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Mechanical energy fluctuations in granular chains: The possibility of rogue fluctuations or waves
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The existence of rogue or freak waves in the ocean has been known for some time. They have been reported
in the context of optical lattices and the financial market. We ask whether such waves are generic to late time
behavior in nonlinear systems. In that vein, we examine the dynamics of an alignment of spherical elastic beads
held within fixed, rigid walls at zero precompression when they are subjected to sufficiently rich initial conditions.
Here we define such waves generically as unusually large energy fluctuations that sustain for short periods of
time. Our simulations suggest that such unusually large fluctuations (“hot spots”) and occasional series of such
fluctuations through space and time (“rogue fluctuations”) are likely to exist in the late time dynamics of the
granular chain system at zero dissipation. We show that while hot spots are common in late time evolution,
rogue fluctuations are seen in purely nonlinear systems (i.e., no precompression) at late enough times. We
next show that the number of such fluctuations grows exponentially with increasing nonlinearity whereas rogue
fluctuations decrease superexponentially with increasing precompression. Dissipation-free granular alignment
systems may be possible to realize as integrated circuits and hence our observations may potentially be testable
in the laboratory.
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I. INTRODUCTION

Rogue waves or freak waves in the open ocean have been
the subject of significant interest for centuries [1] and perhaps
more intensely so within the past five decades in the context
of deep water waves, Bose-Einstein condensates, and financial
markets [2–16]. These waves have been responsible for sinking
numerous large vessels and killing hundreds of people even
in recent times [17]. Clearly, the study of these waves is
important.

There have been several studies on the properties of
the nonlinear Schrödinger equation (NLSE) [18] which is
believed to describe deep water waves [19–24]. The present
understanding points to disorderly driving from strong winds
and nonlinear effects such as modulational instabilities [25]
as the underlying reasons for the appearance of fleeting large
amplitude waves in deep water systems [8]. To be clear, by
“rogue wave,” one means that the wave height from crest to
trough is more than about twice the significant wave height,
which is the average wave height of the largest one third of
nearby waves. Inspired by the many studies, one wonders if
very large amplitude energy fluctuations—something similar
to rogue waves but in a different context—can be seen
in other nonlinear systems at sufficiently late times. We
will call these fluctuations rogue fluctuations. This article
attempts to address that question by considering the long-time
dynamics in an alignment of spherical elastic beads [26] held
between rigid end walls [27,28]. This system has turned out
to be relatively simple, yet discrete and nonintegrable, and
furthermore supports the existence of a rich array of strongly
nonlinear phenomena [29–35].

Let us start with two elastic grains, which repel upon
intimate contact [36–38]. This repulsion is intrinsically non-
linear in nature, i.e., there are no harmonic terms in the
potential representing the interaction between two grains
in contact [39]. The mechanical energy transport behavior
through such granular alignment with N adjacent grains in
gentle contact and held between rigid walls represents one of

the simplest nonlinear many body systems we can consider.
Any velocity perturbation initiated at one end of the chain
travels as a nondispersive energy bundle (a solitary wave) in
this system [26,28]. In order to satisfy causality, as explained
elsewhere, the solitary waves must break and reform in every
collision [40,41]. Such a process leads to the formation of
tiny secondary solitary waves. All of these waves have the
same spatial widths [30,42]. Their velocities depend on their
energy contents [27,43]. In the absence of dissipation, at late
times, the system ends up in an equilibriumlike state, called
the quasiequilibrium state [31,44–48]. In the quasiequilibrium
state, the grain velocities satisfy a Gaussian distribution (as
dictated by the central limit theorem), the equipartitioning of
energy is not satisfied, and the system may or may not show
dependence on initial conditions. Large energy fluctuations
are seen in the quasiequilibrium state. The objective of this
work is to explore whether, for the right kind of initial
conditions, large enough energy fluctuations are possible. If
the energy fluctuations exceed six times the typical fluctuation
(which is already quite large in the quasiequilibrium state),
we choose to call such a wave a rogue fluctuation in this
work.

In Sec. II we describe the model. The results of our study
are presented in Sec. III. We conclude with a summary of the
findings and a discussion of the implications of this work in
Sec. IV.

II. THE MODEL

Let R be the radius and m be the mass of each of the
spherical elastic grains in contact that make up the system. Let
us assume these grains are placed in mutual contact along a
line and let z1, z2 · · · represent the actual displacements from
the original equilibrium positions. We assume that the Young’s
modulus Y and the Poisson’s ratio σ describe the elastic grains.
The grains barely touch one another at t = 0 and the system is
assumed to be held between fixed end walls which are rigid. If
the two spheres i and i + 1 are in contact, they repel according
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to Hertz’s law [36] given by

Vi,i+1 = aδ
5/2
i,i+1, (1)

where δi,i+1 ≡ 2R − (zi+1 − zi) and a = 2
5D

√
R
2 , where D =

3(1−σ 2)
2Y

. In general, instead of using the exponent 5/2 in
Eq. (1), one can insert any nonlinear behavior with n > 2.
As discussed extensively elsewhere, various values of n can be
associated with various types of contact interfaces between the
grains, and hence pertain to contact between identical grains
of nonspherical but regular shapes. Indeed a depends on n.
However, in each study involving identical grains, a translates
to a fixed number which will relate to the characteristic energy
transport time in the system, and for this reason we will keep
matters simple and regard a as simply a constant in our studies.

The equation of motion for each grain except the boundary
grains is

m
d2zi

dt2
= na[(� + δi,i−1)n−1 − (� + δi,i+1)n−1], (2)

where � denotes equal precompression applied to all the grains
and n is the index of the power law that describes the nonlinear
potential, for example, for the Hertz problem n = 5/2. Since
we will consider various values of n in our study below, it
makes sense to define the equations of motion in Eq. (2) rather
broadly. We will carry out studies of our system with � = 0
and n > 2 and for n = 5/2 and � > 0.

The dynamical simulations are performed via the velocity
Verlet algorithm [49,50]. In long dynamical runs it is easy
to incur round-off errors. We have made a strong effort to
make sure the errors are small enough such that the results are
reliable by insuring that energy conservation holds as perfectly
as possible. Over ∼108 time steps, the computed total energy
of our energy conservation varies about one part in 109 in
typical simulation runs. Our integration time step was typically
�t = 10−10 s, which would generally be in keeping with most
of our dynamical simulation based work thus far [51]. We
have also tried step sizes that are as small as 10−12 s but it
turns out that such refinements did not influence the accuracy
of our calculations. In nonlinear systems, the dynamics is
strongly amplitude dependent and hence it can be hard to
get a sense of how an actual system behaves without relating
the physical parameters broadly to some system. With that in
mind, in our studies, the grain radius is set to R = 15 mm, ρ =
4.42 mg/mm3, σ = 0.34, and Y = 400 kN/mm2 or 400 GPa,
numbers that would be representative of an ultrahard ceramic
[51]. The reason for choosing a hard system is to be able to
initiate large velocity perturbations which would still yield
modest grain compressions and, at the same time, allow many
cycles of fast back and forth movement of the system energy
within readily achievable simulation times.

The number of grains is N = 500 throughout this study.
This turns out to be an adequate spatial extent for the system to
“settle down.” The velocity perturbations chosen at t = 0 vary
uniformly randomly between −0.1 mm/μs and 0.1 mm/μs
(or, between −100 m/s and +100 m/s). This way we can be
sure that large fluctuations, if present, would eventually emerge
as the system evolves in time. Of course we assume that for
ultrahard materials such high velocity perturbations still create
small enough precompressions to justify the use of the Hertz

law. The reason for this assumption is simple. Reducing the
magnitudes of the initial perturbation velocities would not
necessarily rule out the possibility of formation of very large
fluctuations, but would push their formation deeper in time.
Since accuracy is an important aspect of these simulations,
probing deep into time becomes a problem with regard to both
calculation accuracy and simulation times needed. To strike
a compromise and have a sense of numbers we choose the
system described above.

We ignore dissipation in this work as dissipation would
quickly decimate all energy in the system. It should be noted
that it is possible to mimic the behavior of dissipation-free
granular systems by using equivalent circuits, though an
N = 500 system’s circuit may be hard to fabricate and work
with [52].

III. RESULTS

In this section we will consider the dynamics of the grains
in the system in the quasiequilibrium phase at late times. In
these systems the word “late” does not have a simple meaning
as the characteristic time scale is defined by the input energy
and the system properties. By choosing a hard material and a
large set of input velocities we have ensured that the system
gets to late times fast enough such that we may be able to
see such fluctuations within our simulation time, so within
t ∼ 1 ms or so. Most of our results are shown for times that
are far beyond 1 ms. Henceforth by Nt we will denote the
total number of time steps through which the system is being
iterated. Typically, Nt = 2 × 108 in most of our simulations.

We focus henceforth on the kinetic energy fluctuations in
the system. The idea is to identify very large fluctuations by
assuming that “large” means at least six times the typical
kinetic energy fluctuation, which is usually defined as

δ 〈EK〉 ≡
√√√√ 1

Nt (N − 1)

N∑
i=1

Nt∑
j=1

[
EKi

(j ) − 〈EK〉]2
, (3)

where 〈EK〉 is the average kinetic energy as dictated by the
virial theorem which in this case would be 5

9E, E being
the total energy in the system. The identification of the
large fluctuations is done using an algorithm as follows.
The space-time data containing the kinetic energy of each
grain of the N grains at each instant of time are analyzed
through 6 × 6 space-time grids. Only those points with energy
〈EK〉 + 6δ 〈EK〉 are assigned a value of 1 with the remaining
points being assigned a value of zero. We next identify at least
six consecutive hot spots spanning one or more grids and then
identify the set of hot spots as a rogue fluctuation. Clearly, the
definitions of hot spots and rogue fluctuations are arbitrary.
However, it is not usual for most systems to have too many hot
spots and hence one would expect the number of hot spots to
far exceed the number of rogue fluctuations. As we shall see,
systems that are linear and nonlinear show some hot spots.
However, rogue fluctuations do not appear to be common in
linear or nearly linear systems.

Let us first recall that the initial conditions used in this
work are special, being a uniform random distribution of large
velocity perturbations at time t = 0. Intuitively, such an initial
condition may be assumed to mimic a system that has been
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FIG. 1. The number of hot spots nH for n = 2.01,
2.1, 2.2, 2,3, 2.4, 2.5 are shown. The number of hot spots has been
calculated for periods across the total run time of 2 ms in our
nondissipative ultrahard systems. The number of hot spots is strongly
dependent upon the definition used to find them.

very roughly perturbed. Figure 1 shows the typical number
of hot spots obtained in the manner described above for the
entire length of the simulation, about 2 ms, for various values
of n > 2. Though not shown here, we have carried out searches
for hot spots for n = 2 and interestingly we found hot spots in
those systems as well with the number of hot spots being not
very different from the ones shown in Fig. 1. Further, a close
look at the data shows that large kinetic energy fluctuations are
not very uncommon and appear to come about with roughly
comparable likelihood across all times in a great many systems.
However, a large fleeting fluctuation may not result in what we
call a rogue fluctuation in analogy with rogue waves that are
encountered in open oceans and have been of much interest in
the study of the nonlinear Schrödinger equation. We address
our findings with regard to rogue fluctuations below.

Rogue fluctuations are also somewhat common in our
system when the strongly perturbed system is observed across
long enough times such as done here. Unlike in the case of
hot spots, there is, however, a very clear trend in how these
rogue fluctuations become more prevalent as n increases as
shown in Fig. 2. The analyses reveal that the number of rogue
waves nR grows exponentially with increasing n. Our results
are consistent with

nR ∼ eγn, (4)

where γ = 6.41 ± 0.81, in other words a strongly exponential
increase in the number of rogue fluctuations with increasing
n. In strongly nonlinear Hertz-like systems such as the ones
characterized by Eq. (2), we now know that the magnitude
of n is related to the width of the solitary wave W as
W ∼ (n − 2)−1/3. Larger n and hence smaller W means large
amplitude solitary waves are possible within shorter length
scales. Hence for a system of fixed N , the number of rogue
waves will go up drastically as suggested by Eq. (4). It
is intriguing that nR increases exponentially in n, however.
While it would be desirable to look for rogue fluctuations
for n � 5/2, it turns out that such large nonlinearity studies
incur significant enough round-off errors that it is difficult to
extract reliable statistics for rogue fluctuations in such systems.
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FIG. 2. (Color online) Plot shows how the number of rogue
waves nR grows with increasing n, for various perturbation velocity
amplitudes v (0.01 mm/μs, 0.03 mm/μs, and 0.05 mm/μs). The
exponential growth in nR is robust (see text for details).

Regardless, rogue fluctuations in such systems are of great
interest and are presently under investigation.

It is natural to ask when these rogue fluctuations form and
how they possibly grow in time. We have analyzed the growth
in nR over time for n = 2.5. Our results suggest that nR grows
roughly linearly in t for large enough t (i.e., this relation does
not hold at short enough times).

Until now we have kept precompression � = 0 in Eq. (2).
We now let � > 0. Raising �/R has the effect of introducing
harmonic and other nonlinear terms to the grain-grain interac-
tion in our system. Thus, the finite � problem has parallels with
the Fermi-Pasta-Ulam system. For large enough �, one can
imagine the system acquires strongly harmoniclike features
and hence nR would decrease with increasing �. This is indeed
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FIG. 3. (Color online) The number of rogue waves nR decays
superexponentially with increasing precompression �

R
(see text for

details).
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what we see in Fig. 3. The simulations suggest that

nR ∼ exp

[
exp

(
−κ

�

R

)]
, (5)

where κ = 0.216 ± 0.022, which is sometimes referred to as
superexponential decay. To our knowledge, such decays are
not common in physics. However, our simulations strongly
suggest that rogue fluctuations go down rapidly with weaken-
ing nonlinearity even though the number of hot spots is not
much affected.

IV. SUMMARY AND CONCLUSIONS

A great deal of work has been reported on the properties
of rogue waves in the oceans. These waves have been
extensively probed using the nonlinear Schrödinger equation.
Our contention was to show that rogue-wave-like objects may
not be unique to the nonlinear Schrödinger equation, and
that similar large energy fluctuations, which we call rogue
fluctuations, may show up in other systems.

It is well known that any perturbation matures into a
solitary wave in unloaded granular alignments that are held
between fixed rigid end walls. In a strongly perturbed system,
one expects a large number of solitary waves of different
amplitudes to be present. It is hence very likely that in the
absence of dissipation there would be scenarios where the
various solitary waves would come together to realize regions
of very large energy fluctuations. This was the logical basis
behind our contention.

We studied the long term dynamics of a granular alignment
that is held between fixed rigid walls. The system’s dynamics
in all of our dynamical simulations were initiated by uniformly

randomly perturbing each grain between an upper and a lower
bound. The perturbation was kept sufficiently strong such that
the mechanical energy could bounce back and forth through
the system many times over relatively modest time intervals.
We defined a hot spot as a point in space and time where
the magnitude of kinetic energy was equal to or larger than
the average kinetic energy plus six times the kinetic energy
fluctuation. The results show that a large number of hot
spots form in these systems at late enough times. The results
also show that there are many regions of consecutive hot
spots in time. We regard these regions as those with rogue
fluctuations, in analogy with rogue waves. Rogue fluctuations
hence represent long-lived hot spots. We have next shown
that the number of rogue fluctuations grows exponentially for
increasing nonlinearity of the system under conditions of zero
precompression and that the number of rogue waves decays
superexponentially with precompression at fixed nonlinearity.

Since all real granular alignments are dissipative in nature,
it may not be possible to experimentally observe rogue waves
in material systems unless they are appropriately driven in
the presence of dissipation. However, it is possible to realize
granular alignments in terms of large scale integrated circuits
and those systems can be set up in such a way that they behave
as effectively nondissipative systems. In due course it may be
possible to explore the existence of these rogue fluctuations in
such circuits.
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