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Granular chain between asymmetric boundaries and the quasiequilibrium state
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Some 30 years have passed since we learned that any velocity perturbation develops into a propagating solitary
wave in a granular chain, and over a decade has passed since we learned that these solitary waves break and
reform upon collision, leaving behind small secondary solitary waves. The production of the latter eventually
precipitates the quasiequilibrium state characterized by large energy fluctuations in dissipation-free granular
systems. Here we present dynamical simulations on the effects of soft boundaries on solitary wave interaction in
granular chains held between fixed walls. We show that at short time scales, a gradient in the distribution of kinetic
energy between the boundaries is indeed sustained. At long times, however, such a gradient gets obliterated and
there is no measurable difference between the average kinetic energies of the particles adjacent to walls. Our
findings suggest that (i) the quasiequilibrium state can effectively erase small gradients of the average kinetic
energies of the particles adjacent to walls in a system, (ii) Boltzmann distribution of grain speeds is realized in
the system of interest, and (iii) time and space averages yield the same result, thus suggesting that the system
is ergodic.
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I. INTRODUCTION

Nesterenko provided experimental evidence and theoretical
arguments to show that a velocity perturbation results in a
traveling solitary wave (SW), i.e., a nondispersive bundle
of energy, in a one-dimensional (1D) granular chain [1,2].
His work was reconfirmed and elaborated upon by many
theoretical and experimental works (for some representative
studies, see [3–10]). These studies have highlighted the effects
of the highly nonlinear potential between two grains in gentle
contact, the so called Hertz law [11].

When these SWs collide with one another or with walls,
they break and reform. Earlier work has suggested that
energy-conservation conditions require the formation of low-
energy (hence low-amplitude) SWs in the vicinity of the
collision region. We called these waves secondary solitary
waves (SSWs); they were first reported in numerical studies in
Ref. [12] and later experimentally confirmed by Job et al. [13].
SSWs include all waves resulting from the collision of
primary SWs, as well as waves arising from collisions of
their by-products. Progressive breakdown of SWs would mean
that eventually all energy would disappear. Hence, energy
conservation requires that colliding SWs could also result in
the effective increase in the energy of one of the SWs. This
effect is indeed seen [14–17]. The balance of the breakdown
and growth processes eventually leads the chain to the
so-called quasiequilibrium (QEQ) state [17,18].

At first glance, the QEQ state may seem no different than
the equilibrium state. However, it turns out that while the
velocity distribution in this state is a Gaussian, the equipartition
theorem does not hold [18]. Further, in some cases the
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system’s evolution appears to have no memory of the initial
conditions, whereas in others they do [17]. In addition, when
one investigates the fluctuations in kinetic energy (K) of
the Hertzian system in the QEQ state, one finds that the
fluctuations are typically larger than those for a corresponding
harmonic system [2]. These systems are also known to sustain
metastable special regions such as breathers [19–21] and hot
and cold spots for extended times [17], where the kinetic
energy can be localized along well-defined regions along the
chain. The conclusion is that this state is not the same as
the equilibrium state as seen in a harmonic chain. Therefore,
this state was named the QEQ state to distinguish it from the
ordinary equilibrium state [14,18].

Job et al. established that it is possible to increase the energy
content of the SSWs by softening the walls [13]. Since an
increase in the amplitude of the SSWs would imply higher
kinetic energy of these SWs, which are slowly produced
in the vicinity of the collision region, it seems reasonable
to expect slightly hotter temperatures near a soft wall even
for small granular chains. Moreover, because soft materials
propagate energy at a slower speed, one would expect the soft
wall to remain slightly “hotter” for measurably long times, at
least in dynamical simulations. Here we address whether our
expectation is realized in a model system where the softness
can be widely varied [22].

While the interaction of SWs with boundaries in confined
granular chains with both walls made of the same material has
been extensively investigated [2,17], little is known for systems
placed between asymmetric boundaries. The aim of the present
work is to investigate the short- and long-time behavior of a
chain at zero dissipation between asymmetric boundaries. This
paper is organized as follows. Section II outlines the model
and numerical details. Results for the case of walls of different
softnesses are presented in Sec. III. In Sec. IV we discuss our
findings.
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II. MODEL AND NUMERICAL DETAILS

We consider an alignment of N identical elastic spheres,
each of mass m and radius R, placed in such a way that they
are barely in contact with each other. There is no grain-grain
interaction when there is no contact [1]. The alignment is held
between walls of variable softness. The interaction potential is
given as

V (xi+1 − xi) = a[2R − (xi+1 − xi)]
n ≡ aδn

i,i+1 � 0, (1)

where xi is the displacement of grain i from the original
position (i.e., grains are at a distance of 2R between the
centers initially), 2R � xi+1 − xi � 0, and δi,i+1 is the overlap
between the grains. Since the grains do not interact when the
grain-grain contact is broken, for 2R < xi+1 − xi or δi,i+1 < 0,
V (xi+1 − xi) = 0. More details on the properties of V (δi,i+1)
are discussed in some detail in Ref. [7]

According to the Hertz law, for spheres in contact, n =
5/2 [11]. Hence, the one-sided interaction potential is fully
nonlinear in nature, i.e., there is no n = 2 term. This means that
there is no acoustic propagation from grain to grain [1,23]. The
equation of motion of each grain (except for the two boundary
grains) is given by

m
d2xi

dt2
= an

[
δn−1
i,i−1 − δn−1

i,i+1

]
, n � 2, (2)

where i runs from 1 to N . The calculations are done via a
velocity-Verlet algorithm [24] and the outcomes are presented
using dimensionless quantities. In our simulations, we assume,
as reference, that spheres are made of Ti alloy (TiAlV),
where Al and V are added to stabilize the corresponding
Ti phases, with grain radius 5 mm, ρ = 4.42 mg/mm3,
D = 0.012 06 mm2/N. This value of D holds also for the
reference value of the walls. To change the value of softness, a
factor fD was placed before the value of a. The integration time
step dt was set to 10−6 μs. To initiate the dynamics, we start
a δ function velocity perturbation at one end of the chain that
develops into a propagating SW in the system within about 10
grain diameters from the edge [25]. The SW velocity depends
on the magnitude of the initial perturbation, V0 = 0.01 [1,2].

III. ASYMMETRIC BOUNDARIES

Here we consider an array of N = 31 beads of equal size
and softness, located between a hard wall and a soft wall.
During the early stages of the dynamics, a SW propagates
along the chain initiating a series of collisions against the
walls and against other waves. As is shown in Fig. 1, the time
to form reflected SWs increases with wall softness. The various
collision processes lead to the formation of SSWs of various
energy contents, which in turn collide with each other and
with the walls. Figure 1 shows the trajectories of the main SW
and other lower-energy SWs for increasingly larger values
of wall softness. The gray scale in the figures indicates the
energy content of the SWs. Note that SW’s velocity reverses
its direction when it bounces from the wall, and this is indicated
by a gap in the light gray color. The emergence of SSWs can
be seen at late times in the gray scale plots in Figs. 1(a)–1(d).
It may be possible to actually observe the stickiness of the
SWs in the vicinity of soft walls at early times. However, since

FIG. 1. Lengthening of collision time for increasingly softer
walls. In each case, the soft wall becomes softer by a factor fD .
From top to bottom, 1/fD = 1, 10, 100, 1000, and 10 000.

all real granular systems are dissipative, the late time effects
discussed below may not be easily seen in granular systems in
the laboratory. However, seeing the simulated behavior is not
expected to be a problem in the circuit realizations of these
systems [22].

A notable feature in Fig. 1 is the lengthening of the
time of formation of reflected SWs as the wall increases in
softness. This suggests that the particle adjacent to the soft
wall possesses an average kinetic energy that is likely to be
larger than the particle adjacent to the opposite wall. This is
indeed correct, but as we shall see, only for early times. We
show that for long times, the average kinetic energy at the
ending particles adjacent to the walls is indistinguishable.

Another characteristic of SWs colliding with soft materials
is that the resulting SSWs created from the collision are more
energetic [13]. Figure 2 shows snapshots around the time of the
first collision at the soft and hard walls. Note that SSWs near
the soft wall can be better appreciated on this scale, whereas
near the hard wall SSWs are too small to be seen in the same
scale of energy. Next, we show that the presence of SSWs of
higher energy at the soft wall does not imply larger average
kinetic energy across extended time scales.

Landscape of energy. Since our goal is to investigate the
role of wall softness in the time evolution of a granular chain,
it would not be useful to be too worried about the softnesses
of readily available materials. For this reason, we will use
widely varying values of softening, and for now we will set
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FIG. 2. Kinetic energy around collision times at (a) hard wall and
(b) soft wall. The y axis in the insets has been amplified 10 times
to show the finest detail of SSW formation. Values are normalized
with the magnitude of the initial impulse, K0, and the snapshot time
is indicated.

the softening factor fD = 0.0001 at one end of the chain and
fD = 1 at the other end, keeping in mind that circuit real-
izations of such systems are likely possible [22]. After a few
round trips of the original pulse in the chain, the spatiotemporal
energy distribution of the system reveals a roughly gray color
with significant energy fluctuations in the gray scale plots, as
shown in Fig. 3. The top figure represents the system’s state
in an intermediate stage of the simulation. As expected, the
reflection of the SW from the soft wall takes longer times.
However, in the long term, the asymmetric interaction with
the walls does not result in a robust asymmetric distribution
of average kinetic energy, even though the difference in wall
softnesses is notable.

To measure how the energy of the particles adjacent to
walls of different softnesses affects the distribution of kinetic
energy over time, we look at the values of kinetic energy
at both ending particles at each time step. We say that at a
particular time step the wall is hot if its kinetic energy is
larger than some appropriate minimum value. Considering the
maximum energy value normalized to 1, we choose 1/100 as
the minimum value for the wall to be considered hot. Then, we
add all the time periods in which the soft and hard walls are hot,
and we divide the result by the total measurement time T . This
quotient is written as �TK>0 and it is a measure of the fraction
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FIG. 3. Energy landscape of a chain between asymmetric bound-
aries. (a) Short-time simulation, (b) long-time simulation.
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FIG. 4. Normalized energy of the first and last bead in the chain.
These figures correspond to the case shown in Fig. 3. Parts (a) and
(b) are the energies of grains i = 1 and 31, respectively, during the
first 10 000 time steps. Parts (c) and (d) are the energies of the grains
i = 1 and 31, respectively, at long times. Energy is normalized with
the value of the initial impulse.

of time in which the energy content of the walls is significant
during a time window T . We write this dimensionless quantity
as follows:

�TK>0 = nT /T , (3)

where nT is the number of time units in which the wall has an
energy larger than 1/100 in a time window of length T .

In this case, the total fraction of time in which the soft and
hard walls are hot is �TK>0 = 0.476 and 0.438, respectively.
We have employed the last 30 000 time steps in Fig. 3(b) as
a time window. This constitutes a difference of less than 9%
between the two walls. It should be noted here that the presence
of precompression in the chain tends to raise the speed of
energy propagation between the ends and does not help to
sustain any kinetic energy differences between the walls.

The energy landscape shown in Fig. 3 accounts for the
energy of the entire chain. In contrast, focusing on the energy of
individual beads at each end of the chain allows us to compare
side by side the effect on those grains immediately adjacent to
the walls. To do this, we plot the time evolution of the energy
at each end of the chain. Figure 4 shows the energy of the
first and last beads in the chain. Similar to what is shown in
the energy landscape in Fig. 3 at early times, Fig. 4 shows
that the grain adjacent to the soft end holds energy for longer
times than the grain at the other end does. Nonetheless, this
effect diminishes when looking at long times, as illustrated
in panels (c) and (d). Panels (c) and (d) in Fig. 4 represent
the time evolution of energies of the ending grains within the
QEQ region [18]. However, the effect of the soft wall is not
appreciable in this figure even when looking at the energy per
grain averaged over long times, as shown in Fig. 5. The energy
scale is normalized with the energy of the initial impulse,
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FIG. 5. Averaged kinetic energy per grain vs grain number.
Kinetic energy is averaged in a time window corresponding to the
time interval of Fig. 3 at late times (last 10 000 time steps). The
dashed line indicates total average value.

1/2V 2
0 . Note that the average kinetic energy in the whole chain

is 0.01796 × 31 = 0.556, which is the value predicted by the
virial theorem.

Dynamical and statistical analysis. Another way to assess
the effect of breaking the symmetry on the distribution of
kinetic energy is by looking at the statistical evidence along
with making a simple dynamical analysis. Figure 6 shows
phase portraits of individual grains that are symmetrically
located along the chain. Panel (a) is for grain numbers 1 and
31. When looking at dynamical features, it is necessary to
focus on long-time stages because the primary interest is the
QEQ state. Therefore, this figure corresponds to approximately
15 000 time steps after QEQ has been established. Axes x

and y, respectively, show the relative position and its time
derivative (velocity) for these two grains. The most notable
feature in this figure is that the grain adjacent to the soft wall
has a wider range of motion than the grain adjacent to the
hard wall, which indicates that grain no. 1 has access to larger
energies.

Figure 6(b) shows the phase portrait of grain no. 13 and
no. 19. These grains are located near the center of the chain
at equal distances from the walls. Note that both grains have
similar ranges of motion, which indicate that these two grains
have access to a similar range of energies.

Panel (c) in this figure shows phase portraits for grain no.
1 and no. 31 of a reference system in which both walls are of
equal softness. The reference system lacks the asymmetric
interaction with the boundaries, and therefore it does not
exhibit an unbalanced distribution of energy. If we look closely
at the ending grains in the asymmetric case shown in panel (a)
and the reference case in panel (c), one can state that the role
of the soft wall is certainly related to the energy gain of grain
no. 1.

Velocity distribution. For a gas in equilibrium, the con-
stituent particles acquire energies according to a Boltzmann
weighting. In a particulate chain with symmetric boundaries,
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FIG. 6. (Color online) Phase-portrait of grains no. (a) 1 (red or
gray) and 31 (black), (b) 13 (red or gray) and 19 (black), for the case
of one hard wall and one soft wall. Panel (c) is the phase portrait of
a reference system in which both walls are of equal softness. Grains
no. 1 (red or gray) and no. 31 (black) are shown.

FIG. 7. (Color online) Velocity distribution binning per grain.

once the QEQ state has been reached, the grains in the
chain obey the normal Gaussian distribution [26]. For the
asymmetric chain, we pay special attention to the end grains,
because those are in direct contact with the soft and hard walls.
Figure 7 shows velocity distributions for grains no. 1, 6, 11, 16,
21, 26, and 31. The vertical axis represents the count per bin.
These distributions are made using approximately 30 000 time
units after the QEQ state has been reached. Although the soft
wall smooths out the velocity distribution of energy at the soft
end, velocity distributions turn out to be symmetric for all the
grains. In other words, the soft wall has no appreciable effect
on the velocity distribution at the boundary grains.

Figure 8 shows time averages, 〈V 2〉T /V 2
0 , for all the grains

and the ensemble averages, 〈V 2〉S/V 2
0 , corresponding to the

last 30 000 time units (see Fig. 3). The total average in

FIG. 8. (a) Time averages of the entire system and (b) ensemble
averages over 30 000 time units.
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both cases is 0.01789, which is in agreement with the value
predicted by the virial theorem for every grain in the chain.
Thus, the system appears to be ergodic.

IV. CONCLUSION

In this work, we have studied the time evolution of a
velocity perturbation initiated at time t = 0 in a granular chain
using dynamical simulations. The chain is held between fixed
boundaries—one of these is a soft wall whereas the other is a
rigid wall [1,2].

Let us first talk about a granular chain that is held between
rigid walls. It is well known that any velocity perturbation
results in a SW in these systems. These SWs break and reform
when they collide with the walls and with one another. These
processes give birth to SSWs, which are SWs that are born
out of the first SW-wall collision and subsequent collisions
and are of much lower energy content than the original SW.
The continuous interaction between the SSWs of all energy
contents typically leads to an equilibrium-like phase, the

QEQ phase, with normal Gaussian distribution of velocities
(or equivalently, Boltzmann distribution of energies, large
fluctuations, and loss of memory of initial conditions [18]).
When one of the walls is softer than the other, the SWs break
and form SSWs of higher energy content than when the wall
is rigid. This gives rise to higher kinetic energies near the
vicinity of the soft wall [13]. The question we have addressed
is whether this kinetic energy gradient is sustainable in this
QEQ state, which is possible for strongly nonlinear systems.
Our studies suggest that at short and even intermediate times,
there is a kinetic energy gradient that may be seen if the soft
wall is sufficiently soft. However, at large times, this gradient is
erased. We find that the system behaves like an ergodic system
and appears to have no memory of the initial conditions, thus
suggesting that the QEQ state is a robust state.
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