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It is well known that a velocity perturbation can travel through a mass spring chain with strongly nonlinear
interactions as a solitary and antisolitary wave pair. In recent years, nonlinear wave propagation in 2D structures
have also been explored. Here we first consider the propagation of such a velocity perturbation for cases where the
system has a 2D “Y”-shaped structure. Here each of the three pieces that make up the “Y” are made of a small mass
spring chain. In addition, we consider a case where multiple “Y”-shaped structures are used to generate a “tree.”
We explore the early time dynamical behavior associated with the propagation of a velocity perturbation initiated
at the trunk and at the extremities for both cases. We are looking for the energy transmission properties from
one branch to another of these “Y”-shaped structures. Our dynamical simulations suggest the following broad
observations: (i) for strongly nonlinear interactions, mechanical energy propagation resembles pulse propagation
with the energy propagation being dispersive in the linear case; (ii) for strong nonlinear interactions, the tree-like
structure acts as an energy gate showing preference for large perturbations in the system while the behavior of
the linear case shows no such preference, thereby suggesting that such structures can possibly act as switches
that activate at sufficiently high energies. The study aspires to develop insights into the nature of nonlinear wave
propagation through a network of linear chains.
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I. INTRODUCTION

Fermi, Pasta, Ulam, and Tsingou [1,2] studied the evolution
of a perturbation in 64 particle mass spring chains where the
springs were characterized by harmonic and weakly nonlinear
interactions. They showed that when a mode is perturbed, it
fails to disperse within the system. Their work suggested that
these systems may accommodate nonergodic behavior under
certain conditions. This work marked the beginning of studies
on the dynamics of nonlinear many-body systems.

Through the past nearly 60 years, a great deal of work
has been done on the dynamics of mass spring systems in
1D [3–6] and 2D [7–11], where the masses are connected
by springs that typically possess both linear and nonlinear
characteristics. Velocity perturbations initiated into these
systems often end up as compression (solitary) waves and
dilation (antisolitary) waves (see for example in Ref. [12]).
Position perturbations can lead to the formation of long-lived
localized or weakly localized oscillations or breathers [6,13].
There are scenarios where the solitary and antisolitary waves
become breathers [14]. And last but not the least, in the
absence of dissipation, these systems eventually end up in the
so-called quasiequilibrium state where the system’s dynamics
is typically characterized by large energy fluctuations and the
absence of equipartitioning of energy [13,15].

In this work we address the dynamics of a Fermi-Pasta-
Ulam-like system of masses connected by springs with
quadratic and quartic interactions but where the system itself
looks like a 2D tree. We ask whether these branched systems
are effective energy transmitters and whether the energy can
split and recombine as it travels through the branches.

II. THE MODEL

We first study impulse propagation through our building
block, i.e., the “Y”-shaped structure. The layout of our “Y” is
given in Fig. 1. There are three chains each made up of Nα

masses connected by springs, and one vertex mass connected to
the first mass of each chain by a spring for a total of 3 × Nα + 1
masses, where α refers to the branch index. The last particle
of each chain is connected to an effectively infinite mass that
acts as a wall, so we have a total of 3 × (Nα + 1) springs.

The first chain is kept horizontal while the remaining two
chains are arranged to be vertically symmetric at an angle θ

with respect to the horizon (as seen in Fig. 1). The system is
governed by the following Hamiltonian:

H =
3∑

α=1

(
Nα∑
i=1

p2
i

2m
+ Vi,i+1

)
+ p2

0

2m
+ V0,11 + V0,21 + V0,31,

(1)

where the potential between the masses is

Vi,i+1 = 1
2k(xi+1 − xi − d0)2 + 1

4q(xi+1 − xi − d0)4, (2)

where d0 is the equilibrium distance between two adjacent
particles. The equation of motion for a given particle in one of
the three chains is given by

m
d2xi

dt2
= k(xi+1 + xi−1 − 2xi) − q(xi+1 − xi − d0)3

− q(xi − xi−1 − d0)3, (3)

and the equation of motion for the vertex is given by

m
d2�r0

dt2
= k[(|�r0 − �r1,1| − d0) ˆr0−1,1 − (|�r0

− �r2,1| − d0) ˆr0−2,1 − (|�r0 − �r3,1| − d0) ˆr0−3,1]

+ q[(|�r0 − �r1,1| − d0)3 − (|�r0 − �r2,1| − d0)3 ˆr0−2,1

− (|�r0 − �r3,1| − d0)3 ˆr0−3,1], (4)

where ˆr0−α,1 represents the direction vector from the vertex
particle to the corresponding particle in branch α. For particles
attached to the vertex mass only the projection of the vertex on
the axis of the branch is used. Such a projection eliminates all
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FIG. 1. Physical layout of the “Y”-shaped building block. θ is
defined from the axis of branch 1 (α = 1).

forces perpendicular to the axis of the branch, restraining all
the masses in the branches to their original effective axis. The
vertex mass, however, is free to move in 2D such that ˆr0−α,1

varies as the system progresses. The individual strengths of q

and k will dictate the strength of the nonlinearity and in turn
the nonlinearity will dictate the dynamics of the system. For
this reason the ratio q

k
will serve as a measure of the overall

nonlinearity. A perturbation will be made to the particle in the
middle of branch 1 (see Fig. 1), where the initial perturbation
is given as

Ei = p2
i

2m
+ Vi,i+1, (5)

where Ei is the total energy of particle i. The number of
particles per chain Nα is set to 10. Such a size is large enough
that compression and dilation pulses can be separated, but it
is also small enough that acoustic waves can pass through
without dispersing significant amounts of their energy. We
envision our physical system as one that may be realized in
the laboratory.

To this end we will also assign units to describe the system
we construct and to help visualize the dynamics of the system.
The equilibrium distance between the particles is set to 1.0 cm
and the maximum perturbation velocity used is 1.0 cm/s. The
particles that make up the chain will each have a mass of
0.175 g and the maximum energy perturbation used is 8.75 nJ
(the maximum energy perturbation is chosen such that the
oscillations remain within 3% of the equilibrium length).

Our study focuses on the system’s dynamics in two regimes.
The strongly nonlinear coupling limit is chosen such that our
maximum initial perturbation strength gives similar orders of
magnitude for both the nonlinear and harmonic contribution
and the strongly harmonic region is chosen such that the
nonlinear contribution will remain at least two orders of
magnitude less than that of the harmonic term. The strongly
harmonic coupling limit we use in our dynamical studies is
q

k
� 1, whereas the strongly nonlinear coupling limit we use is

q

k
> 1000. While the nonlinear regime may appear extremely

large, we should keep in mind that the harmonic coupling still
has a significant contribution to the dynamics of the system.
In the limit that q

k
→ ∞ the dynamics of the system will be

dictated strictly by the nonlinear coupling, such that the system
will initially form only solitary wave (SW) and antisolitary
wave (ASW) pairs. This limit is difficult to obtain in the
laboratory so we have chosen to omit it from this study.

We initialize the system at zero temperature, so the only
energy in the system is that of the perturbation. Once the
system has been initialized we model the dynamics by inte-
grating the Newton’s equations of motion using the velocity
Verlet predictor corrector algorithm [16]. We use a time step of
100 ns, a smaller time step does not significantly improve the
accuracy of the integration. We integrate the system until the
initial pulse reaches the far end of the opposite branches and
then stop the run. The energy conservation over 3 × 107 time
steps is to within 0.1 nJ of the initial energy perturbation.

In order to maintain the “Y” branch shape, each individual
branch is constrained to move only in the direction of
the original alignment of the branch. The vertex mass, as
previously stated, is free to move in 2D. Constraining the
system as such we lose the dynamics associated with any off-
axis forces. The initial pulse is small enough that the off-axis
angle will not exceed 3 degrees (as mentioned previously).
Therefore, the off-axis dynamics would be several orders of
magnitude slower than the pulse dynamics in the branches and
would not play any significant role in the time scale of interest
here.

For the strongly harmonic coupling case the majority of the
energy will move through the system in the form of acoustic
waves, although as shown elsewhere [17–20] even in purely
harmonically coupled systems nonlinear coupling naturally
arises at the vertex, as θ itself is dependent on the position of the
vertex. For the strongly nonlinear coupling case the majority of
the energy at early times will form a compression and dilation
pulse traveling in opposite directions. We will start the energy
perturbation at particle (1,5) so that the compression pulse
travels to the right where it passes into branches 2 and 3 while
the dilation pulse travels to the left and reflects off the wall at
particle (1,10), where (a,b) implies particle b in branch a (see
Figs. 1–3). In order to isolate the compression pulse only the
data up to the point when the dilation pulse reaches the vertex
will be used. Despite the difference in dynamics between the
compression and the dilation pulse, even situations where
we reverse the directions of the pulses the resulting energy
distribution is the same (see Fig. 6). Therefore, henceforth we
will only discuss the compression pulse passing through the
vertex for the single-vertex case.

The angle θ in the system will be varied between the runs. In
order to get a broad understanding of the dynamical behavior
of the system we will not just look at the dynamics of the
particles but focus on the energy distribution. When the angle is
varied symmetrically we only need to look at one branch as the
two branches will behave identically. In order to characterize
the energy distribution we will define the transmission as
the energy that passes from the initially perturbed branch into
one of the opposite branches:

T =
N∑

i=1

Ei

Etot
, (6)

where α equals either 2 or 3. We have defined transmission T

in terms of both potential and kinetic energies in order to avoid
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FIG. 2. Physical layout of the larger tree constructed out of “Y”-
shaped building block. We have split the system into three regions
of interest, the trunk, the body, and the outer tips of the system. For
our study we will be concerned with how energy passes from trunk
to outer tips and vice versa.

any difficulties with phase effects. Similarly, when the angles
are varied independently from each other the transmission will
be defined in the same way but will be given for both of the
branches.

Having established our building blocks, we can now use
them to construct trees. We will do this by attaching a vertex
and two more branches to the ends of branches 2 and 3, then
we will repeat this process until we have reached the desired
size of our system.

It is important to note that branches only interact through
vertices in our model. If a tree was constructed that could
allow a physical overlap between two branches, there would
be no direct interaction between the overlapping branches.
This can be seen in the central area of the outer tips in
Fig. 2, although there is physical overlap there is no interaction
between overlapping branches. The dynamics of the larger
system can get considerably more complicated. For this reason,
in addition to talking about the transmission of the energy we
will also look at the distribution of energy by defining the
variances of the calculated average energy per particle from the
energy per particle if the energy were perfectly equipartitioned
(Eequipartition). So we set

σ =
αmax∑

1

Nα∑
i=1

|Ei − Eequipartition|
(N − 1)Eequipartition

, (7)

where N represents the total number of particles in the system,
αmax × Nα + αmax−1

2 . We use αmax = 31 in this work, which
provides a sufficiently large system to study the dynamics
of pulse propagation through such structures and yet is small
enough that energy transmission through first passage between
the branches can be examined.

While the level of energy distribution is interpreted as
variance in a harmonic system, the variance has a different
interpretation in a system with nonlinear coupling. Energy
can move through a system with nonlinear coupling as a SW
or ASW, which under normal circumstances would not split,
thus the variance would not change. When a SW or ASW
comes in contact with a vertex, some portion of these waves
would split (as a function of θ ) between the two branches

causing the variance to decrease. As stated previously in the
limit that q

k
→ ∞, our system will produce strictly SW and

ASW solutions; therefore, in the strongly nonlinear cases we
must consider the possibility of SW solutions existing in the
compression pulse and similarly with the ASW and dilation
pulse. This means that variance in strongly nonlinear cases can
be interpreted as a measure of how many splits the pulse has
undergone.

While variance is helpful for getting a broad view of the
dynamics of large systems, it is still necessary to understand
how the vertices transmit energy when coupled together. In
the larger system energy can be localized in three places: the
trunk, the body of the system, and the outer tips (see Fig. 2).
Since there are different channels for the energy to flow into,
we need to define two transmissions rather than one as we did
in the case of the single vertex.

Ttrunk =
Nα∑
i=1

Ei

Etot
, (8)

where α = 1 and

Ttips =
31∑

α=16

Nα∑
i=1

Ei

Etot
. (9)

A similar definition can be made for the body of the system;
however, here we are concerned with the energy transmission
characteristics of the system and thus only the two definitions.

III. RESULTS OF NUMERICAL EXPERIMENTS

In order to get a complete picture of how our “Y”-
shaped building block transmits energy we will do numerical
experiments as outlined in Sec. II above. We will probe how an
energy perturbation passes through the system as a function
of θ for strongly harmonic and nonlinear couplings varied
symmetrically and asymmetrically. We first probe the system
with a single symmetric building block, with θ = 30◦ and
q

k
= 1 (i.e., strongly harmonic coupling regime). In practice

θ = 0 would relate to a 1D spring mass system with the second
half of the chain consisting of particles of twice the mass and
springs twice as stiff, so it should be noted that the limiting
case is not a uniform one-dimensional chain.

Recall the initial perturbation is made at particle (1,5). For
small θ we expect the pulse will pass through the vertex into
branches 2 and 3 mostly undisturbed. For large θ the pulse will
have difficulty going through the vertex and hence we expect
much of it to reflect back into branch 1. In Fig. 3(a) we see the
kinetic energy versus time plotted for particles (1,4), (2,4), and
(3,4). The energy moves outwards from the initial perturbation
and makes its way through branches 2 and 3. The energy in
particles (2,4) and (3,4) are identical, so henceforth we will
only concern ourselves with plotting the energy associated
with one of the two branches in strongly harmonically coupled
systems. It should be noted that we have made many individual
runs of these systems to make sure that the results captured
are accurate.

Next we study the system again with θ = 30◦ but q

k
= 1700

(i.e., in the strongly nonlinear coupling regime), and once again
we start the initial perturbation at particle (1,5). In Fig. 3(b) we
see the kinetic energy versus time plotted for particles (1,4),
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FIG. 3. The dynamics of particles (1,4) and (3,4) (Fig. 1) after
particle (1,5) is perturbed are plotted. (a) and (b), respectively, depict
strongly harmonic coupling and strongly nonlinear coupling with
θ = 30◦. In both (a) and (b) the energy reaches particle (3,4) with
ease, however, in (a) the magnitude of the pulse is significantly smaller
than in (b).

(2,4), and (3,4) once again. The results in Fig. 3(b) clearly
show that the energy propagates through the branches as an
energy bundle. The energy bundle strongly resembles a SW;
however, due to our system’s small chain size and presence of
harmonic coupling the characterization of a SW is extremely
difficult. For this reason we will not classify the energy bundle
as a SW in this study. Just as before, branches 2 and 3 are
identical and hence there is no need to plot the energies in both
the branches.

The strongly harmonic coupling between the masses causes
acoustic oscillations in the trunk, such oscillations result in
the perturbation moving through the chains as an acoustic-like
pulse. As we saw above for small θ , the vertex did not transmit
much of the acoustic-like pulse through the chains. We next
repeat the above simulations for a much larger θ , such as
θ = 80◦. In Fig. 4(a) we see the strongly harmonic coupling
case and in Fig. 4(b) we see the strongly nonlinear coupling
case. This time both the strongly harmonic coupling and
strongly nonlinear coupling transmit the energy very poorly.
The numerical experiments strongly suggest that for large θ

values, very little energy can get through from the trunk to the
tips irrespective of the nature of the interactions between the
particles that make up the system. However, over a series of
independent runs we find that for smaller θ values, nonlinear
waves are better suited for efficient energy transport from
the trunk to the tips than linear waves. We address this θ

dependence of T for both symmetric and asymmetric cases
below.
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FIG. 4. The dynamics of particles (1,4) and (3,4) (Fig. 1) after
particle (1,5) is perturbed are plotted. (a) and (b), respectively, depict
strongly harmonic coupling and strongly nonlinear coupling with
θ = 80◦. In both (a) and (b) the energy has difficulty reaching particle
(3,4).

To get a complete picture of the transmitted energy’s
dependence on θ we now plot transmission [see Eq. (6)] versus
θ . Previously we have seen that for a small θ the strongly
nonlinear coupling transmits energy through the vertex quite
well. We also noted that for large θ both strongly harmonic
and strongly nonlinear coupling transmit poorly. In order to
understand the region between the two cases we have seen, we
need to see transmission as a function of θ . In Fig. 5 we have
plotted the transmission as a function of θ for both the strongly
harmonic case and the strongly nonlinear coupling case. In
all of these cases the system is kept vertically symmetric;
therefore, only the transmission for a single branch is shown.
We see that the shapes of the graphs for the strongly harmonic
and strongly nonlinear coupling cases are quite sensitive to
the nature of the interactions. Both cases begin to decrease the
amount of energy transmitted after the same value of θ = 45◦
or θ = π

4 radians. However, in the strongly nonlinear coupling
case we see that the energy passes through small angles much
easier than the strongly harmonic case, something we saw first
hand in Fig. 3. We have also plotted transmission versus θ in
Fig. 6 for strongly nonlinear coupling with both compression
and dilation pulses. The transmission’s dependence on θ is
identical for compression and dilation; therefore, henceforth
we will only show the transmission for compression pulses.
It should be noted that there is a small numerical difference
in the transmission for compression and dilation; however,
we suspect this is an artifact of our system’s constraints.
Constraining the system to only move in the direction of the
original alignment of the branch there is a slight difference in
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FIG. 5. Transmission [see Eq. (6)] is plotted for both strongly har-
monic and strongly nonlinear coupling as θ is varied symmetrically.
We see that for small θ the transmission of energy in the strongly
nonlinear case is much higher than the strongly harmonic case. For
large θ the transmission approaches zero for both strongly harmonic
and strongly nonlinear coupling.

the magnitude of the vertex’s projection on the branches for
compression and dilation pulses. This difference in the vertex’s
projection is most likely the cause of the small numerical
difference.

In the strongly harmonic case the transmission increases
as θ approaches 45◦. To better understand this effect we will
discuss the large and small limits of θ . For small θ , ˆr0−2,1

and ˆr0−3,1 are almost directly opposed to ˆr0−1,1, making the
system stiff in the direction of energy propagation. For large
θ , ˆr0−2,1 and ˆr0−3,1 are almost perpendicular to ˆr0−1,1, so that
the projection of the vertex on branches 2 and 3 is small.
As the θ approaches 45◦ the system softens allowing larger
oscillations of the vertex and more energy to pass through;
however, the projection of these oscillations in branches 2
and 3 becomes smaller so eventually the increase tapers off.
While this argument should be true for both strongly nonlinear
and strongly harmonic cases, the strongly harmonic case is
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FIG. 6. Transmission [see Eq. (6)] is plotted for strongly non-
linear coupling as θ is varied symmetrically for both a compression
and a dilation pulse. As we can see the shape of the dependence is
identical. It should be noted that there is a slight numerical difference
in magnitude.
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FIG. 7. Transmission [see Eq. (6)] is plotted for both strongly har-
monic and strongly nonlinear coupling as θ is varied asymmetrically.
One branch is varied while the other is kept at a constant θ = 30◦. In
both cases the branch that is closest to the axis of branch 1 (α = 1)
transmits the most energy.

the only one affected. We can attribute this to the difference
between the harmonic and nonlinear potentials. With respect
to the harmonic potential the nonlinear potential is weak for
small oscillations. In the stiff limit (small θ ) strongly nonlinear
effects enter when the oscillations are large. As θ approaches
45◦ the system becomes floppier and hence the oscillations
become larger; however, since the nonlinear potential increases
rapidly the change in the oscillation amplitude is small and the
effect of increased energy transmission is hence not seen in the
strongly nonlinear case. For large θ both cases approach zero
transmission, the strongly harmonic coupling case, however,
does not approach zero as smoothly as the strongly nonlinear
coupling case. In this region, due to the presence of acoustic
oscillations in the branches, we expect to see larger oscillations
of the vertex mass. The observed behavior is a result of these
oscillations.

Next we repeat the above simulations; however, this time the
angle is not varied symmetrically, instead the angle for branch
2 will be kept at a constant θ = 30◦ and the angle for branch
3 will be varied from 0–90◦. In Fig. 7 we have plotted the
transmission as a function of θ for both the strongly harmonic
case and the strongly nonlinear coupling case. In both strongly
harmonic coupling and strongly nonlinear coupling cases the
pulse will prefer to transmit to the branch that is closer to the
axis of the incoming pulse with more energy being transmitted
at small θ values when the interactions are strongly nonlinear.

With the behavior of our building block well defined we
can now look at larger systems that are made up of these
“Y”-shaped structures. Constructing the system as described
previously, we will make a system 31 branches large. If the
system size is larger, it splits the energy so finely that the branch
dynamics begins to approach the timescale of the off-axis
dynamics in the single building block case. To simplify the
system, all angles in the system were set at 30◦.

To explore the short-time dynamics of the overall system
we choose to use the variance σ [see Eq. (7)] as a function of
time. σ gives us a coarse-grained picture of the dynamics based
on the difference between the calculated average energy per
particle and the equipartitioned energy per particle obtained
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FIG. 8. The variance from equipartition (σ ) is plotted for strongly
harmonic and strongly nonlinear coupling, each of these cases are
shown with symmetric and random angles separately. For symmetric
angles in both cases the variance fluctuates with a frequency
characteristic of the size of the system; however, in the strongly
harmonic case the magnitude of the oscillation is smaller. Using
random angles in the system we see that the strongly nonlinear
case still fluctuates its variance; however, in the strongly harmonic
coupling case the oscillations are canceled out completely.

using the total energy and N . In Fig. 8 we have plotted the
variance [see Eq. (7)] as a function of time for varying strengths
of harmonic and nonlinear couplings.

We can see that for both strongly nonlinear and linear
couplings, the system has a tendency to oscillate its variance
over the course of the run. A close look at the data shows that
the first dip in Fig. 8 coincides with the initial perturbation
completing its journey all the way to the tip of the tree structure,
i.e., when the initial acoustic pulse has been distributed among
all the branches. The strongly harmonic case reveals a second
minimum, which coincides with a return of the energy to the
tip for a second time. The strongly nonlinear case, however,
behaves slightly differently with the value of σ reaching the
first minimum at about the same time as that of the harmonic
case but then remaining quite significant until somewhat later
times (until about 2 × 106 time steps). Such behavior arises
because unlike in the harmonic case, the smaller the pulse,
the slower it moves (as expected for nonlinear waves) and the
longer the passage takes and hence the delay in the second
minimum in the nonlinear case.

In Fig. 8 we have also plotted the variance as a function of
time for varying strengths of harmonic and nonlinear couplings
with random asymmetric angles inserted into the building
blocks rather than the symmetric angles used previously.
The random asymmetric angles vary uniformly from θ =
0–60◦. Standard Monte Carlo methods were used with a
Mersenne twister psuedorandom number generator to create
the distribution [21]. The randomness in the angle means that
more energy is transmitted in both cases through the branch
at the smaller angle with respect to the trunk. In the strongly
nonlinear case once a difficult vertex to pass through (both
top and bottom θ is large) is encountered by the pulse, the
pulse simply returns to the initial point of perturbation, which
gives rise to the same type of oscillations we saw previously
in the variance. In the strongly harmonic case a difficult vertex
causes energy to be trapped locally, not only diminishing the
oscillations in variance as we saw before but also limiting
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 0.5

 0.75

1
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Strongly Nonlinear
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Strongly Nonlinear small

FIG. 9. Ttrunk [see Eq. (8)] is plotted as a function of time for three
cases. The maximum perturbation made to the strongly nonlinear
system, maximum perturbation made to the strongly harmonic
system, and one quarter of the maximum perturbation made to the
strongly nonlinear system.

the system from approaching equilibrium. This of course is
expected on the basis of results discussed in Figs. 2–4. It is
clear that the energy transmission between the branches is such
that σ decays quite slowly in time for both cases though it is
significantly more slow for the nonlinear case, which means
that the system will always have large fluctuations seen in the
energy traveling through the various branches.

In Fig. 9 the trunk transmission [Eq. (8)] is plotted for a
tree structure as a function of time. Four different cases were
run, the maximum perturbation (in order to maintain a small-
angle approximation) made on a strongly nonlinear system,
the maximum perturbation made on a strongly harmonic
system, one-quarter of the maximum perturbation made on
a strongly nonlinear system, and one-quarter of the maximum
perturbation made on a strongly harmonic system. Both of the
strongly harmonic cases gave nearly identical transmission
data, so for clarity only one of the strongly harmonic cases is
shown in Fig. 9. All of the cases ran show similar dynamics;
we can see that in each case there are similar plateaus in
the transmission. These correspond to the time it takes for the
leading edge of the pulse and then trailing edge to pass through
the branch. However, the case of the maximum perturbation
made to the strongly nonlinear tree shows a drastic difference
in the magnitude of the transmission. In order to track where
the energy has gone, though, we need to turn our attention to
the outer tips of the system.

In Fig. 10 the tips transmission [Eq. (9)] is plotted for a tree
structure as a function of time. The same four cases as above
were run, and as before only one strongly harmonic case is
shown for clarity. Here we see that once again there is similar
dynamics in all of the cases, the same similar plateaus form
as first leading edge of the pulse and then later the trailing
edge reach the outer tips. Also corresponding with the trunk
transmission the case of the maximum perturbation made to
a strongly nonlinear system transmits the largest amount of
energy into the tips of the system. Clearly there is some
dependence on both nonlinearity and perturbation strength for
the transmission in the system, so to wrap up our study we will
also look at the reverse case.

In Fig. 11 the trunk and tips transmission is plotted for a tree
structure as a function of time. Four separate cases were run,
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FIG. 10. Ttips [see Eq. (9)] is plotted as a function of time for the
same three cases described previously.

the maximum perturbation evenly distributed among the tips of
a strongly nonlinear system, the maximum perturbation evenly
distributed among the tips of a strongly harmonic system,
one-quarter of the maximum perturbation evenly distributed
among the tips of a strongly nonlinear system and one-quarter
of the maximum perturbation evenly distributed among the
tips of a strongly harmonic system. The perturbation strength
dependence is not seen in these cases, so only the maximum
perturbations were plotted in Fig. 11. In addition to the lack of a
dependence on the perturbation strength we also fail to see any
dependence on the nonlinearity in the system. Surprising as
the results of Fig. 11 are, it should be observed that the original
pulse has been split among the tips and hence the pieces are
relatively tiny regardless of the strength of the perturbation.
Piecing these tiny pieces together to a whole as the energy
progresses toward the trunk is not as easily realized as the
process of breaking down an incoming pulse from the trunk
into the branches.

There are two important results to take away from this. First
the broad brush approach of using the variance of the system,
a statistical approach, completely misses the important results
of the transmission capabilities of the system. Second and
most importantly, a strongly nonlinear tree can be used as an
effective gate for energy perturbations. A strong pulse made
in the trunk can be transmitted strongly to the tips; however,
the same pulse made to the tips will not transmit strongly
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FIG. 11. Ttrunk and Ttips are plotted as a function of time. Two
cases are shown, the maximum perturbation made evenly distributed
among the tips (α = 16–31) of a strongly nonlinear system and the
tips of a strongly harmonic system.

backwards into the trunk. This allows the system to be used
as directional gate for energy. While these results may seem
intuitive, the actual results themselves are not immediately
obvious from viewing the transmission for a single Y branch.

IV. THEORETICAL ARGUMENTS

The oscillatory features in the strongly linear and nonlinear
trees shown in Fig. 8 strongly suggest that the larger system
recombines energy. In order to understand this, we need to
consider how the system progresses through time. Initially,
the pulse travels through the system as both an acoustic wave
and a nonlinear pulse (as seen previously in Figs. 3 and 4). At
each vertex the pulse will split some of their energy between
the two branches (the amount of energy split is dependent on θ

as seen previously). If the branches are symmetric, the energy
will be split equally; however, for the case study shown in
Fig. 4, the first 0.07 seconds every vertex hit will be symmetric.
Once the 0.07 seconds has elapsed, the compression pulse will
reach the far end of the system and begin to make its return
trip. Each vertex the pulse encounters now is from the opposite
perspective. As seen in Fig. 1 this would relate to either a pulse
passing from branch 2 into branches 1 and 3 or a pulse passing
from branch 3 into branches 1 and 2. Both of these scenarios
are that of an asymmetric branch. As we saw in Fig. 7, the
pulse will propagate through the branch that has the smallest
angle with respect to its current branch, which in this case is
the trunk that the pulse initially passed through.

For angles greater than θ = 90◦ a compression of the vertex
will result in a dilation of the outgoing branch. This switch
between compressing and stretching will cause a compression
pulse to become a dilation pulse at the vertex and as stated
before both have the same dependence on θ for transmission.
This scenario applies to both the top and bottom branch, and
as long as the system has been kept symmetric, the two pulses
pass through the vertex at the same time and recombine some
of their energy into one pulse. This process will repeat itself
until the pulse makes it back to the initially perturbed branch.

While the tendency to recombine energy is visible in the
variance of the system it is also important to note the gating
behavior that is visible when plotting transmission in Fig. 9.
Without a preference for the direction of transmission the pulse
would be able to move back and forth through the system
relatively unrestrained (some energy will always be dissipated
by harmonic coupling and even in ideal transmission scenarios
not all of the energy passes through the vertex) causing the tree
structure to be highly ineffective at energy transmission.

If our understanding of how the system behaves is accurate,
then we should find that any break in symmetry should
decrease the amount of energy recombined. Introducing such
a break will result in the pulses being split unevenly between
branches, which in turn makes them return to the vertex at
slightly different times. When the pulses return they will only
be partially recombined. Looking back at the variance of the
strongly nonlinear coupling case in the presence of random
angles in Fig. 8, the decrease in the second peak corresponds to
a decrease in how much energy was recombined. Additionally,
when it comes to the variance of the strongly harmonic
coupling case in the presence of random angles we see that
the peak is completely suppressed. While this simplified

023209-7



WILLIAM J. FALLS AND SURAJIT SEN PHYSICAL REVIEW E 89, 023209 (2014)

explanation of the process holds true, the behavior is very
robust in strongly nonlinear systems.

V. CONCLUSION

In this study, we set out to discover how a nonlinear pulse
behaves on a tree-shaped structure. In order to answer this
question, we constructed a two-dimensional tree structure
consisting of “Y”-shaped building blocks. These building
blocks were made up of masses connected by springs, and
arranged in a “Y”-shaped structure with branches joined by a
vertex mass. By constraining the individual branches to one
dimension, only the vertex was free to move in two dimensions.
First, we examined how the building block transmits energy as
a function of θ in both symmetric and asymmetric cases. Next,
we looked at how trees distribute energy perturbations. By
performing this analysis, it was found that energy perturbations
made in the tree could dissipate and later recombine. In this
study we found that the nonlinearity in the system shows a
strong preference for passing large energy pulses from its trunk
to its tips. This preference limits how much energy will be
recombined. Building upon this, we predicted that introducing

symmetry breaking angles into the tree would prevent energy
from recombining. To confirm this prediction we examined
trees that were constructed using asymmetric building blocks
and saw a decrease in the magnitude of the recombined energy.

This study examined a very general problem, but the
implications of what we’ve investigated can help in under-
standing nonlinear wave propagation in an array of more
specific problems. First, the tendency to recombine energy
perturbations acts as an easy way to characterize the effects of
nonlinearity of a system that might otherwise be too complex
to classify. The capability of strongly nonlinear tree-like
systems to act as ways to distribute energy propagation
through multiple channels and to collect energy available
via multiple channels suggests the potential for unique ways
of directing and capturing energy and may have possible
applications. The studies could also be useful when dealing
energy propagation through branched structures in the context
of biological systems and condensed matter systems.
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