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Abstract
A momentary velocity perturbation at an edge of a granular chain with the grains barely touching one another and held
between fixed walls propagates as a solitary wave whereas a long lived perturbation, even if it is noisy, ends up as a solitary
wave train. Here, we extend our earlier work but with a force instead of a velocity perturbation. Such a perturbation can
propagate an extended compression front into the system. We find that a snapshot of the distribution of grain compressions
in the solitary wave train shows parabolic as opposed to an approximate exponential decay with the leading edge at the
front of the traveling pulse and the trailing edge following it. The system’s time evolution depends on three independent
parameters-the material properties, duration of perturbation and the characteristic amplitude of the perturbation. Hence, the
coefficients used to describe the parabolic decay of the grain compressions in the solitary wave train depend on these three
parameters. When a random finite duration force perturbation is applied we find that the randomness is smoothed out by the
system, which in turn suggests that long granular chains (or equivalent systems, such as circuits) can be potentially useful in
converting random noisy signals to organized solitary wave trains and hence to potentially usable energy.

Keywords Granular chains · Nonlinear dynamics · Solitary wave trains

1 Introduction

Wave propagation in granular media is a mature subject [1–
4]. The experiments of Nagel and coworkers [5] stimulated
an era of strong activity in studies of mechanical energy
propagation in granular materials and this burst of activity
continues to this day. Much work has been done on ultra-
sonic propagation in these nonlinear systems [6], on wave
propagation in porous, nonlinear systems [7], on using sound
bursts to detect buried landmines [8], on seismic wave prop-
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agation in soil [9] andmore recently on the frequency spectra
of propagating sound waves in soil [10–12].

We consider a linear alignment of monodispersed spher-
ical beads of mass m with the beads barely touching each
other. When this system is excited at one end by a δ-function
perturbation, a solitary wave (SW) is created [13–21]. How-
ever, when excited by a finite-duration perturbation at one
end, a sequence of solitary waves [a solitary wave train
(SWT)] eventually emerges and travels towards the other end
[13–15]. In earlier work, we have examined the SWT forma-
tion problem when the initial condition is characterized by a
bead of mass M0 moving with a fixed velocity and hitting the
edge where M0 ≤ m and M0 > m [22,23]. Here we consider
the case of a force perturbation generated over finite time
duration to an edge grain. It turns out that the pattern of soli-
tary wave amplitudes in the SWT is sensitive to the nature of
the initial perturbation at the same mechanical energy input.
The energies carried by the SWs in the SWT arising from
extended time force perturbation at one end of the granular
chain is therefore different compared to the results discussed
in our previous work [22]. To get an intuitive understand-
ing of this difference we observe that an extended time force
perturbation ends up generating a spatially extended com-
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Fig. 1 The subfigure a in the top-panel illustrates the model used for
short-duration force excitation incident on one end of a granular chain
resulting in a SWT. The kinetic energy (K E) state at time instant t =
50, 000µs is depicted in the left subfigure b of the bottom-panel. In
the right subfigure c of the bottom panel the KE in the i th SW packet
is plotted for the fully formed state SWT. The most energetic SW is
labeled as 1, the second most as 2 and so on. Simulation parameters for
this particular illustration are: θ = 0, Ng = 4000, R = 9mm, Y =
110GPa, ν = 0.34, M = 13.25 g, Fc = 0.7 kN, Tp = 500µs and
Tsimu = 10,000µs

pression pulse in the chain. The formation of such a pulse
has the profound effect of altering the sequence of grain-
grain compressions eventually in the fully formed SWT.

The dynamics of the system is governed by the nonlin-
ear contact interaction force between two adjacent beads.
The Hertz potential between the two beads turns out to be,
V ∝ r5/2; where r is the relative compressive deformation
between the two beads [24–26]. The index of the power law,
5/2, enters from the circular/elliptical cross-section at the
bead–bead interface and will be different if the cross-section
is different. A study of the fundamental nonlinear equations
indicates that an analogous problem can also be realized in
nonlinear electrical circuits [27]. We will restrict to the case
of spherical beads in this study.

The purpose of this paper is two-fold: (1) To capture the
characteristic parameters of the fully formed SWT as a func-
tion of system and perturbation parameters. In this fully
formed state, the individual SWs in the SWT are clearly
distinguishable and its characteristics are approximately1

invariant over the rest of the simulation time. Our study is
based on numerical simulations of the nonlinear dynamical
system (Fig. 1a). (2) To analyze the SWT formed from ran-
dom fluctuations in the applied force and contrast it against
the deterministic case. The latter line of inquiry shows that the
deterministicmodel can still be utilized to analyze the conver-

1 Computationally calculated values of response of the SWT, even after
a long simulation time, will fluctuate over simulation time increments,
but a time averaging of the response over an appropriately-chosen time-
window can give a reasonable estimate of its fully formed state value.

sion of a noisy input signal into anordered sequence of energy
packets. Thus such amodel may have potential application in
the conversion of random noise to useful mechanical energy.
The approach to our study is empirical—we perturb the sys-
tem and perturbation parameters in the numerical model
of this system and then analyze its asymptotic response.
This simulation-based approach is useful to build an under-
standing of the input–output relationship for such a highly
nonlinear system whose response is dependent on the nature
of perturbation. Even though our approach is empirical, the
numerically-developed models proposed here can be used
to predict asymptotic SWT response for the system-under-
consideration under uniform perturbation force profile.

2 Themodel system

We consider Ng spherical beads confined between two fixed
rigid walls. The chain is excited by a random external com-
pressive force F(t) defined as (1) (random quantities shown
in bold notation),

F(t) = Fc(1 + ε(t)), (1)

and applied at the center of the first (from the left) bead.
Here, Fc denotes the average force, ε(t) ∈ (−θ, θ) repre-
sents a uniformwhite noise [28] and θ denotes a positive real
number. The duration of perturbation is from time t = 0 to
t = Tp, Tp being the period during which the extended per-
turbation is imparted, after which the external perturbation
is stopped and the system dynamics is allowed to evolve up
to the simulation time, t ≡ Tsimu � Tp (see Fig. 1).

The equations of motion (EOMs) are

Mü1 = na(−u1)
n−1 − na(u1 − u2)

n−1 + F(t) , (2a)

MüNg
= na(uNg−1 − uNg

)n−1 − na(uNg
)n−1, (2b)

Mük = na(uk−1 − uk)
n−1 − na(uk − uk+1)

n−1, (2c)

where, u j ( j ∈ {1, 2, . . . , Ng}) denotes the displacement
of the center of mass of the j-th bead. The last equation
(Eq.2c) is valid for k ∈ {2, . . . , Ng − 1}. The nonlinear con-
tact mechanics between any pair of identical beads is based
on the well known Hertz law such that the relevant constant
a = (4/15)(Y/(1 − ν2))

√
R/2, which holds for a pair of

ellipsoidal surfaces in contact (n = 5/2) [22,24]. Here, Y ,
ν, M and R denote the Young’s modulus, Poisson’s ratio,
mass and radius of each bead, respectively. It is important
to note that the force term of type a(uk − uk+1)

n−1, due
to the contact between any two consecutive beads [say, kth
and (k + 1)th beads], will have a non-zero contribution to
the relevant EOM of either only if there occurs a relative
compression (uk − uk+1 > 0).
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Table 1 Data set Sa : n = 5/2, ΔTsimu = 0.001μs and ΔTout = 1µs.

ρ ν Y R Tp Fc Ng Tsimu

4.42 0.34 110 10.00 500 1.00 4 5

4.42 0.34 110 15.00 500 1.00 4 5

4.42 0.34 110 11.00 500 1.00 4 5

4.42 0.34 110 12.00 500 1.00 4 5

4.42 0.34 110 13.00 500 1.00 4 5

7.85 0.30 200 10.00 500 1.00 4 5

7.85 0.30 200 11.00 500 1.00 4 5

7.85 0.30 200 12.00 500 1.00 4 5

7.85 0.30 200 14.00 500 1.00 4 5

The units of the tabulated values are: ρ (mg/mm3), Y (GPa), R (mm),
Tp (μs), Fc (kN), Ng (×103), Tsimu (×104µs)

The computer program for evolving the system dynamics
(Eqs. 2a, 2c) is coded in fortran and executed within Mat-
lab software environment. The time integration is based on
a velocity verlet algorithm. We run several simulations for
the deterministic case (θ = 0) by varying F from 10−1 to
1.3 kN, Tp from 300 to 600µs, and R from 8 to 14mm
(across Tables1, 2, 3). The material properties considered
are prescribed by Young’s modulus (Y ), Poisson’s ratio (ν)
and density (ρ) triples representing titanium (Y = 110GPa,
ν = 0.34, ρ = 4.42mg/mm3) and steel (Y = 200GPa, ν =
0.3, ρ = 7.85mg/mm3) as in Table1. The simulation con-
ditions are such that Ng ∼ 4000–6000, Tsimu ∼ 5 × 104 µs
andfixed time stepΔTsimu = 0.001µs. The large system size
is necessary because we are seeking the evolution of a finite
time perturbation into a fully formed SWT. For a typical sim-
ulation, the relative error in total mechanical energy content
in the system between the instant Tp (after which no exter-
nal work is done on the system) and any other time instant
t ≤ Tsimu, is in the order of 10−6. Experimental verification
of the work developed here may be possible for systems of
beads for which the dissipation, by design and construction,
is very small and the acceleration measurements are highly
accurate.

To identify the SWT from the dynamical response,
we extract the observations over a suitable time window
t ∈ [Tl , Tsimu], such that Tl � Tp, at a time interval
ΔTout = 1µs (appropriately chosen for computational effi-
ciency while not losing out on quality of the data). The time
instant Tl is numerically determined such that after this time
point and until Tsimu, the number of distinct SW packets,
Nswt, does not vary and that any i th SW in the SWTmaintains
its characteristic width, linear momentum P(i) and mechani-
cal energy E (i). The SWs are numbered as per the decreasing
order of their amplitude, where the leading SWwith the high-
est amplitude is labeled as 1, the second highest as 2 and so
on. We use time averaged (over [Tl , Tsimu]) values of the
relevant SWTs—thus averaging the error (of small magni-

tude) introduced due to numerical integration. It should be
emphasized here that the SWs form in time as a result of
the extended perturbation and then order themselves with
the ordering process involving interactions between the SWs
[29–32]. The process of creation and self-sorting of the SWs
into SWT is a complex phenomenon which is still not well
understood for granular chains and remains an open research
question.

To develop the algebraic relationships, mentioned above,
we find a particular re-parameterization of the EOMs
(Eqs. 2a, 2c), using the relative compression r j−1, j (=
u j−1 − u j ), to be helpful. By defining two scaled vari-
ables r̃ j−1, j ≡ Mr j−1, j ( j ∈ {1, 2, . . . , Ng + 1}) and
ã ≡ a/Mn−1, the revised EOMs are given by,

¨̃r0,1 = −nã r̃ n−1
0,1 + nã r̃ n−1

1,2 + F . (3a)

¨̃r Ng , Ng+1 = nã(̃rNg−1, Ng )
n−1 − nã(̃rNg , Ng+1)

n−1 (3b)

¨̃rk−1,k = nã r̃ n−1
k−2,k−1 − 2nã r̃ n−1

k−1,k + nã r̃ n−1
k,k+1, (3c)

where the first two equations (Eqs. 3a, 3b), respectively,
describe the bond dynamics at the contact between each of
the two boundary beads and the fixed boundaries, whereas
the last equation (Eq.3c) describes the bond dynamics at
every bead-bead contact. Therefore, r̃0,1 = M(−u1) and
r̃Ng , Ng+1 = M(uNg

). Here, F represents the excitation term
(random or deterministic). As discussed earlier for Eqs. (2a–
2c), a force term of type ar̃ j−1, j would have a non-zero
contribution in the above equations only if it represents a
compression (̃r j−1, j > 0). The above reparameterization can
be interpreted as if we are visualizing the system compris-
ing of discrete masses as made up of only nonlinear springs
(active only in compression). This is inspired by the dual
transformation in Toda’s works [33,34].

By studying the revised EOMs (Eqs. (3a–3c)), keeping in
mind Eq.1, it can be inferred that, for a given n, the properties
of the fully formed SW depend on the system parameter, ã,
and perturbation parameters, Fc and Tp. We have examined
various ways of describing the sequence of maximum grain
compressions for the fully formed SWT. It turns out, surpris-
ingly, that a simple quadratic model describes the observed
behavior better than an exponential model. Using this fit, the
maximum relative compression (amplitude) of the i th SW is
represented by,

r (i)
max = A(i − 1)2 + B, (4)

where A and B are constants depending on a, M , Fc and Tp.
Note that B equals the amplitude of the leading SW (for i =
1) and A < 0. In Fig. 2 we contrast this quadratic amplitude
attenuation for the short duration force perturbation casewith
that of an exponential amplitude attenuation inSWTresulting
in the same systemwhen subject to velocity perturbation [22,
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Fig. 2 Plot of SW amplitude (r (i)
max) versus SW number (i) at 10000 µs

corresponding to the leading 5 SWs (that capture the most of the total
mechanical energy) for force and velocity perturbation cases. SWs are
numbered in the decreasing order of maximum amplitude. Simulation
parameters are: ρ = 4.6mg/mm3, ν = 0.36, Y = 120GPa, R =
12.5mm, Ng = 5000, Tsimu = 60, 000µs. For the force perturbation
case, Fc = 1.1 kN and Tp = 375µs. For the velocity perturbation
case, the velocity of striker-mass (Grain 1 with mass = 5M) is such
that its kinetic energy equals the mechanical energy input for the force
perturbation case (= 0.3596 J). This ensures that the comparison of the
fully formed SWTbetween the force and the velocity perturbation cases
can be performed with same total energy in both

23]. The quadratic amplitude attenuation inEq.4 is suggested
for the specific case of short duration force perturbation. It
may be noted that a similar quadratic form was invoked to
describe the SWT structure that emerges for the Korteweg-de
Vries equation [4].

The simulations reveal the dependence of the parameters
in Eq.4 on the system and the perturbation parameters. The
range of system and perturbation parameters considered in
this study, although narrow, is of practical interest. Force
perturbation initiated at one end of the granular chain for
extended times has the effect of creating an extended com-
pression pulse that starts off near the perturbed end. Such
an extended compression pulse was not seen in the velocity
perturbation cases we examined earlier [22,23]. The nature
of this problem is such that typically the system makes a
small number of SWs in the fully formed SWT. Our simu-
lations reveal that for the system sizes we are able to probe,
typically there are 5–10 SWs in the SWT that eventually
form and end up as separate SWs in the fully formed SWT.
We next focus on characterizing the functional forms of the
dependences of A and B on a, M , Fc and Tp. Given the
strongly nonlinear nature of this problem, it is difficult to
intuit these functional forms. Assuming that A and B would
likely not have any characteristic scale associated with their
dependences on a and Fc, we choose to model them to have
algebraic as opposed to exponential dependences on these
parameters. We note that increasing the magnitude of Tp

may not mean indefinite increase in the size of the first SW

in the fully formed SWT. The validity of Hertz law and the
time scale of interaction between the grains would likely set
the largest SW that would form and the number of trailing
SWs in the SWT. This leads us to expect a possible satura-
tion type behavior in how A and B would depend upon Tp.
For this reason, at the simplest level, we expect an exponen-
tial dependence of A and B on Tp. As we shall see, these
assumptions turn out to work for our purposes.

3 Numerical study of the deterministic
external perturbation

3.1 Dependence of r(i)max on system and perturbation
parameters

Toanalyze the functional dependence of A and B (inEq.4) on
the perturbation and material parameters, the relevant equa-
tion is rephrased for convenience as follows,

r̃ (i)
max = ˜A(i − 1)2 + ˜B,where (5)

r̃ = Mr; ˜A = MA; ˜B = MB. (6)

Note that ˜B corresponds to the r̃ (1)
max of the leading SW with

the highest amplitude and ˜A < 0 ensures that the function is
decreasing with increasing SW index. The term ˜A governs
the rate at which the function will decrease. This means that
for a given ˜B a higher |˜A| will correspond to a lower num-
ber of SWs with significant energy in the SWT as compared
to a lower value of |˜A| which would correspond to a higher
number SWs in the SWT. The results from the dynamical
simulations for n fixed at 5/2 are consistent with the follow-
ing ansatz,

˜A = −CA (̃a)γ1 (Fc)
γ2

[

exp(γ3Tp)
]

, (7)

˜B = CB (̃a)β1 (Fc)
β2

[

1 − exp(β3Tp)
]

. (8)

Note that the parameters γ3 and β3 must be negative to ensure
the saturation behavior of ˜A and ˜B with increasing Tp. As we
shall see, Eq. 4 reliably captures the quadratic trend shown in
Fig. 2. Currently, our understanding of the detailed nature of
multibody collisions in the granular chains is limited to the
pictures developed in the binary collision approximation [35]
and as argued elsewhere [21,36], deeper understanding of the
consequences of the non-integrable nature of the problem is
needed to develop a theoretical basis for Eqs. (7) and (8).

To evaluate the exponents and multiplication factors, we
perform a sensitivity analysis by perturbing each set of
parameters ã, Fc and Tp one at a time while keeping the
other two fixed, and updating the model as each dependence
is characterized. The analysis leading up to the exponents
and multiplication factors, is performed in three stages.
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Fig. 3 Dependence of A on a and M characterized by a dependence
of ˜A on ã using data set Sa . Circles and solid line represent simulation
data and fitted curve, respectively

Fig. 4 Dependence of B on a and M characterized by a dependence
of ˜B on ã using data set Sa . Circles and solid line represent simulation
data and fitted curve, respectively

In the first stage, using the evaluated values of ˜A and ˜B
corresponding to input data set Sa (Table 1) we fit the fol-
lowing trend curve,

˜A = CA1(Fc, Tp, n)̃aγ1 , and (9)

˜B = CB1(Fc, Tp, n)̃aβ1 , (10)

to evaluate γ1 and β1, where CA1 and CB1 are constants
conditioned on fixed Fc, Tp and n. The quality of the curve
fitting is demonstrated in Figs. 3 and 4.

In the second stage, using the simulation results of ˜A and
˜B corresponding to input data set Sb (Table 2) we fit the

Table 2 Data set Sb: n = 5/2, ΔTsimu = 0.001µs, ΔTout = 1µs

ρ ν Y R Tp Fc Ng Tsimu

4.42 0.34 110 8 500 0.10 4 5

4.42 0.34 110 8 500 0.20 4 5

4.42 0.34 110 12 500 3.20 8 6

4.42 0.34 110 12 500 0.50 4 6

4.42 0.34 110 12 500 0.90 4 6

4.42 0.34 110 12 500 1.00 4 6

4.42 0.34 110 12 500 1.50 4 6

4.42 0.34 110 12 500 2.00 4 6

7.85 0.30 200 12 500 0.30 4 6

7.85 0.30 200 12 500 0.60 4 6

7.85 0.30 200 12 500 0.70 4 6

7.85 0.30 200 12 500 0.80 4 6

7.85 0.30 200 12 500 0.90 4 6

7.85 0.30 200 12 500 1.00 4 6

7.85 0.30 200 12 500 1.20 4 6

7.85 0.30 200 12 500 1.30 4 6

The units of the tabulated values are: ρ (mg/mm3), Y (GPa), R (mm),
Tp (μs), Fc (kN), Ng (×103), Tsimu (×104µs)

Fig. 5 Dependence of A on Fc using data set Sb. Circles and solid line
represent simulation data and fitted curve, respectively

following trend curve,

− ˜A

ãγ1
= CA2(Tp, n)Fγ2

c , and (11)

˜B

ãβ1
= CB2(Tp, n)Fβ2

c , (12)

to evaluate γ2 and β2, where CA2 and CB2 are constants
conditioned on fixed Tp and n. The quality of the curve fitting
is demonstrated in Figs. 5 and 6.
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Fig. 6 Dependence of B on Fc using data set Sb. Circles and solid line
represent simulation data and fitted curve, respectively

Table 3 Data set Sc: n = 5/2, ΔTsimu = 0.001μs, ΔTout = 1µs

ρ ν Y R Tp Fc Ng Tsimu

7.85 0.30 200 8 300 0.25 4 5

7.85 0.30 200 8 350 0.25 4 5

7.85 0.30 200 8 400 0.25 4 5

7.85 0.30 200 8 450 0.25 4 5

7.85 0.30 200 8 500 0.25 4 5

7.85 0.30 200 8 550 0.25 4 5

7.85 0.30 200 8 600 0.25 4 5

The units of the tabulated values are: ρ (mg/mm3), Y (GPa), R (mm),
Tp (µs), Fc (kN), Ng (×103), Tsimu (×104 µs)

In the third stage of model parameter estimation, we use
the simulation results of ˜A and ˜B corresponding to input data
set Sc (Table 3) to fit an algebraic trend curve based on,

− ˜A

ãγ1Fγ2
c

= CA(n)
[

exp(γ3Tp)
]

, and (13)

˜B

ãβ1Fβ2
c

= CB(n)
[

1 − exp(β3Tp)
]

, (14)

where CA and CB are constants conditioned on fixed n. The
quality of the curve fitting is demonstrated in Figs. 7 and 8.
The parameters CA and CB are determined using all three
data sets Sa , Sb and Sc and are given in Table 4.

In summary, the numerical data and corresponding curve-
fits presented so far indicate that the SWT amplitude atten-
uation parameters (A and B in Eq.4) depend on the system
and perturbation input parameters (Eqs. 7, 8). Our func-
tional forms here suggest that the formation of the SWT for

Fig. 7 Dependence of A on Tp using data set Sc. Circles and solid line
represent simulation data and fitted curve, respectively

Fig. 8 Analysing the dependence of B on Tp using data set Sc. Circles
and solid line represent simulation data and fitted curve, respectively

extended force perturbation is a highly complex problem of
distribution of mechanical energy and momentum within a
large, strongly nonlinear chain.

3.2 Dependence of E(i) and P(i) on r(i)max, system and
perturbation parameters

Once functional dependence of r (i)
max on the system and per-

turbation parameters is modeled, the next step is to model the
mechanical energy and linear momentum content in a soli-
tary wave. It is observed from the numerical observations
that the ratios KP and KE described as per,
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Table 4 Parameters governing the dependence of A and B on a, M , Fc
and Tp

Parameter Value Data set

γ1 −1.27 Sa

γ2 0.381 Sb

γ3 −4.77 × 10−3 Sc

β1 −0.637 Sa

β2 0.678 Sb

β3 −1.05 × 10−2 Sc

Parameter Mean SD Data set

CA 2.46 × 10−4 0.007 × 10−3 Sa , Sb, Sc

CB 1.22 0.009 Sa , Sb, Sc

Data sets used for parameter evaluation mentioned. Note that γ3 and β3
have units of (µs)−1, γ1, γ2, β1 and β2 are non-dimensional numbers
and CA and CB have units such that ˜A and ˜B have units of mg.mm
based upon Eqs. 7 and 8, respectively

Fig. 9 Dependence of KP on ã using S. Circles and solid line represent
simulation data and fitted curve, respectively

KP = P(i)

(

Mr (i)
max

)
5/2
2

= CPã
ζ1 , and (15)

KE = E (i)M
(

Mr (i)
max

)5/2
= CEã

ζ2 (16)

obey the power-law dependence only on ã. For fully formed
SWs, these ratios are expected to be independent of Fc and
Tp; this has also been numerically confirmedwithin a desired
level of accuracy. Again using input data set Sa (Table1) we
fit a power-law trend curve to obtain the exponents ζ1 and ζ2
and constants CP and CE . The quality of the curve fitting is

Fig. 10 Dependence of KE on ã using data set S. Circles and solid line
represent simulation data and fitted curve, respectively

Table 5 Parameters determining the dependence of P(i) and E (i) on a,
M , Fc and Tp

Parameter Value Data set

ζ1 0.5 Sa

ζ2 1 Sa

Parameter Mean SD Data set

CP 2.86 1.61 × 10−4 Sa , Sb, Sc

CE 3.13 1.39 × 10−3 Sa , Sb, Sc

demonstrated in Figs. 9 and 10 and the resulting parameters
are presented in Table 5.

The proposed expressions for P(i) and E (i) can be sum-
marized as,

P(i) = CP

(

Mr (i)
max

)
5/2
2

( a

Mn−1

)ζ1
(17)

E (i) = CE

M

(

Mr (i)
max

)5/2( a

Mn−1

)ζ2
. (18)

Note that in the above equations the number 5/2 is preserved
for some terms because it may turn out to be n, but this infer-
ence cannot be drawn from the current study which is for
fixed n = 5/2. On the other hand, the n in the definition of
ã term can be preserved as an algebraic term since it comes
directly from the re-parameterization of the dynamical equa-
tions.

We propose that an approximation for Nswt can be the SW
number greater than which all the SWswill take non-positive
values for r (i)

max according to Eq.4. By setting left-hand-side
to zero in Eq.4 and solving for this particular SW number,
we propose the equation below,
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Fig. 11 Normalized SWT response versus SW number. Simulated
observations (̂φ) are compared with corresponding values φ from
the assumed model. Simulation parameters are: ρ = 4.6mg/mm3,
ν = 0.36, Y = 120GPa, R = 12.5mm, Tp = 375µs, Fc = 1.1 kN,
Ng = 5000, Tsimu = 60,000µs

Nswt ≈
⌊

1 + √

(−B/A)
⌋

, (19)

to predict the number of SWs in the SWT. Here, for any
real number q, 
q� denotes its greatest integer lower bound.
Since this equation is derived from Eq.4 which models the
amplitude trend across multiple SWs in the SWT, this model
cannot capture the Nswt = 1 case.

It is important to note, and as can be seen later, that typical
values of r (i)

max, whichwe use to fit Eq.4, vary over a decade or
so. The SWTs spanning this range capture more than 99.99%
of the total energy content in the systems considered here.
The energetics for each SW obey the ratio E (i)

K /E (i)
V = 1.25,

where E (i)
K and E (i)

V , respectively, denote the kinetic and

potential energies in the i-th SW and E (i) = E (i)
K + E (i)

V .
These energies are calculated as per,

E (i)
K =

N (i)
R

∑

j=N (i)
L

M(u̇ j )
2/2 , (20)

E (i)
V =

N (i)
R

∑

j=N (i)
L

a(max{r j−1, j , 0})5/2 , (21)

where N (i)
L and N (i)

R , respectively, denote the labels of the
left boundary grain and right boundary grain that support the
i-th SW once it is numerically identified from the simulation
results. To test the accuracy of the assumedmodel, the system
is simulated with a new set of input parameters (a, R, M ,
Tp, Fc) which were not used while estimating the model.
One such validation study is demonstrated in Fig. 11 and the
model, developed so far, is seen to reasonably capture the
observed SWT response.

4 The random force perturbation problem

When the external excitation is random with noise about the
average force Fc, as seen in the fixed force perturbation prob-
lem, once again there develops an extended region of space
in the granular chain where the grains end up being com-
pressed simultaneously and eventually a SWT emerges for
the granular system under consideration. The system redis-
tributes the perturbed energy input in the same pattern as in
the deterministic case. We observe that no new SWs are cre-
ated in the SWT due to the randomness itself. However, the
input fluctuations show up as very small fluctuations in the
energy content in each SW in the fully formed SWT as can
be seen in Fig. 12. This implies that, just like the determin-
istic input energy is “quantized” into SWs in the SWT, the
fluctuation too gets quantized initially within the SWs in the
SWT. Since SWs with more energy move faster than those
with less energy, the fully formed SWT ends up being prac-
tically identical whether or not there are random fluctuations
in the initial force perturbation. This observation needs fur-
ther mathematical analysis which is outside the scope of the
current paper.

The case depicted in Fig. 12 is where the same system as
in Fig. 11 is simulated with a noisy excitation by considering
ε(t) as a uniform white noise input and maintaining θ = 1 in
Eq.1. The total energy input into the system is 0.3596 J for
the deterministic case and 0.3586 J for the random case. In
both cases, 0.9995 of the total input energy is contained in the
SWT. The results shown in Fig. 12 are for six different time
instants after the perturbation is switched off. The panels in
Fig. 12 suggest that the SWT eventually formed captures the
input energy in the random case well.

Since the error due to the random fluctuation in the fully
formed SWT response (say, at t = 50, 000µs) is negligible,
one can use Eqs. (7) and (8) to construct the SWT due to the
noisy excitation.

5 Useful mechanical energy from noise

The expectation that the mechanical energy in a noisy force
perturbation can eventually end up being distributed among a
sequence of SWs in a SWT led to this study. As shown above,
we see that the properties of the SWT can be characterized
quite accurately for relatively simple noisy signals. However,
such simple noisy signals also perhaps are expected if one
could harvest mechanical energy vibrations in bridges due
to continuous pedestrian and/or automobile traffic, along the
surface of a ship due to the continuous interfacing with the
waves, in busy highways for significant parts of weekdays,
or perhaps in many manufacturing plants. One then wonders
whether it is possible to use such noisy force fluctuations
into harvestable energy. The answer as we can see is, in prin-
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Fig. 12 A single realization of random force versus time is given at the
very top subfigure a where the black solid line illustrate the average
force and the red line depict the fluctuation about the average force.
For the random realization the simulation parameters are: θ = 1,
Ng = 5000, µs, R = 12.5mm, Y = 120GPa, ν = 0.36, M =
37.629 g, Fc = 1.1 kN, Tp = 375µs. In the other subfigures b

through g the kinetic energy K E (Joule) is plotted versus bead number
for 6 time points. In subfigures b through g the response due to the
random force (black solid lines) are overlaid on the response due to an
applied constant force equaling the average of the random case (gray
solid lines)

ciple, yes. However, granular systems are macroscopic in
nature and hence inherently dissipative. Can one make very
long nanogranular systems perhaps to see if dissipation can
be reduced? [37,38]. The answer to this question is unknown.
However, even nanoscale grains have some dissipation. One
possible way out of this dissipation issue is to use an inte-
grated circuit to replace the granular chain. The integrated
circuit serves the role of converting the input signal by parti-
tioning it into SWs that make up a SWT where A and B are
constructed using various circuit elements to realize Eqs. (7)
and (8) [27]. Such integrated circuits require power to func-
tion in an effectively non-dissipative manner. Hence, using
integrated circuits to convert noisy input forces to useful elec-
trical energy in this case would only be worthwhile when the
power needed to run the circuit is low enough and hence the
cost inexpensive enough compared to the harvested power.
Whether this is possible is a topic of exploration in the future.

It is natural to wonder what might be the limits of noise
that can be converted to useful energy or a SWT. Since SWT
formation needs sufficient system size and hence time, one
must have a sufficiently large system to handle a highly noisy
input force perturbation. Further, the amplitude of the noise
cannot be so high that the Hertz law which holds for elastic

compression of the grains becomes invalid. Both of these
problems are no longer important however if one is using an
integrated circuit to effectively represent the input signal by
a SWT using Eqs. (7) and (8) for a large enough system.

A recent work [39] has proposed analytical expressions
characterizing the dependence of peak force and momen-
tum content within a SWT on the perturbation and system
parameters for a chosen input force profile. Even though this
work [39] considers a different perturbation, the analytical
approach proposed in this work suggests possible ways of
exploring the problem considered here.

6 Conclusion

Here we have developed expressions to describe the prop-
erties of the fully formed SWT for any system described
by Eqs. (2a), (2b), and (2c). The properties depend upon the
geometric and material parameters (effectively one parame-
ter) of the system and the external perturbation parameters
(amplitude of the perturbing force and the time across which
the force acts).
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We show that the developed expressions can also be used
to characterize the SWT when the input external force per-
turbation has an additive white noise over a constant value.
Hence, when a random force is incident at one end of a long
granular chain, the system can convert this noisy input into
a well-organized SWT with minimal error. In reality a long
granular chain with near zero dissipation would be a handy
system to use to convert a noisy input force into a SWT that
can then be transformed to useful electrical energy. Given our
expressions in Eqs. 4 through 8, it may be possible to design
a circuit to convert the energy imparted via an extended time
input force perturbation into a SWT with each SW in the
train carrying the amount of momentum and energy given by
Eqs. 17 and 18, where r (i)

max is given by Eq.4 and A and B are
given by Eqs. 7 and 8, respectively [27].
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