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In this paper, we expand upon our recent studies of an agent-based model of a battle
between an intelligent army and an insurgent army to explore the role of modifying
strategy according to the state of the battle (adaptive strategy) on battle outcomes. This
model leads to surprising complexity and rich possibilities in battle outcomes, especially
in battles between two well-matched sides. We contend that the use of adaptive strategies
may be effective in winning battles.
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1. Introduction

Study of social systems using statistical physics based approaches, or sociophysics,
has been the subject of significant attention in recent years.! The theoretical works
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of Galam and collaborators on political events such as elections including the
2016 election of Trump?®?® have illustrated the predictive power of sociophysical
studies. Studies of gang rivalries using statistical physics based approaches have
also emerged in recent years.? Cellular automata® or agent-based models® and even
molecular dynamics based studies® have likewise proven to be a powerful tool to
model the temporal evolution of various complex systems.”® While technically sim-
ple to set up, these models often can reveal deep insights into the dynamics of com-
plex systems such as those alluded to below, behaviors that may not be discernible
using traditional differential equation based models.”

Cellular automata have naturally found applications in modeling such diverse
phenomena as crowd behavior,? 10
I market behavior,

or products in the market,'® in successfully describing the spread and mitigation
14,15

emergent behavior of an organization under spe-

12

cific conditions, in capturing the success of competing brands

of epidemics such as bird flu in poultry, and in describing the struggle between
animal species for territory and resources.'® Here, we use an agent-based approach
to examine simple land battles, and explore various effects of initial conditions and
strategy on the evolution and the outcome of such battles.'”'® Our battle model
currently describes a conflict between two species, though it is possible to extend
this to multiple species (see e.g., Ref. 19).

We construct a simple physical model consisting of a two-dimensional square
lattice or matrix and simple deployment rules.'”'® The symbols we use in this
study are introduced in Table 1 so that the work is easier to follow. The lattice
represents the battlefield on which conflict takes place. Individual attackers and
defenders are assigned numeric strength values and initially placed in the reserves.
The simulations involve deployment strategies which result in occupation of the
array sites by the combatants. Casualties result when opposing forces occupy the
same site. Combatants do not actually move on the battlefield, but rather occupy
their given sites, engage intruders, and provide field information which may be used
for determining the positioning of troops or agents in future iterations. Battles
continue until either the attackers or the defenders have exhausted their reserve
forces, or alternatively until either the attackers or defenders have gained control
of the entire battlefield. If both sides have essentially deployed all forces to the
conflict, the battle is a draw. While this win/loss definition is somewhat arbitrary,
it allows for a general discussion of results. To measure a victory numerically, we
use a so-called win/loss ratio x as defined in Eq. (3).

2. Model Details
Let us begin by considering a simple battle on a square lattice of sides L = 5.

At the start of the battle, each side is allotted an initial reserve of Ag = Dy =

aTt is interesting to see how Galam correctly projected the strong possibility of Trump becoming
the President-elect of the US nearly ten months in advance when the US polls largely failed to
make the correct projection. See S. Galam, in this issue.
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Table 1. Description of notation used.

L is the length of each side of the square lattice
Ap, A initial/final attack reserves

Dy, D initial/final defense reserves

PA, PD attack/defense density

a,d attack (negative), defense (positive) force level
R sight range (number of cells)

r sight range (percentage of battlefield size)

X win—loss ratio

5000 which may represent weapons, resources, troops, or any other logistical factor
(see Table 1). A and D, respectively, denote the numbers of “attackers” and the
“defenders” at any given time other than at the initiation point; we distinguish
them by means of the strategy each uses. To initialize the battle, we randomly
place the defender’s force on the battlefield. This is done by taking a fixed number
of agents from their initial reserve Dy and placing them randomly upon the lattice
(with a given density pp which is the ratio of sites occupied by the defenders to
the total number of sites on the lattice). Assuming that the defenders have various
forms of weapons and ammunitions, the deployment is done such that there is a
mix of strength values of, say, d = +1 and d = +2.P After this step, each lattice
site K (i, j) =0, 1, or 2.

The battle then begins with the attackers deploying in random locations on the
battlefield with their own occupation density p4, with strength values of a = —1
and a = —2. We pause to note that this is what we will refer to as a “symmetric”
battle, since the strength value distributions of the attackers and defenders are
equal in magnitude.

Following this initial deployment, some fraction of the sites will now have nega-
tive values, indicating they are now held by the attackers. On subsequent iterations,
the attackers and defenders will continue to draw from their respective reserves ac-
cording to different algorithms. One can envision that such reserves are pulled from
distributed command/control centers where reserve forces await.

Figure 1 shows an example randomized lattice at the start of a battle on a
5 x 5 lattice. For our first example, we will use a random strategy for defenders and
an intelligent, aggressive strategy for the attackers. This is inspired by the recent
conflicts in Iraq; we choose to study the case of an insurgent army with access across
the entire battlefield and formidable knowledge of the terrain (and therefore highly
“intelligent” army
whose decision-making is limited by information regarding the distributions of the

capable of making unpredictable or random attacks), versus an

attackers and the defenders.

It is interesting to observe that the values of d and a are roughly connected to nature of arms
available in the battle. Thus, d = +1 or a = —1, etc. would mean relatively simple weapons whereas
d = 42, etc. would correspond to the availability of weapons that can cause more casualties.
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Fig. 1. (a) The initial randomized state of a battle on a square lattice of sides L = 5. (b) The
final state, after reserves have been depleted for the defenders.

The defenders will continue to deploy their reserves as in the first step through-
out the battle, by randomly selecting lattice sites with probability pp and placing
randomly d = +1 or d = 42 on that site on each iteration.

For the attackers, it is important to know where the greatest density of defend-
ers are located on the lattice. This knowledge requires intelligence regarding the
current state of the battlefield and this intelligence turns out to be important in
determining whether the attackers can overpower their opponents. In our studies
discussed below, the attackers take an aggressive approach by always deploying re-
sources in the direction with the greatest density of defenders though, as we shall
see later, the reverse (defensive) strategy of retreating from the regions of greatest
density of defenders can also turn out to be an effective strategy in some cases. We
define a neighbor list by an n x m matrix about each attack site, K4 (i, ). The size
of the neighbor list is dictated by the range variable R, the number of lattice cells in
any direction for which information is available at site K 4. For an L x L matrix, we
may also measure the range as a fraction of lattice size: |r| = £(100)%. The attack-
ers receive information from a neighbor list with maximum size (2R+1) x (2R+1).
The occupation or resource values of all sites in each quadrant of the neighbor list
at K 4(i,7) are summed. If the computed sum is largest in, say, the first quadrant,
then site in which the attackers will be deployed to is

KGi+1,j4+1) = K@G+1,j41) + amax s (1)

(if this site is still within the battlefield) and so on. If adjacent quadrants, for
example quadrants I and II, have equal values

K(i,j+1) = K(i,j+ 1) + amax - (2)
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Observe here that a larger value of R implies averaged and hence less precise
information over a larger area of a quadrant. Further, if R is very small, that
too would imply limited intelligence about the immediate battlefield environment.
Hence very small Rs are typically not very meaningful for our purposes. Simply
put, larger R implies limited battlefield intelligence whereas small R would typically
imply strong local battlefield intelligence.

If opposing quadrants (i.e., I and III, or IT and IV) or if three or even all four
quadrants of the neighbor list have the same value, there is no new deployment
from that site during that particular iteration (however, this case seldom occurs).
The rationale for using maximum strength values for the attackers is their strategic
need to maximize effectiveness. The battlefield is not updated until all such decisions
have been made.

At each iteration, these deployments repeat until at least one of the initial
reserves Ag or Dy has been completely depleted; at this point the battle ends, and
we must decide who has won!

For convenience, we will measure the magnitude of a victory by means of the
single number Y, the win—loss ratio, defined as follows:

_1) PD =Y,
+1, pa =70,
X = (3)
D—-A therwi
—~ otherwise.
Dy + Ay

This definition serves to measure victory of two types: by total territory control,
or by depletion of reserves. Furthermore, the more lopsided the victory toward one
side, the larger a value x will take. Figure 1 shows the initial and final lattice
distributions of a simple battle of the type described above.

For the rest of this paper, all battles will take place upon a 50 x 50 lattice unless
otherwise noted; on a lattice as small as the one above, the intelligent strategy
of the attackers is nearly irrelevant due to the neighbor list covering most of the
lattice! We have also studied lattice sizes that are large as L = 2500 and found that
dealing with such large systems increases the computation times needed but has no
measurable effect on the battle outcomes.

3. Strategy

We use the term “strategy” very broadly; it represents the force composition and
the behavior of one side, as well as their set of reactions to enemy moves. Our
overall objective with strategy adjustment is to find a way to optimize one side’s
chances of winning; that is, the best ways to use intelligence to win a symmetric
battle.
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3.1. Initial conditions

Let us begin by studying the simple battle described in the previous section with
aggressive (as opposed to defensive), intelligent attackers, but placed in a larger
lattice. Here we wish to study the initial conditions that lead to a high probability
for the attackers to win. We note that the simulation is susceptible to different
victory/loss outcomes from different seeds of the random number generator; for
this reason, whenever a battle with certain initial conditions is mentioned, we are
describing an average result taken over seven battles with different seeds.

To do this numerically, we examine the decay of the attackers’ reserves (denoted
by Ag for initial and by A for instantaneous values including the final value when the
simulation ends) as a function of the parameters (i) sight range, (ii) initial attack
density, and (iii) initial defense density. The battles we studied were with symmetric
force levels a, d = —1, +1; —2, +2; and —3, +3; and asymmetric battles with force
levels a, d = =2, +5; —3, +5; and —4, 45 (e.g., for =2, +5,a = -2, —l and d = +1,
+2, +3, +4, +5 are possible deployment values). The symmetric battles represent
two armies with matched weapons, equipment, and reserves; the asymmetric battles
give one side an advantage in terms of effectiveness of the attacks.

After some trial and error, we ended up varying the following parameters (see
Table 1) through the following ranges:

0.2 < pa <0.85,
0.2 < pp <085,
1< R<20,

where pp is held fized at all times whereas p 4 is fized at t = 0 and allowed to evolve
based on the evolution of the battle. Henceforth, unless otherwise specified, by pa
we mean pa(t =0).

These limits on the densities p4 and pp of attackers or defenders on the lattice
exclude uninteresting combinations of p4, pp and R. For instance, places where the
attackers deploy so few troops that they lose the battle within one or two iterations.
Since R is the sight range in number of cells, it must be an integer (for perspective,
20 cells is 40% of the L = 50 lattice battlefield.)

Let us assume that the attackers take a small fraction of agents from the initial
reserves for every deployment and keep repeating this process until the reserves
are depleted. Let us further assume that A would depend on the range R with
A depleting more rapidly as R grows. Pretending for now that R is a continuous
variable (and R — 0 is feasible) it would be reasonable to assume dA/dR = —a/A,
where « is some constant that depends on p4 and pp. Then one can write

A / R
dA
T = —a/ dR'
Ao 0

or A= Apexp(—aR),
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Fig. 2. log(A) versus R, with several different values for the initial value of p4.

where the primes in Eq. (4) denote dummy variables. The parameter «, then, tells
us how strongly the outcome of the battle is coupled to the sight range parameter
for the chosen attack density. Equation (4) suggests that when the sight range is
too high, the attackers suffer very high losses. Figure 2 presents the results from
our simulations which show that the exponential decay above provides a reasonable
description of how A decays as a function of R. Observe that o would have a higher
magnitude if p4 is smaller.

Let us look closely at the decay parameter «(pa, pp) which controls how the
reserves of the attackers get depleted. As pp becomes large and p4 becomes small,
A =~ Ag, which means that attackers cannot deploy any troops. This occurs because
the field is so concentrated with defenders that the attackers cannot find a place to
deploy. In the opposite limit, pp is small and p4 is large; A = 0. This is caused by a
lack of defenders in the field, which will make attacker’s territory occupancy quickly
grow — leading them to either win by capturing all territory, or lose by running
out of reserves too quickly. So, for fixed initial conditions, we can summarize what
the outcome of the battle will be in terms of the single parameter «.

Our simulations show that « itself undergoes an exponential decay as a function
of Z—g as (see Fig. 3)

PD
nla| = 22 45, 5
ol = 2% Q
PD
ol = exp(d)exp (=222 ). (®
Pa

~v and § are positive constants for a given symmetric force level, and k is approxi-
mately 0.20, for all cases analyzed.
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Fig. 3. «, the decay parameter of Fig. 2, as a function of defense density pp.
Combining Egs. (4) and (6),

A= Agexp (—CT exp (—7/)12)) , (7
PA

where C' = exp(d). Equation (7) summarizes how the attackers’ reserves will behave
as r, pp, and p4 change.

We find therefore that the outcome of the battle for the aggressive attackers
depends greatly on moderation: one must have some local knowledge, but not too
much! One must deploy enough troops from reserves, but not too many! We next
briefly summarize our studies on the effectiveness of the defensive strategy [see
discussion above Eq. (1)] before moving on to the strengths and weaknesses of
various mixed strategies.

Figure 4 summarizes the results from a large number of studies determining
how much territory has been acquired by the attackers for varying r given different
pa, pp and strategies, i.e., whether aggressive or defensive. In Figs. 4(a)—4(c),
la] = |b] = 1, and in Figs. 4(d)—4(f), |a|] = |b|] = 2. Each point represents the
average of three runs with associated error bars. In each panel, the percentage of
sites held by the attackers is shown versus r for fixed values of p4(0) and pp. In
panels (a) and (d) we have used p4 = 0.2, pp = 0.45, in (b) and (e) pa = 0.40,
pp = 0.40, and in (c) and (f) pa = 0.45, pp = 0.20. We summarize the results as
follows:

When |a| = |b] = 2, the conflict outcomes become more sensitive to the value of r
and to whether an aggressive or defensive strategy is used. Our studies suggest that
when the defenders are highly exposed to attacks, but not so high as to exhaust the
reserves too quickly, such as in Figs. 4(c) and 4(f), it is less likely that the attackers
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Fig. 4. Lattice site occupation percentage of attackers versus range for aggressive and defensive
strategy battles are shown for symmetric force levels in (a)—(c) for |a|, |b] = 1, and in (d)—(f)
for |a|] = |b| = 2. The magnitudes of ps and pp are given in Table 2. The symbols used are

as follows: Black diamond, filled: indicates the defenders have eradicated the attackers from the
lattice and simulation ends. Black diamond, open: indicates the attackers have eradicated the
defenders from the lattice. Open stars: denote that the defenders have run out of resources first;
hence the attackers have won. From the above discussions, more attacker wins are expected for
low pg = pa(0) and high pp. The open stars in our results are consistent with expectations.
Filled stars: denote situations where the attackers have run out of resources first, resulting in a
defender victory. Grey circles, filled: are used to show cases where the attackers and the defenders
both exhaust resources at essentially the same time, with the contest then resulting in a draw.

Table 2. Details of parameters used in
the studies in Fig. 4.

Figure 4 PD pPA Force levels
(a) 0.45 0.20 +1
(b) 0.40 0.40 +1
(c) 0.20 0.45 +1
(d) 0.45 0.20 +1, +£2
(e) 0.40 0.40 +1, £2
) 0.20 0.45 +1, £2

will win. We also find that in nearly all of our analyses shown in Fig. 4, that the
defensive approach results in less area of the lattice controlled by the attackers but
provides a better chance of dominating the defenders. The only exception we found
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is when the attackers have low exposure and high local intelligence and the force
levels are minimal, a defensive strategy works better in winning and in establishing
territorial dominance in favor of attackers. We note from the error bars that the
effects of randomness on the spatial and force outcomes increase with increasing
pa and with increasing attack strength.

From here, we will seek to further optimize these battles by adjusting the at-
tackers’ strategy — for example, is it possible to reduce that minimum deployment
density p 4 in order to reduce losses? This and more will be discussed in the following
section.

3.2. Mid-battle strategies

In a basic battle, the attackers’ strategy is very simple. Both sides initially deploy
randomly; the defenders continue to do so for the duration, but the attackers deploy
reinforcements in the direction of high defender concentrations. This is what we had
called an aggressive strategy. A defensive strategy is the opposite; attackers deploy
in the opposite direction of enemy concentrations (i.e., they always retreat).

The aggressive strategy tends to be excellent for capturing territory, but takes
heavy losses to do so. The defensive strategy has the opposite effect; it cannot
capture territory well, but it minimizes losses. Our initial attempt using a mix of
strategies was simply to vary the aggressiveness of the attackers during the course
of the simulation. For example, have the attackers flip a coin at each iteration to
decide whether they will use an aggressive or defensive strategy. However, after
some testing, we found that this is an ineffective strategy; it shows the weaknesses
of both of the aggressive and defensive strategies, but does not adequately capture
their strengths. The studies hence suggested that actions must be based on sound
logic aimed at neutralizing the enemy rather than taking chances with what could
be ineffective moves.

To improve the adaptive strategy approach, we made it more active. We de-
signed the strategy to hold site occupation between 20 and 80% of the battlefield;
from previous work, this is a favorable region of the phase space for the attackers
(see Figs. 9-11 in Ref. 20). The mechanics are simple: when site occupation is low,
we increase the attackers’ force level and aggressiveness, as if they had brought
heavier weapons from a reserve. When site occupation is too high (i.e., they be-
come overextended), we switch the attackers’ strategy to fully defensive. We have
observed that this causes them to retreat into small (2 x 2 or 3 x 3) regions of high
troop density — fortified positions, in effect.

Unlike the much simpler mixed strategy, the adaptive strategy is very powerful;
it results in attacker victories in many regions of the phase diagram where they
would normally have lost. See Fig. 5 for an example.

This strategy still is not quite optimized, however; at a defense density near
40%, the attackers still nearly always lose despite their cleverness. We use a genetic
algorithm to quickly search through the space to find a winning strategy — in

1742002-10



Study of simple land battles using agent-based modeling

16 32 45

r (%) r (%)

Fig. 5. (Color online) Example phase diagram for the adaptive strategy case. Here, pp is set to
60%, and the cutoff points for switching to aggressive or defensive strategies are set at py = 20%
and pa = 80% of the lattice, respectively. On the left is a fully aggressive strategy, and on the
right is the adaptive strategy. Red and blue indicate regions where the attackers and defenders
win, respectively; the color scale represents 100 - x.

particular, we try to minimize attacker casualties while maximizing defender
losses.?!

As stated above, adaptive strategy involves force level and aggressiveness mod-
ifications. We allow the genetic algorithm to control the following parameters: the
site occupation thresholds determining when the new strategies will be applied,
and the magnitude of the changes. The fitness function is determined by running a
battle using these details (see e.g., Ref. 21), and calculating x.

Most battles end by having one side or the other run out of reinforcements;
therefore, our victory condition is scaled based on how many troops remain for each
side. A genetic algorithm, of course, tends to exploit weaknesses in maximizing its
fitness function, and this is precisely what happens here. However, we hoped to find
some intuition in the way it did so. The algorithm causes the attackers to adopt
a totally defensive strategy for site occupation greater than about 3-5%. Under
that, it significantly increases their force level and makes them fully aggressive.
This allows them to keep one or two small “strongholds” during the entire battle
and deplete the defense forces, who are forced to deploy over the entire battlefield.
This ends in an extreme victory for the attackers; it is not uncommon for them to
have hundreds of thousands of reserves against zero defender reserves. We have not
shown a figure for the phase diagram here, simply because it is not very interesting
— it is entirely blue, i.e., the attackers have won every battle when this optimized
strategy is applied. Of course, it is important to remember that this strategy works
best against the random deployment of the defenders in this model. Studies on the
effectiveness of the adaptive strategy against strategic defenders will be pursued in
the future. Some preliminary work along these lines is summarized below.

To make the defense more effective while preserving its randomness, we used
the idea of a cell-structured defense. In this strategy, the defenders are positioned
only near a few particular points on the battlefield. This results in small, tough
concentrations of troops scattered about, much like the “strongholds” seen when
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the attackers use an adaptive strategy. The difference here is that a cell may be
defeated if its leader is killed; that is, if the attackers manage to penetrate to the
center of the cell, defenders stop deploying there. Against any enemy short of the
genetic algorithm based optimization strategy, this leads to a victory for the defense.

To adjust for the cell defense, we used a strategy called “smart deployment” for
the attackers. This strategy assumes that the attackers have excellent intelligence
of the battlefield, and causes them to deploy only in regions where there is a heavy
enemy presence. It completely countered the cell structure, returning our battles
to a contested state. The reason for this result is twofold: first, it was applied to
an army that has local intelligence. This allows the attackers to quickly locate and
deploy near the main concentrations. Second, the battlefield is far emptier than in
a basic battle; since the defenders only control the immediate area around their
cells, the attackers can gain the benefit of not deploying in the empty areas.

The battle with cell-structured defense and smart-deploying attackers has many
interesting behaviors. The attackers surround defense concentrations, cut through
lines, and push forward to the center of the cells. Figure 6 shows a snapshot taken
from one of these battles.

100
90
80
70
B0
50
40|
30
z0f

1mnor

1] 2o 40 g0 aln] 100

Fig. 6. (Color online) An intelligent attacker using smart deployment against a cell-based defense.
Black represents defenders, gray represents attackers, and white cells are neutral.
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4. Conclusion

We have discussed a simple two-dimensional battle model with intelligent armies
using various strategies. Strategies which are both highly aggressive and highly
conservative must be used in careful balance to gain victory. Furthermore, we in-
vestigated the cases of insurgent defenders using both randomized and cell-based
deployments, which are far more successful. We have been able to see trends in our
calculated states of the battles and we have been able to predict the outcomes of
battles based on their initial conditions. We hope that this model can help find
useful strategies and predict outcomes in real life battles and in related problems
involving competitions between two or more parties in other contexts such as busi-
ness, species survival and others.

At a broader level, our studies show that an organized and goal-oriented opera-
tion can almost always overcome a disorganized resistance, even when the strengths
are comparable. Perhaps the study ultimately points to the adage concerning sur-
vival of the fittest where fitness is measured in intelligence and hence in tactical
terms.

Acknowledgments

We are grateful to the US Army Research Office for partial support of this work. The
work was also supported by the National Science Foundation through a CSUMS
grant.

References

1. S. Galam, Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena
(Springer, New York, 2012).

2. R. A. Hagemann et al., Physica A 390, 3894 (2011).

3. S. Galam, J. Math. Psychol. 30, 426 (1986); S. Galam, Phys. Rev. E 71, 046123
(2005).

4. S. Wolfram, Nature (London) 311, 419 (1984).

M. Gardner, Sci. Am. 223, 120 (1970).

6. M. Westley, S. Sen and A. Sinha, Nature’s Longest Threads: New Frontiers in Math-

ematics and Physics of Information in Biology, in World Scientific Lecture Notes

in Complex Systems, eds. J. Balakrishnan and B. V. Sreekantan (World Scientific,

Singapore, 2014), Chap 8.

E. Bonabeau, Proc. of Natl. Acad. Sci. 99, 7280 (2002).

C. M. Macal and M. J. North, J. Simul. 4, 151 (2010).

D. Helbing, I. Farkas and T. Vicsek, Nature (London) 407, 487 (2000).

K. G. Still, Fire 84, 40 (1993).

M. Prietula, L. Gasser and K. Carley (eds.), Simulating Organizations: Computational

Models of Institutions and Groups (MIT Press, Cambridge, MA, 1998).

12. W. B. Arthur et al., The Economy as a Complex Evolving System II, Santa Fe Institute
Studies in the Sciences of Complexity, eds. W. B. Arthur, S. Durlauf and D. Lane
(Addison-Wesley, Reading, MA, 1997); R. G. Palmer et al., Physica D 75, 264 (1994).

13. L. Tesfatsion, Inf. Sci. 149, 262 (2003).

14. R. Zorzenon dos Santos and S. Coutinho, Phys. Rev. Lett. 87, 168102 (2001).

ot

— =
= o © N

1742002-13



A. Westley et al.

15.
16.
17.
18.
19.
20.
21.

T. Kim et al., Europhys. Lett. 86, 24002 (2009).

R. Smith and M. Bedau, Evol. Comput. 8, 419 (2000).

L. Shanahan and S. Sen, Int. J. Mod. Phys. E 17, 930 (2008).
L. Shanahan and S. Sen, Mod. Phys. Lett. B 25, 2279 (2011).
J. Epstein, Proc. Natl. Acad. Sci. USA 99, 7243 (2002).

L. Shanahan, PhD Thesis, SUNY Buffalo (2011).

T. Baker et al., Proc. of SPIE 5649, 574 (2005).

1742002-14



