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Abstract Any impulse results in the formation of a soli-
tary wave of time averaged width W in a granular chain. If
the grain–grain interaction potential V ∼ δn , where δ is the
distance by which the grains approach each other, then it is
well established that n ≥ 2. Here we present dynamical sim-
ulation based results which suggest that W − 1 ∝ (n − 2)−α

where α = 0.3283 or ≈1/3. While in qualitative agreement,
the result is quantitatively different from the formula for W
proposed earlier by Nesterenko.

Keywords Solitary waves · Granular chain ·
Nonlinear forces · Hertz law

1 Introduction and motivation

In 1881, Hertz showed that when two elastic spheres are
gently pressed against one another, they repel according to
a nonlinear potential [1]. More than a century later, starting
in 1983, Nesterenko carried out experimental and theoretical
studies to show that an alignment of grains that are barely in
contact, i.e., without the grains being precompressed, con-
verts any impulse or δ function velocity perturbation to an
edge grain into a propagating non-dispersive energy bundle
or a solitary wave [2–5]. Existence of solitary waves in any
system presents the possibility of enhanced energy transport
through them and hence may be of interest from both sci-
entific and engineering vantage points. These solitary waves
have since been studied widely [6–19]. It has been established
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that the solitary wave that is found in the granular chain is
distinct from the other well known solitary waves in known
solitary wave bearing systems [20,21].

Nesterenko constructed an approximate stationary state
solution to the dynamical equation which describes the soli-
tary wave as one period of an otherwise continuous periodic
solution. This solution is in the continuum limit of the space
variable. The very definition of a period means that the solu-
tion has well defined limits. Thus Nesterenko’s work natu-
rally lend itself to measuring the width of the solitary wave
[4,5].

In 2001, Sen and Manciu carried out numerical simula-
tions and also developed an improved solution to the prob-
lem of solitary wave propagation in a granular chain [14].
These studies showed that the energy contained in the soli-
tary wave in the stationary state approaches zero at the edges.
Their study implies that estimating the width of the solitary
wave ultimately depends upon the accuracy to which mea-
surements can be made. Nevertheless, experimental measure-
ments are always accuracy limited and both Nesterenko’s and
Sen and Manciu’s works are in reasonable agreement with
the experimentally measured results and with each other [20].

In a recent study, however, it has been suggested that it
may be experimentally feasible to change the nonlinearity
of the potential between the two grains in contact when the
contact interfaces are not elliptical [22–25]. Such modifica-
tions have been shown to lead to Hertz-like potentials with
different nonlinearities. Studies show that this means that the
width of the solitary wave may be different when the nonlin-
ear grain–grain potential changes [4,26]. When the potential
is steeper than the Hertz law, the solitary wave will have a nar-
rower width than in the chain of spherical grains. When the
potential is softer, more like harmonic, the width will become
quite large in keeping with the fact that in the harmonic limit
there is no solitary wave and hence the width diverges. One
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then faces the following intriguing possibility—can we make
granular assemblies where the propagating energy pulse can
be squeezed or dilated? Here we try to understand to what
degree the width of the solitary wave will be influenced by the
nonlinearity in the potential. We show that the width depends
on nonlinearity according to a power law. While in qualitative
agreement with Nesterenko’s original prediction regarding
how width will vary with nonlinearity, the result presented
below is quantitatively different.

This paper is organized as follows. In Sect. 2 we present
the details of the model and the calculations. The results are
presented in Sect. 3. We conclude with a summary and a
discussion on the possible implications of this study.

2 Model details

We consider an alignment of N identical elastic grains, placed
at positions xi , each of mass m and of width (i.e., diameter
for the special case of purely spherical grains) 2R, placed in
such a way that they are barely in contact with each other.
There is no grain–grain interaction when there is no con-
tact [1]. We assume that the alignment is very long and held
between perfectly reflecting walls. Wall effects will not enter
into our discussions in this work. We will be concerned with
solitary waves in their stationary states and hence far from
boundaries, which means that in our system, the number of
grains N will be quite large, typically with N = 500.

The interaction potential [1] is given as

V (xi −xi+1)= a[2R−(xi −xi+1)]n ≡ aδn
i,i+1 ≥ 0, (1)

where a = 2
5D

(√
R
2

)
, D = 3

2

(
1−σ 2

Y

)
, where Y, σ repre-

sent the Young’s modulus and the Poisson’s ratio, respec-
tively, xi is the position of grain i as measured from some
appropriate origin and δi,i+1 is defined as the overlap between
the grains. Observe that the grains do not interact when the
grain–grain contact is broken and when xi − xi+1 = 2R.

For grains with circular or elliptical contacts, as per Hertz
law, n = 5/2 [1]. Hence, the interaction potential is fully
nonlinear in nature, i.e., there is no n = 2 term and hence
there is no chance of any oscillatory dynamics of any of the
grains when they are in contact. In turn, this means that there
is no acoustic propagation from grain to grain as emphasized
extensively in the literature [5,9,10]. It may be noted that
one can formally show that for the majority of grain–grain
contact potentials n > 2 [27]. To illustrate the effects of n in
influencing the dynamics of the system, we will use various
n values below. In this context we observe that various values
of n can be realized by using grain–grain contacts that are
non-elliptical as discussed in Ref. [25]. Further, a well known
case of n = 7 has been experimentally realized in a chain of
rings by several authors [22–24]. The value of a [Eq. (1)] also

depends on the geometry of the grain–grain contact as shown
in Refs. [25,28]. However, this aspect is not very important
for our purposes because we are interested in the average
width of the solitary waves that form in our systems and such
widths are expressed simply in terms of 2R. Thus, the details
of the constants used in the simulations with a given n only
play the role of modifying the energetics of the system and
has no effect on the width of the solitary wave, which is what
we are most interested in now. This realization simplifies the
task at hand. The equation of motion of each grain (except
for the two boundary grains) is given by

m
d2xi

dt2 = an
[
δn−1

i,i−1 − δn−1
i,i+1

]
. n ≥ 2, (2)

where i runs from 1 to N .
The calculations have been done via a velocity Verlet algo-

rithm [29]. We set m = 2.314×10−2 kg, a = 1.65836×106

J/m5/2 and the total energy Etot imparted via a δ function
velocity perturbation to the edge grain where the total energy
is set to 0.115715 J in all of our studies [30]. These numbers
are consistent with those of quartz type materials. It is impor-
tant to note that the amplitude associated with the initiated
velocity perturbation must be �2R and is not important in
the sense that it has no effect on the geometrical properties
of solitary wave produced. It should be mentioned, however,
that smaller amplitudes produce less energetic solitary waves
than higher amplitudes and as is well known, the velocity of
the solitary wave is dictated by its energy content [5,10].
The integration time step dt was set to 10−5 µs Reflecting
boundary conditions are used at the walls.

In his pioneering studies [5], Nesterenko reported both
experiments and theory. In the theoretical analyses, he
assumed that the physical problem was well approximated
by a weak impulse perturbation that is initiated at one end
of a sufficiently long, weakly precompressed granular chain.
He replaced Eq. (2) under weak precompression by a contin-
uum equation that is expected to be approximately valid in
the long wavelength approximation. The perturbation across
time and space develops into a solitary wave as described in
detail in Ref. [31]. In real time and space, the propagating
energy pulse exhibits successive contractions and expansions
in spatial extent much, like the way in which a caterpillar
moves. However, the time averaged width, also the steady
state width of the solitary wave assumes that the width is
fixed in space and time and that the spatial and temporal
coordinates are related by the velocity of the solitary wave.
Nesterenko’s stationary state solution to the continuum limit
of Eq. (2), with some approximations, yields an equation that
can be solved by a periodic function. Nesterenko showed that
a single period of this solution (without the remaining peri-
odic pieces) serves as a good approximation to the solution of
the original equations of motion [2–5]. The total width of this
wave then yields a width of the solitary wave. Nesterenko has
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shown that this width (defined by a single period), written as
a function of n is given by

W = 2π R

n − 2

√
n(n − 1)

6
. (3)

For n = 5/2, this yields W ≈ 10R, which is consistent
with the measurements that have been done. Observe that
as n → ∞, that is when each grain acts like a hard sphere,
W ≈ 2.56R or slightly more than a grain in width, not bad
for a continuum theory that is not supposed to be reliable
in this limit. An important point to note is that Nesterenko’s
solution has compact support, and hence the edges are well
defined. It is, however, long known that an improved ver-
sion of this solution that was developed by Sen and Manciu
[14] does not have compact support. Therefore in an infinite
system, the solitary wave would have a finite half width at
half maximum but would be infinite in extent, as would be
the case for instance for a solitary wave whose velocity dis-
tribution in space is described by an appropriate hyperbolic
function. In reality, we cannot really say whether a solitary
wave has compact support or not because our measurements
are limited by precision. Same is the case for numerical stud-
ies where the extent of a solitary wave is eventually controlled
by how small of a number is too small to be meaningful.

3 Results

In what follows, we will focus on the time averaged width
〈W 〉, where 〈· · · 〉 implies a time average. Given the absence
of compact support in the Sen and Manciu solution [14],
we have used an indirect approach to measure the width of
the solitary wave for a given n. Our main objective, how-
ever, is to find how W varies as a function of n. Based on
Nesterenko’s result and physical considerations in Eq. (3),
we expect W → 1 as n → ∞ (ballistic limit where each
grain is a hard sphere). Thus W varies between 1 and ∞,
the latter being the case when n → 2 and the interaction
becomes quadratically dependent on δ and a solitary wave
solution to the linear equations is no longer admissible.

It is important to note that in the absence of an exact solu-
tion to the equations of motion [(characterized by Eq. (2)],
the definition of W is always going to be model dependent
whether one is doing theory and/or simulations and will be
experimental accuracy dependent in experiments. However,
as we shall see, because Nesterenko’s W and our W sat-
isfy the same limits, and W only depends on n as shown by
Nesterenko and others, it turns out that the behavior of W (in
terms of grain diameter) as a function of n is not sensitive to
precisely how W is defined as long as the same conditions
are applied to find W .

Our goal now is to develop a relation between the steep-
ness of the potential with increasing overlap δ in Eq. (1)

Fig. 1 Panels a and b are almost identical and show different aspects
of the solitary wave in its stationary state. These two panels are meant
to help understand Eq. (4) in the paper. In a the distribution of kinetic
energy in a solitary wave with its center at a grain center is shown and
its geometrical features are elucidated. The areas 1, 2 and 3 are defined
in a. In b, we show the velocity squared for each grain explicitly and B
and W are explicitly shown as well. Note that B exceeds W by a single
grain diameter and the origin of this difference lies in the shape of the
solitary wave in the stationary state. See the discussion around Eq. (4)
in the text for further details

and the width of the solitary wave W . As we shall see, our
results will reveal that W is independent of all quantities
except n, which is in agreement with Nesterenko’s results
[2,5]. In the stationary state, the energy in the solitary wave
is also the total energy Etot . To measure the edges of the
solitary wave from the simulation based data, we define the
ratio of the grain–grain overlaps at the tail versus at the cen-
ter, δtail/δmax < 10−8 as the equivalent of zero. This choice
allows us to define the extremeties of the solitary wave for our
analyses. The same criterion is used to define W regardless
of the value of n.

Figure 1a, b represent the kinetic energy versus in the
solitary wave as a function of space. We note that the grain
with the highest kinetic energy, has velocity vmax . We now
draw an isosceles triangle with the grain with velocity vmax

at the center and with a base B being such that we satisfy the
condition that the sum of the areas of the black regions equals
that of the shaded region in Fig. 1a. Given the kinetic energy
distribution in space of the solitary wave (Fig. 1a, b), our
numerical analyses show that for the stated area condition to
be satisfied, B ≥ 2. This area condition suggests we describe
the total kinetic energy of the solitary wave, 〈K E〉 as
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Fig. 2 (Color online) Plot of W −1 versus n−2 showing Nesterenko’s
continuum theory based formula expressed as a power law fit and those
resulting from the present dynamical calculations based on Eqs. (2)
and (4)

〈K E〉 = 1

2
B

[
1

2
mv2

max

]
≡ 1

4
(W + 1)mv2

max , (4)

where the identity above represents the total kinetic energy
contained in the solitary wave whose width W is chosen to
be such that W +1 ≡ B. Observe that the smallest B is 2 and
this means the smallest W = 1 as we have already argued
above. We further elaborate on this argument below.

Now, according to virial theorem of mechanics [32], the
kinetic energy of the solitary wave is 〈K E〉 = n

n+2 Etot ,
where 〈· · · 〉 represents a time average and Etot is the total
energy which must equal 1

2 mv2
0, where v0 is the velocity

associated with the initial perturbation imparted to the sys-
tem. Thus, we can write

W = 4n

n + 2

(
Etot

mv2
max

)
− 1 = 2n

n + 2

(
v2

0

v2
max

)
− 1. (5)

Equation (5) above allows us to use the simulational data
to infer vmax for each of our simulations for fixed n and
obtain W . Our results suggest that W → 1 as n → ∞. It
is interesting to note here that if we vary the initial velocity
perturbation to the edge grain, the amount of energy being
transmitted through the chain will vary as a function of the
kinetic energy imparted in the perturbation. If we express this
energy in terms of the momentary compression A suffered by
the edge grain when a gentle impulse is initiated at one end
of the chain, then based on Eq. (1), E ∼ An . As shown in
Eq. (9) in Sen and Manciu [14], v2

max ∼ An . This means
that W is independent of A as it should be. Unfortunately,
however, the existing solution does not allow us to do further
analysis. By obtaining vmax from our dynamical simulations,
we are now able to readily obtain W . The plot in Fig. 2
suggests

W − 1 ∝ (n − 2)−α. (6)

where α = 0.3283 or ≈ 1/3. This behavior differs quan-
titatively from Nesterenko’s width formula [Eq. (3)] based
behavior although the qualitative behavior of W versus n
and the asymptotic behavior are the same for both.

4 Conclusion

The extent of the solitary wave characterized by its width
W is known to depend on the index of the nonlinear law
n. Nesterenko had proposed the only known relationship
between W and n based on his solution to a continuum equa-
tion that is closely related to the actual dynamical equations
obeyed by the grains. Here we show that while an analyti-
cal formula improving Nesterenko’s formula is not at hand,
simulations based on the actual dynamical equations without
any long wavelength or continuum approximations suggest
that W behaves quantitatively differently than proposed by
Nesterenko. However, there is broad qualitative agreement
between Nesterenko’s formula and the numerical results pre-
sented here.

The solitary wave becomes one grain diameter wide as
n → ∞ and diverges at n → 2. Now that we have devel-
oped an understanding of how n can be changed by changing
the geometry of the grain–grain interfaces, it is possible to
control n as needed [25,30]. Hence, using our proposed rela-
tionship between W and n it may some day be possible to
design granular alignments with novel capabilities to focus
and defocus the energy of propagating solitary waves.
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