proposition is identical to the proof of Theorem 53 in [KK14a] [cf.
Theorem 2.1, item (7)]. We recall a proof for the convenience of the
reader.

Proof of Proposition 8.2. Suppose H 6= 1. Choose a vertex v ∈ V (Γ),
and let Γv be the subgraph of Γ spanned by V (Γ) \ {v}. Then we have

A(Γ) ∼= 〈St(v)〉 ∗〈Lk(v)〉 A(Γv),

so we get an action of A(Γ) on the tree associated to this splitting. Since
H is star-free, the action ofH has trivial edge stabilizer, so thatH splits
as a free product of subgroups of A(Γv) with possibly an additional free
factor. The proposition follows by induction on |V (Γ)|. �

Henceforth in this section, we will fix a finite free generating set S
for H as a subgroup of A(Γ). We also fix reduced word representatives
for each element of S.

Note that Proposition 4.4 gives part (2) of Theorem 1.2. So, we are
left with establishing part (3). In the remainder of this section, we will
prove:

Theorem 8.3. Let Γ be a finite simplicial graph, Λ < Γ an induced
subgraph, and let H < A(Γ) be a finitely generated star-free subgroup.
Then the group HΛ = H ∩ A(Λ) is also finitely generated.

Note that Theorem 8.3 does not exclude the possibility that HΛ is
the identity, and this will indeed be the case if Λ is contained in the
star of a vertex of Γ. Theorem 8.3 is false without the assumption that
H is star-free. For instance, consider the group A(P3) = F2×Z, where
the factors are generated by {a, b} and z respectively. Consider the
subgroup H = 〈az, b〉, which is a free subgroup of A(P3), and let us
look at its intersection with 〈a, b〉. We have that a word w in az and b
lies in 〈a, b〉 if and only if the a exponent of w is zero, i.e. w is in the
kernel of the homomorphism H → Z defined by az → 1 and b→ 0. It
follows that H ∩ 〈a, b〉 is infinitely generated.

In the proof of Theorem 8.3, we use the fact that we can control
cancellation distance within star-free subgroups in order to produce an
explicit finite generating set for HΛ.
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8.1. Cancellation patterns. Before proceeding, we must define can-
cellation patterns of vertices within words in the star-free subgroup H.
We will use the disk diagram terminology outlined in Section 3. Let
h ∈ H be an element viewed as a word in the free generating set S for
H, and fix a reducing diagram ∆ for h which realizes h as the reduced
word w in A(Γ). Using Lemma 3.2, we will assume the the disk diagram
∆ and the reduced word w have been chosen so that w is combed in ∆.
Thus, each letter of h has a co-oriented arc in ∆ attached to it, which
either has both endpoints in the subarc of ∂∆ labelled by h (in which
case the two vertices cancel), or which has one endpoint in the subarc
of ∂∆ labelled by w (in which case the vertex does not cancel and in
which case we call the arc contributing). Arcs in the reducing diagram
which are not contributing will be called non-contributing arcs. Every
arc in ∆ is labelled by a vertex of Γ or its inverse, depending on the
co-orientation of the arc.

w

h0

Figure 5. Reducing diagram indicating subword h0.
Light blue and dark blue arcs have both ends in h.

Let h0 be an H–subword of h, which is to say that if

h = s1 · · · sn,

where each si ∈ S, we have that

h0 = si · · · sj
for some 1 ≤ i ≤ j ≤ n. We will often use the notation h0 ≤ h for a
subword of h.

We now fix the H–subword h0 ≤ h and a reducing diagram ∆ for
h. Suppose v ∈ V (Γ). A v–cancellation partition for h0 is a partition
of the occurrences of v and v−1 in h0, viewed as an unreduced word in
the vertex generators of A(Γ), into eight sets

{L±v , R±v , I±v , N±v },
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where a set with a positive exponent only contains copies of the element
v and a set with a negative exponent only contains copies of the element
v−1. Intuitively, h0 ≤ h ∈ H is a subword in which occurrences of v
cancel in the reducing diagram ∆. The sets L+

v and R+
v correspond to

the copies of v which cancel to the left of h0 and to the right if h0, while
the sets L−v and R−v play the same respective roles for copies of v−1.
The sets I±v correspond to copies of v and v−1 which cancel internally
within h0, and N±v corresponds to copies of v and v−1 which do not
cancel at all when h is reduced within A(Γ). We will say that two
words have the same cancellation partition if the corresponding sets

{L±v , R±v , I±v , N±v }

have the same cardinality. If the word h0 is not clear from context, we
will write

{L±v (h0), R±v (h0), I±v (h0), N±v (h0)}
to eliminate any ambiguities.

In a reducing diagram ∆ for h, the copies of v and v−1 in L+
v and L−v

have non-contributing arcs emanating from them that move off to the
left of h0. Similarly, the copies of v and v−1 in R+

v and R−v have arcs
emanating from them that move off to the right of h0. The copies of v
and v−1 in I+

v ∪ I−v are connected by arcs with both endpoints in h0,
and the copies of v and v−1 in N+

v ∪N−v have vertical arcs connecting
them to w.

Observe that group inversion relates a cancellation partition for a
subword h0 ≤ h with a cancellation partition for the subword h−1

0 ≤
h−1, with respect to the reducing diagram for h−1 induced by the in-
versely labeled mirror image of the reducing diagram for h. Specifically,
we have

I±v (h0) = I∓v (h−1
0 ), N±v (h0) = N∓v (h−1

0 ),

and similarly

R±v (h0) = L∓v (h−1
0 ), L±v (h0) = R∓v (h−1

0 ).

We are now ready to define the cancellation pattern for a subword
h0 ≤ h. We delete all the arcs in the diagram ∆ which do not have
an endpoint in h0, and for the remaining arcs, we retain the original
co-orientation. Furthermore, we label each arc by the vertex of its
terminal endpoint in h0. We then draw two unoriented, simple arcs ι
and τ (for “initial” and “terminal”) in ∆ which satisfy the following
conditions:

(1) The arcs ι and τ connect the subarc of ∂∆ labelled by h to the
subarc of ∂∆ labelled by w.
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(2) Neither ι nor τ intersect any arcs of h that contribute to the
reduced word w. (This is possible since the word w is combed
in ∆.)

(3) If a non-contributing arc has exactly one endpoint in h0, then
the cancellation arc intersects exactly one of ι and τ exactly
once.

(4) There are no triple intersections of arcs.

w

h0

Figure 6. Choice of ι and τ .

The cancellation pattern P(h0) of h0 ≤ h with respect to the cho-
sen reducing diagram ∆ is the closed region of the reducing diagram
bounded by the boundary arcs, ι, and τ , together with the co-oriented,
labelled non-contributing arcs. Two words h1 and h2 have the same
cancellation pattern if P(h1) is homeomorphic to P(h2) via a home-
omorphism which is a label and co-orientation-preserving homeomor-
phism of the union of the non-contributing arcs, and which preserves
the boundary arcs of the cancellation pattern. Informally, two words
have the same cancellation pattern if the cancellations of letters in the
two words happen “in the same way.” It is clear from the pigeonhole
principle that a fixed word h0 ≤ h in H can have only finitely many
different cancellation patterns as h varies among all possible words in
H which contain h0 as a subword, up to the equivalence relation of
having the same cancellation pattern.

Fixing a reducing diagram ∆ for h and a subword h0 ≤ h, a cancella-
tion pattern of h0 is related to a cancellation pattern for h−1

0 ≤ h−1 in
a manner analogous to that of cancellation partitions. Again, we can
build a reducing diagram for h−1 by taking the mirror image of the re-
ducing diagram for h, inverting all the labels on the boundary arcs, and
switching all the co-orientations on the non-contributing arcs. Thus,
the natural choice for the cancellation pattern P(h−1

0 ) in h−1 is just the
mirror image of P(h0), with the labels ι and τ switched, the labels on
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boundary arcs inverted, and the co-orientations of the non-contributing
arcs switched.

h0

w

Figure 7. Cancellation pattern P(h0).

We remark briefly that when we define a cancellation pattern for a
subword h0 ≤ h, we keep track of all the non-contributing arcs, not
just the ones corresponding to a particular vertex of Γ. This point is
essential in the proof of Theorem 8.3.

8.2. The Hanna Neumann Property.

Proof of Theorem 8.3. By induction on |V (Γ)| − |V (Λ)|, it suffices to
prove the result for Λ equal to Γ with one vertex, say v, deleted. Given
h ∈ HΛ = H ∩A(Λ), we will decompose h into a product of two words
h = h1 · h2, where h1, h2 ∈ HΛ, where h1 has H–length bounded by
K = K(H), and where h2 has H–length shorter than the maximum
of K and the H–length of h. Here, the H–length of an element of H
is the word length with respect to the free generating set S. This will
prove the result, since it will show that h is a product of elements of
HΛ of bounded H–length.

Observe that the statement h ∈ HΛ is just the statement that in
some (and hence in every) reducing diagram for h, every occurrence of
v and v−1 cancels. In other words, we have

Nv(h0)+ ∪Nv(h0)− = ∅

in the cancellation partition for every subword h0 of h.
Writing

h = s1 · · · sn,
Lemma 4.1 says that if v ∈ supp si cancels with v−1 ∈ supp sj, then
|j− i| ≤ D, where D is a constant which depends only on H. For every
subword h0 ≤ h, we will fix a reducing diagram ∆(h0).
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We consider the set {αi} of initial H–segments of h, which is to say
that if

h = s1 · · · sn,
then

αi = s1 · · · si.
Given an initial segment αi, we call ωi = α−1

i h the terminal H–segment
of h. For notational convenience, we will assume that D ≤ i ≤ n−D.
Since D is fixed and depends only on H, this assumption is valid, since
there are only finitely many elements of H of H–length bounded by D.

For each i, we write bi and ei for the terminal H–segment of αi of H–
length D, and the initial H–segment of ωi of H–length D, respectively.
That is to say, we have

bi = si−D+1 · · · si,
and

ei = si+1 · · · si+D.

Observe that if n � 0 then there are two indices, say i and j with
i < j, for which the segments bi and bj are equal as words in H, and
for which the cancellation patterns are the same.

Figure 8. Part of reducing diagram with bi = bj and
ej indicated; only arcs corresponding to v are shown,
although other arcs appear in their cancellation patterns.
However, by Lemma 4.1, no arcs traverse these three
cancellation patterns, since they have H-length D.

Since we may assume j and i to be bounded in a way which depends
only on H (since we produce i and j via a pigeonhole principle argu-
ment), we have that αj · α−1

i has universally bounded H–length, say
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K = K(H). Observe that both αj · α−1
i and αi · ωj have H–length

shorter than the maximum of that of h and K. Moreover, we claim
that αj · α−1

i and αi · ωj both lie in HΛ. This last claim will suffice to
establish the result.

We consider αj ·α−1
i first. Observe that we may write αj = βj ·bi and

αi = βi · bi as reduced words in H, since bi = bj. By Lemma 4.1, in any
reducing diagram for h and for each vertex v ∈ V (Γ), any occurrence
of v or v−1 in αi or in αj which cancels to the right must lie in bi.
Furthermore, since these are initial segments of h ∈ HΛ, no occurrence
of v nor v−1 cancels to the left. Thus, the only v–cancellation arcs for
αi and αj which do not have both endpoints in αi and αj are precisely
the ones coming from the sets R±v associated to bi.

We may now construct a reducing diagram for

βjbi · b−1
i β−1

i = αj · α−1
i

by placing the cancellation patterns P(bi) and P(b−1
i ) next to each

other, pairing the τ–arc of P(bi) with the ι–arc of P(b−1
i ). We then

splice the cancellation arcs together by matching arcs with compatible
labels and co-orientations. By the choice of D, no non-contributing
arc with an endpoint in βj traverses P(bi), and no non-contributing
arc with an endpoint in β−1

i traverses P(b−1
i ). The result is that every

occurrence of v and v−1 in αj · α−1
i cancels in A(Λ), which is to say

that αj · α−1
i ∈ HΛ.

Figure 9. Part of reducing diagram for αj · α−1
i .

The case of αi · ωj is similar but simpler. Consider the subword
bi · ej of αi · ωj. Since bi = bj as words in H and since the cancellation
patterns of bi and bj are the same as subwords of h, we have that every
v ∈ R+

v (bi) can be cancelled with a v−1 ∈ L−v (ej), and similarly every
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v−1 ∈ R−v (bi) can be cancelled with a v ∈ L+
v (ej). Observe that every

copy of v and v−1 which does not lie in R±v (bi) lies in I±v (αi). Similarly,
every copy of v and v−1 which does not lie in L±v (ej) lies in I±v (ωj).
Thus, every occurrence of v and v−1 cancels in αi · ωj, so that this
element also lies in HΛ. �

Figure 10. Part of reducing diagram for αi · ωj.

References

[Ago13] Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–
1087, With an appendix by Agol, Daniel Groves, and Jason Manning.

[BC12] Jason Behrstock and Ruth Charney, Divergence and quasimorphisms of
right-angled Artin groups, Math. Ann. 352 (2012), no. 2, 339–356.

[Beh06] Jason Behrstock, Asymptotic geometry of the mapping class group and
Teichmüller space, Geom. Topol. 10 (2006), 1523–1578.

[BF09] Mladen Bestvina and Koji Fujiwara, A characterization of higher rank
symmetric spaces via bounded cohomology, Geom. Funct. Anal. 19 (2009),
no. 1, 11–40.

[BHS] Jason Behrstock, Mark Hagen, and Alessandro Sisto, Hierarchically hy-
perbolic spaces I: curve complexes for cubical groups, preprint.

[CLM12] Matt T. Clay, Christopher J. Leininger, and Johanna Mangahas, The
geometry of right-angled Artin subgroups of mapping class groups, Groups
Geom. Dyn. 6 (2012), no. 2, 249–278.

[CW04] John Crisp and Bert Wiest, Embeddings of graph braid and surface groups
in right-angled Artin groups and braid groups, Algebr. Geom. Topol. 4
(2004), 439–472.

[DGO11] François Dahmani, Vincent Guirardel, and Denis Osin, Hyperbolically
embedded subgroups and rotating families in groups acting on hyperbolic
spaces, preprint (2011), arxiv:1111.7048.

[DKL12] Spencer Dowdall, Richard P. Kent, IV, and Christopher J. Leininger,
Pseudo-anosov subgroups of fibered 3-manifold groups, preprint (2012),
arxiv:1208.2495.



The geometry of purely loxodromic subgroups of right-angled Artin groups 35

[Dro87] Carl Droms, Graph groups, coherence, and three-manifolds, J. Algebra
106 (1987), no. 2, 484–489.

[DT14] Matthew Gentry Durham and Samuel J. Taylor, Convex cocompactness
and stability in mapping class groups, preprint (2014), arxiv:1404.4803.

[FM02] Benson Farb and Lee Mosher, Convex cocompact subgroups of mapping
class groups, Geom. Topol. 6 (2002), 91–152 (electronic).

[Ham05] Ursula Hamenstadt, Word hyperbolic extensions of surface groups,
preprint (2005), arXiv:math/0505244.

[HW13] Mark F. Hagen and Daniel T. Wise, Cubulating hyperbolic free-by-cyclic
groups: the irreducible case, preprint (2013), arxiv:1311.2084.

[HW14] , Cubulating hyperbolic free-by-cyclic groups: the general case,
preprint (2014), arxiv:1406.3292.

[Kim08] Sang-hyun Kim, Co-contractions of graphs and right-angled Artin groups,
Algebr. Geom. Topol. 8 (2008), no. 2, 849–868.

[KK13] Sang-hyun Kim and Thomas Koberda, Embedability between right-angled
Artin groups, Geom. Topol. 17 (2013), no. 1, 493–530.

[KK14a] , The geometry of the curve graph of a right-angled Artin group,
Internat. J. Algebra Comput. 24 (2014), no. 2, 121–169.

[KK14b] , An obstruction to embedding right-angled Artin groups in map-
ping class groups, Int. Math. Res. Not. IMRN (2014), no. 14, 3912–3918.

[KL07] Richard P. Kent, IV and Christopher J. Leininger, Subgroups of mapping
class groups from the geometrical viewpoint, In the tradition of Ahlfors-
Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI,
2007, pp. 119–141.

[KL08] Richard P. Kent, IV and Christopher J. Leininger, Shadows of mapping
class groups: capturing convex cocompactness, Geom. Funct. Anal. 18
(2008), no. 4, 1270–1325.

[KLS09] Richard P. Kent, IV, Christopher J. Leininger, and Saul Schleimer, Trees
and mapping class groups, J. Reine Angew. Math. 637 (2009), 1–21.

[KM12] Jeremy Kahn and Vladimir Markovic, Immersing almost geodesic surfaces
in a closed hyperbolic three manifold, Ann. of Math. (2) 175 (2012), no. 3,
1127–1190.

[Kob12] Thomas Koberda, Right-angled Artin groups and a generalized isomor-
phism problem for finitely generated subgroups of mapping class groups,
Geom. Funct. Anal. 22 (2012), no. 6, 1541–1590.

[LS01] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Clas-
sics in Mathematics, Springer-Verlag, Berlin, 2001.

[Mah11] Joseph Maher, Random walks on the mapping class group, Duke Math.
J. 156 (2011), no. 3, 429–468.

[Mih68] K. A. Mihailova, The occurence problem for direct products of groups,
Mat. Sb. (N.S.) 75 (1968), no. 117, 199–210.

[Min96] Y.N. Minsky, Quasi-projections in Teichmüller space, Journal fur die
Reine und Angewandte Mathematik (1996), 121–136.

[MM99] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves.
I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149.

[MT13] Johanna Mangahas and Samuel J. Taylor, Convex cocompactness in map-
ping class groups via quasiconvexity in right-angled artin groups, preprint
(2013), arxiv:1306.5278.



36 THOMAS KOBERDA, JOHANNA MANGAHAS, AND SAMUEL J. TAYLOR

[Riv08] Igor Rivin, Walks on groups, counting reducible matrices, polynomials,
and surface and free group automorphisms, Duke Math. J. 142 (2008),
no. 2, 353–379.

[Sap14] Mark Sapir, A Higman embedding preserving asphericity, J. Amer. Math.
Soc. 27 (2014), no. 1, 1–42.

[Ser89] Herman Servatius, Automorphisms of graph groups, J. Algebra 126
(1989), no. 1, 34–60.

[Sis11] Alessandro Sisto, Contracting elements and random walks, preprint
(2011), arxiv:1112.2666.

[TT] Samuel J. Taylor and Giulio Tiozzo, in preparation.
[Wis11] Daniel T. Wise, The structure of groups with a quasiconvex hierarchy.

Department of Mathematics, Yale University, 20 Hillhouse Ave,
New Haven, CT 06520, USA

E-mail address: thomas.koberda@gmail.com

Department of Mathematics, University at Buffalo, 244 Mathemat-
ics Building, Buffalo, NY 14260, USA

E-mail address: mangahas@buffalo.edu

Department of Mathematics, Yale University, 20 Hillhouse Ave,
New Haven, CT 06520, USA

E-mail address: s.taylor@yale.edu


	1. Introduction
	1.1. Overview
	1.2. Main results
	1.3. Motivation from mapping class groups
	1.4. Motivation from right-angled Artin group geometry
	1.5. Organization of paper
	1.6. Acknowledgments

	2. Background
	2.1. Coarse geometry
	2.2. RAAGs, graphs, joins, and stars
	2.3. The Salvetti complex and its hyperplanes
	2.4. Extension graphs and a profusion of purely loxodromic subgroups

	3. Disk diagrams in RAAGs
	3.1. Construction of a disk diagram
	3.2. Formal definition
	3.3. Interchangeable interpretations
	3.4. Surgery and subwords
	3.5. Reducing diagrams

	4. Disk diagram applications
	5. Join-busting in purely loxodromic subgroups
	6. Stability of join-busting subgroups
	7. Proof of Theorem 1.1
	8. The Hanna Neumann property for star-free subgroups
	8.1. Cancellation patterns
	8.2. The Hanna Neumann Property

	References

