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We examine the long-term behavior of nonintegrable, energy-conserved, 1D systems
of macroscopic grains interacting via a contact-only generalized Hertz potential and
held between stationary walls. Existing dynamical studies showed the absence of
energy equipartitioning in such systems, hence their long-term dynamics was described
as quasi-equilibrium. Here, we show that these systems do in fact reach thermal equi-
librium at su�ciently long times, as indicated by the calculated heat capacity. This
phase is described by equilibrium statistical mechanics, opening up the possibility that
the machinery of nonequilibrium statistical mechanics may be used to understand the
behavior of these systems away from equilibrium.
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1. Introduction

In recent years, 1D systems of discrete macroscopic grains interacting via a power-
law contact potential and held between fixed walls have attracted considerable
attention,1–48 primarily because of their usefulness for a variety of applications
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related to shock mitigation26–32 and energy localization.33–39 This is facilitated by
their ability to support solitary wave (SW) propagation, which can be initiated in
uncompressed chains by a simple edge impulse. However, unlike solitons found in
continuum systems (which experience only a slight phase shift upon collision with
another soliton), SWs in these discrete systems su↵er from weak interactions with
each other and with system boundaries.

In particular, SWs are not perfectly preserved in these discrete, nonintegrable
systems since grains are capable of breaking contact, disrupting the SW’s flow.
Boundary collisions40–42 result in the partial decimation of the original SW and the
creation of much smaller magnitude secondary solitary waves42,45 (SSWs). In con-
trast, collisions of SW species with each other43,44 lead to energy being exchanged
between waves, and thus a potential for the increase in energy amplitude of one
of the waves. Many collisions between SW species in a system with zero energy
dissipation therefore lead to both breakdown and buildup processes of SSWs.

For singular perturbations, these breakdown and buildup processes lead the
system after a long time to an equilibrium-like ergodic phase.40,41,43,44,46,47 This
spatially-symmetric phase is attained when the rates of SSW formation and break-
down balance, and is marked by a large number of SSWs that are equally likely
to be moving in either direction. For su�ciently strong and unique perturbations,
unusually large40,41,43,44,46,47 and occasionally persistent (rogue)49 fluctuations in
the system’s kinetic energy are seen at long times. This impedes an equal sharing of
energy among all grains in the system, hence the long-term dynamics of 1D systems
of interacting grains has been described as quasi-equilibrium (QEQ).40,41,43,44,46,47

To the time scales previously considered in dynamical studies, QEQ was ob-
served to be a general feature of systems with no sound propagation.40,44 However,
recent work has addressed whether QEQ is the final state for such systems.50,51

These studies found that thermalization is indeed possible after very long times,
and that the time scale to equilibrium increases with the degree of nonlinearity.
While the relaxation to equilibrium was inaccessible when the first numerical ex-
periments were performed,52 it can now be probed thanks to current technology.
This solves a long outstanding problem regarding the long-time evolution of these
strongly nonlinear, discrete, nonintegrable systems.

Here, we show, for the first time, that the very long-time dynamics of Hertzian
chains is described by the equilibrium statistical mechanics of a microcanonical
(NVE) ensemble of interacting particles. We accomplish this primarily by illus-
trating that at su�ciently long times, energy is indeed equipartitioned among the
independent degrees of freedom, as indicated by the calculated finite heat capacity.

The remainder of this paper is organized as follows: In Sec. 2, we introduce
the model for the Hertzian chains, and derive the associated prediction for the
equilibrium value of the heat capacity. Then, we give the details of the simulation
parameters, and in Sec. 3, the details of numerical calculations. In Sec. 4, we com-
pare MD data with the predicted equilibrium values to establish that our systems
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do equilibrate at long times. Finally, we give some concluding remarks and discuss
future research directions in Sec. 5.

2. Model and Simulations

The specific systems under consideration are 1D chains of N grains, each with
mass m and radius R, interacting via a Hertz-like contact-only potential.55 The
Hamiltonian describing the system is the sum of a kinetic energy term K and
potential energy term U associated with grain interactions, given by

H = K + U =
1

2

NX

i=1

mv2i +
N�1X

i=1

a�n
i,i+1

, (1)

where vi is the velocity of grain i and �i,i+1

⌘ 2R � (xi+1

� xi) � 0 is the
overlap between neighboring grains, located at position xi. If �i,i+1

< 0, there is no
potential interaction. In the above expression, the exponent n is shape-dependant
(n = 2.5 for grains with ellipsoidal contact geometries, such as spheres), and a

contains the material properties of the grains.56 The grain interactions with the
fixed walls add two terms to the Hamiltonian.48 For homogeneous systems in which
the grains and walls are comprised of the same material, such as the ones considered
here, the coe�cient describing the grain-wall interaction aw is related to the grain-
grain interaction coe�cient ag via aw =

p
2ag.48 Further details on how the material

properties a↵ect the transition from the nonergodic SW phase to the QEQ phase
can be found in Refs. 39 and 48.

If at time t = 0, such a system is given an edge impulse, an SW will propagate
through the chain and eventually break down into a sea of SSWs, as illustrated in
Fig. 1. This process happens su�ciently long after the initial perturbation to the
system and can be modeled as a transition from a nonergodic (SW) phase to an
ergodic (equilibrium) phase. Energy is, on average, shared equally among all the
grains in this late-time phase since there will be a large number of SSWs traversing
the system in either direction, each spanning several grains. For systems with energy
dissipation turned o↵, an NVE ensemble is hence established. This means that the
long-term dynamics of Hertz chains is best described by the statistics of a 1D gas
of interacting particles in thermodynamic equilibrium.

The QEQ phase bridges the slow transition from the SW phase to the equi-
librium phase, in analogy to a coexistence region in a continuous phase transi-
tion. QEQ is distinct from equilibrium primarily because equipartitioning of en-
ergy among the degrees of freedom does not hold in the latter, as indicated by the
unusually large fluctuations in the system kinetic energy, depicted in Fig. 1. As
the system approaches equilibrium, the kinetic energy fluctuations relax to much
smaller, but finite values in finite systems. Thus, the equal sharing of energy in fi-
nite systems happens only in an average sense, and each grain will not have exactly
the same kinetic energy at any instant in time. (Rather, the kinetic energy of each
grain fluctuates according to the same probability density function.)
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Fig. 1. (Color online) Kinetic energy density plots observed in systems described by Hamilto-
nian (1), and given a single initial edge impulse at t = 0. This system corresponds to N = 100,
n = 2.5. All data is normalized to the input energy and presented on a logarithmic scale. (a) The
nonergodic (SW) phase showing the breakdown of the initial SW and creation of SSWs. (b) The
QEQ phase, illustrating large regions of hot and cold spots, hence large kinetic energy fluctuations.
(c) The equilibrium phase. Comparing the inserts in (b) and (c), it is clear that the fluctuations
have relaxed to smaller values in equilibrium.

Equal energy sharing is thus reflected in the value of the kinetic energy fluctua-
tions. Moreover, since the system kinetic energy fluctuations are directly connected
to the heat capacity in an NVE ensemble,53 the latter provides an excellent way
to probe the extent to which energy equipartitioning holds. To show that Hertzian
systems ultimately move to an equilibrium phase where energy is being equiparti-
tioned, we thus demonstrate agreement between calculated heat capacities from MD
simulations and values predicted by Tolman’s generalized equipartition theorem.54

Since the generalized equipartition theorem applies to a canonical ensemble, the
equilibrium value predicted for the specific heat of a Hertz chain is valid only in the
thermodynamic limit, where we can rely on the equivalence of statistical ensembles.
In this limit, we expect the specific heat per grain to be a constant. In a subsequent
manuscript, we derive a correction term for finite system sizes.51

In ergodic systems, Tolman’s generalized equipartition theorem54 applied to
the Hamiltonian above results in an average total energy per grain h✏i = kBT/2 +
kBT/n, where kB is Boltzmann’s constant and T is the canonical temperature
(and angular brackets denote an ensemble average, or equivalently, a time average).
Taking a simple temperature derivative, the corresponding specific heat per grain
is then

CEq

V =

✓
n+ 2

2n

◆
kB , (2)

which evidently depends only upon the exponent in the potential, i.e., there is no
dependence on grain (or wall) material, grain size, or temperature. The equivalence
of di↵erent statistical ensembles when N ! 1 then implies that Eq. (2) is the
value of the specific heat in an NVE ensemble in this limit, which is expected
when energy is equipartitioned. We compare Eq. (2) with the calculated specific
heats obtained from numerical simulations to deduce the nature of the long-term
dynamics of systems described by Hamiltonian (1).
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2.1. Simulation details

To examine the very long-time dynamics of Hertzian chains, we ran MD simulations
of a 1D monatomic chain of N grains held between fixed walls and described by
the Hamiltonian in Eq. (1). To implement the fixed walls, we add two terms to the
Hamiltonian,48 where the walls are taken to be grains of radius R ! 1 to ensure
that they do not move, while simultaneously relaxing the condition that they must
be flat. Our grains and walls are made of steel, and the grains are 6 mm in radius.
We do not apply any pre-compression, or squeezing of the chain in the set-up, but
rather each grain is initially just touching its neighbor between walls N(2R) apart.

We consider values of the potential exponent n from 2 (harmonic) to 5, and
system sizes from N = 10 to 100. A standard velocity Verlet algorithm is used
to integrate the equations of motion with a 10 ps timestep, and no dissipation is
included. The grains are set into motion with either asymmetric edge perturbations
(initial velocity given to the first grain only, directed into the chain, causing a single
initial SW to propagate through the system); or with symmetric edge perturbations
(initial velocity given to the first and last grain, both directed into the chain, and
causing two initial SWs of equal magnitude to propagate toward the chain center).
In both cases, the initial SW(s) breaks down in collisions with boundaries (and with
each other) and in the formation of gaps, creating numerous SSWs. After a period
of time, the number of SSWs increases to a point where the system enters into
quasi-equilibrium.40,41,44,46 We allow the system to evolve for a substantial amount
of time past this phase change, and at least an order of magnitude longer than
previous work has been considered. The system energy is constant to nine decimal
places for the entire simulation.

The length of time to reach equilibrium is primarily determined by the potential
exponent n,47 so we adjust the velocity perturbation, such that the system arrives
at equilibrium in a reasonable computational timeframe. To get an estimate for the
optimal velocity perturbation, we utilized an n = 2.5, initial velocity of 9.899 ⇥
10�5mm/µs simulation for reference. Equilibrium is reached in this system by the
time t = 1s. The relation between SW speed vs(n) and impulse speed vi is given
by47 vs(n) ⇠ v

(n�2)/n
i . We use this with vi = 9.899⇥10�5mm/µs to get a very rough

estimate of how SW speed varies with n in these systems. The order of magnitude
of the ratio vs(n)/vs(n = 5/2) gives an idea of the maximum factor by which the
initial perturbation should be scaled for a higher value of n, if the system is to
equilibrate in roughly the same amount of time.

Of course, the velocity perturbation cannot be too large if the Hertz law is to
remain valid,55 so it was necessary in some cases to choose velocities that were
quite a bit smaller than the maximum predicted by this estimate, and we there-
fore collected at least one second of real time data for n = 2, 2.5, 2.75, and even
longer (up to 6 s) for larger values of n. These are much longer times than previ-
ously reported. Data of grain position and velocity are recorded to file every 1 µs,
though we resample the data at time intervals beyond the dampening of velocity
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autocorrelation; typical sampling intervals were of the order of a few hundred µs.
We call the last 20% of each simulation the equilibrium interval, and all further
analysis is carried out with data from this interval. Here, the deviation from the
expected virial hKiv = n/(n+ 2)E was < 1% for all systems.

3. Heat Capacity Calculation

The heat capacity can be calculated directly from MD data in an NVE ensemble in
two ways. The first is an analytically-exact formula involving means of probability
distributions related to the system kinetic energy, and the second is an approxima-
tion involving the variance in system kinetic energy. Agreement of calculated values
with Eq. (2) then gives an indication that energy is being equipartitioned in the
system.

3.1. Exact formula for the specific heat

An exact formula for the specific heat in an NVE ensemble is obtained by taking an
energy derivative of the so-called microcanonical temperature, which in 1D gives:57

CV =
kB
N

✓
1� (N � 4)h1/K2i

(N � 2)h1/Ki2

◆�1

. (3)

This formula is related to the number of degrees of freedom in the system phase
space. Perturbing a chain by asymmetric edge impulses results in N independent
grain kinetic energies; however, it is possible to reduce the number of independent
degrees of freedom by, for example, imposing periodic boundary conditions59 or by
symmetrically perturbing the system (initial velocity perturbations at both chain
ends of equal magnitude, directed into the chain). Perturbing the system in this
way results in a mirror-reflection symmetry to be induced, thus halving the degrees
of freedom, and in turn a↵ecting the specific heat.

In particular, symmetric perturbations result in a system with only N/2 inde-
pendent grain kinetic energies if N is even, and only (N�1)/2 if N is odd (since the
central grain never moves in this case). The microcanonical specific heat must be
modified to account for this loss in degrees of freedom. In Appendix A, we present
the derivation of the correct expression for the specific heat. For even-N , the result
is

CV,even =
2kB
N

✓
1� (N � 8)

(N � 4)

h1/K2i
h1/Ki2

◆�1

, (4)

and for odd-N , it is

CV,odd =
2kB

(N � 1)

✓
1� (N � 9)

(N � 5)

h1/K2i
h1/Ki2

◆�1

. (5)

While these equations seem little changed compared to the original Eq. (3) with
full degrees of freedom, we show in Sec. 4, that only these give the correct result.
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3.2. Approximate formula for the specific heat

Since the earliest computer simulations of liquids and gases were most often per-
formed in the (NVE) ensemble, Lebowitz et al. derived an approximation for calcu-
lating CV from fluctuations in total system kinetic energy K, h�K2i ⌘ hK2i�hKi2,
given as53,57

h�K2i
hKi2 =

2

N

✓
1� 1

2CV

◆
, (6)

where CV is in units of kB . CV is obtained simply by inverting this expression
and plugging in the measured average system kinetic energy and its variance from
MD data. Alternatively, substituting Eq. (2) into Eq. (6) yields a prediction for the
variance (fluctuations) in system kinetic energy when energy is equipartitioned in
the system,

h�K2i = 2

N

✓
2

n+ 2

◆
hKi2. (7)

In comparison to the hard-sphere case,62 a factor of (n+ 2)/2, related to the finite
Hertz potential exponent, appears here. Interestingly, Eq. (7) implies that, in the
equilibrium phase, h�K2i/hKi2 is absent of material dependence. This has been
observed previously in MD simulations, see, e.g., Fig. 5 of Ref. 48, where kinetic
energy fluctuations were seen to ultimately approach the same value for chains of
fixed length, but comprised of di↵erent materials.

Similar to above, we consider what happens to Eq. (6) when the system su↵ers
from reduced degrees of freedom associated with symmetric edge perturbations. To
this end, we set K = hKi + �K and expand 1/K in a Taylor series, proceeding
in an identical fashion to that of Ref. 57. The resulting approximate expressions
obtained from truncating Eqs. (4) and (5) at O(N�1), are analogous to Eq. (6),
except appropriately modified to account for the spatial symmetry of the system.
The result is

h�K2i
hKi2 =

4

N

✓
1� 1

2CV,even

◆
(8)

for even-N systems, and

h�K2i
hKi2 =

4

N

✓
1� N

2(N � 1)CV,odd

◆
(9)

for odd-N systems. Note that in both Eqs. 8 and 9, CV is in units of kB .

4. Results and Discussion

Here, we show that the Hertzian chain indeed reaches an equilibrium phase at suf-
ficiently long times by addressing the equipartitioning of energy among all grains
within the equilibrium interval. Since ergodicity (defined as the equivalence of en-
semble and time averages of physical observables) is not, in general, a prerequisite
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Fig. 2. Specific heat capacities computed for all MD simulated systems as a function of the
exponent on the potential. In (a) we present the values obtained from Eq. (3), and in (b) values
obtained from inverting Eq. (6). The solid line in both plots is the specific heat predicted by the
generalized equipartition theorem, Eq. (2). The error bars are computed for N = 38 systems in
(a) as the standard deviation of calculations obtained by varying the sampling interval.

to establishing equilibrium,58 we do not focus on this property here. Rather, since
it is thought that the QEQ phase in Hertzian systems is ergodic, we make the
assumption that the equilibrium phase is also ergodic, and establish this by more
rigorous statistical test in a subsequent manuscript.61 Agreement between theoreti-
cal predictions for the specific heat and numerical calculations also gives indication
that ergodicity holds.

First we give results of simulations of systems with asymmetric perturbations,
then we discuss the symmetrically-perturbed systems with reduced degrees of
freedom.

4.1. Asymmetric perturbations

To prove that energy is equipartitioned, we computed the specific heats of MD sim-
ulation data using both Eqs. (3) and (6). These calculated results are directly com-
pared with CEq

V predicted by Eq. (2) and shown as the solid line in both Figs. 2(a)
and 2(b). It is evident that as N increases, the values calculated by Eqs. (3) and
(6) agree very well with the theory. Moreover, even for small (N . 20) systems,
the deviation from theory is no more than ⇠ 10% for Eq. (6), and improve with
additional data points in the averaging.

The fact that the calculated specific heat agrees with CEq

V for N � 1 provides
evidence that energy is indeed equipartitioned in the Hertz chain at long enough
times. This establishes that the very long-time dynamics of 1D granular chains
perturbed at one end with zero dissipation is a true equilibrium phase.44 We address
whether this holds for symmetric perturbations in Sec. 4.2.

4.2. Symmetric perturbations

Here, we test whether our hypothesis of equilibrium extends to systems of reduced
degrees of freedom. We calculate the heat capacities of symmetrically-perturbed
systems using both Eqs. (4) and (8) for even-N systems, and Eqs. (5) and (9)
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Fig. 3. Specific heat capacities computed for all symmetrically-perturbed MD simulated systems
as a function of the exponent on the potential. (a) Specific heat obtained from Eqs. (4) and (5).
(b) Specific heat obtained from inverting Eqs. (8) and (9). The solid line is the specific heat
predicted by the generalized equipartition theorem, Eq. (2).

for odd-N systems. The results are shown in Fig. 3 for two representative even-N
systems two representative odd-N systems.

It is clear from Figs. 3(a) and 3(b) that the calculated specific heats agree
well with the values predicted by the equipartition theorem, Eq. (2), indicating
that energy is also shared equally in symmetrically-perturbed systems. Since this
is the case even for odd-N systems, where the central grain never moves and there-
fore gets no kinetic energy, the definition of “equipartitioning of energy” must be
clearly defined in such systems. While energy equipartitioning is sometimes erro-
neously discussed in terms of energy being shared equally among all particles in
a system, the equipartition theorem makes no reference to particles, but rather to
the independent degrees of freedom in a system.60 Hence, the fact that the specific
heat, Eqs. (4) and (5), agrees with the value predicted by the equipartition theorem
implies that the energy is being spread out equally over all the independent degrees
of freedom at long times in Hertzian chains.

For completeness, we computed the probability distribution functions of grain
velocity, grain kinetic energy, and system kinetic energy of all our MD simu-
lations within the equilibrium interval, and note that they agree well with the
approximate distribution functions recently derived51,62,63 for a 1D gas of interact-
ing spheres in equilibrium in a microcanonical ensemble, for both asymmetrically-
and symmetrically-perturbed chains. This reinforces our assertion that the chain is
indeed in equilibrium at su�ciently long times.

5. Conclusions

We have illustrated that the long-term dynamics of 1D Hertzian systems between
fixed walls and with zero dissipation is a true equilibrium phase.44 We have shown
that this equilibrium phase is ergodic and that it is characterized by finite kinetic
energy fluctuations that are related to the specific heat capacity in a microcanonical
ensemble. For large systems, we find agreement between calculated heat capacity
and values predicted by the generalized equipartition theorem, indicating that en-
ergy is equipartitioned in Hertzian chains at long times. This finally establishes that
the weak interactions between SWs and between SWs and boundaries in Hertzian
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chains drive the system dynamics at long times beyond QEQ to a thermal equi-
librium phase, whose properties are predicted by equilibrium statistical mechanics.
The fact that these strongly nonlinear, nonintegrable systems equilibrate very late
in time, requiring extreme simulation times, agrees with assertions made in Ref. 50,
where the long-term dynamics of weakly nonlinear FPU lattices was investigated.
Other work48 has suggested a slow (algebraic ⇠ 1/t) decay of the fluctuations to
equilibrium values.

Our study has implications to the broader scientific and engineering commu-
nities. For example, quantitative analysis of the QEQ phase may now be possible
with this equilibrium theory as the starting point and by employing machinery
from nonequilibrium statistical physics (e.g., Boltzmann equation, linear response
theory, etc.). This may allow for the early-time dynamics of the QEQ phase to be
predicted and manipulated. Then being able to control the nature of the particle
interactions, the system’s journey to equilibrium could potentially be tuned and
optimized for physical applications, such as shock disintegration.

While real granular alignments are inherently dissipative, dissipation-free ver-
sions of our systems may be possibly realized as integrated circuits and hence our
results may immediately be observable in the laboratory. Moreover, we are cur-
rently making attempts to extend these ideas to include dissipation and driving.
We are also working on extending these ideas to random mass and diatomic chains,
as well as long-range potentials without cuto↵s.
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Appendix A. Symmetrically-imposed reduced degrees of freedom

Here, we extend the work of Rugh,57 to investigate the e↵ects that symmetrically-
imposed reduced degrees of freedom have on the microcanonical heat capacity. We
adopt the notation of Ref. 57, and introduce the vector field X

1

⌘ p/(2K(p)),
where K(p) is the system kinetic energy defined by K(p) =

PN
i=1

p2i /2, with pi the
magnitude of the grain momentum, and where we have set the grain mass m = 1
for convenience. The vector p contains only the independent translational grain
momenta, i.e., p ⌘ (p

1

,p
2

, . . . ,p
˜dp
) where d̃p denotes the (reduced) number of

degrees of freedom in momentum space.59,64 We next introduce the notation

div(X
1

) ⌘
˜dpX

i=1

@

@pi
·
✓

pi

2K(p)

◆
, (A.1)

where the dot denotes the vector dot product. The NVE temperature is related to
Eq. (A.1) via T (E) = 1/hdiv(X

1

);Ei.57
When all pi, i = 1, . . . , N are independent, such as when the Hertz chain is

perturbed asymmetrically, d̃p = N and Eq. (A.1) evaluates to (N�2)/(2K(p)). On
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the other hand, when the Hertz chain is perturbed symmetrically, all grain momenta
are no longer independent. In particular, when N is even, we have pN�i+1

= �pi

for i = 1, . . . , N/2, hence d̃p = N/2 and

˜dpX

i=1

@

@pi
·
✓

pi

2K(p)

◆
=

N/2X

i=1

@

@pi
·
✓

pi

2K(p)

◆
=

N � 4

4K(p)
, (A.2)

where the last equality follows from a straightforward evaluation of the preceding
expression.

In the case of odd-N systems that are perturbed symmetrically, we have
p
(N+1)/2 = 0, in addition to pN�i+1

= �pi for i = 1, . . . , (N � 1)/2, thus
d̃p = (N � 1)/2 and

˜dpX

i=1

@

@pi
·
✓

pi

2K(p)

◆
=

(N�1)
2X

i=1

@

@pi
·
✓

pi

2K(p)

◆
=

(N � 1)� 4

4K(p)
. (A.3)

Expressions (A.2) and (A.3) then lead to, respectively, the following NVE
temperatures:

T�1

even

=

✓
dN � 4

4

◆
h1/K(p)i ,

T�1

odd

=

✓
d(N � 1)� 4

4

◆
h1/K(p)i . (A.4)

where the subscripts “even/odd” denote the parity of N , and we have restored the
spatial dimensionality d.

The NVE specific heat is related to the system temperature via 1/C̃ = @T/@E =
�T 2@T�1/@E. Using a relation from Rugh, Ref. 57, we can write 1/C̃ = 1 �
T 2hdiv(div(X

1

)X
1

);Ei, with X
1

defined above and with C̃ in units of kB .
Using the definition (A.1), and after some straightforward algebra, we have

⌦
div(div(X

1

)X
1

);E
↵
=

(dN � 4)(dN � 8)

16
h1/K(p)2i (A.5)

for even-N systems, and

⌦
div(div(X

1

)X
1

);E
↵
=

�
d(N � 1)� 4

��
d(N � 1)� 8

�

16
h1/K(p)2i (A.6)

for odd-N systems. Substituting these last expressions, as well as the NVE tem-
peratures given in Eq. (A.4), into the definition of C̃, we then obtain the following
expressions for the NVE specific heat of the symmetrically-perturbed Hertz chain:

C̃�1

even

= 1� (N � 8)

(N � 4)

⌦
1/K2

↵
⌦
1/K

↵
2

,

C̃�1

odd

= 1� (N � 9)

(N � 5)

⌦
1/K2

↵
⌦
1/K

↵
2

, (A.7)

where we have set d = 1 in the last expressions, and C̃
even/odd are in units of kB .
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When there are no symmetry restrictions (e.g., when the Hertz system is
perturbed asymmetrically), the number of independent degrees of freedom in
momentum-space is equivalent to the number of particles N . One then defines
the specific heat per particle as CV = C̃/N . In contrast, in systems with reduced
degrees of freedom (e.g., symmetrically-perturbed systems), it is more appropriate
to define CV as the specific heat per independent degree of freedom. Then, for even
N , CV = C̃

even

/(N/2), and for odd-N , CV = C̃
odd

/((N � 1)/2). These are indeed
the quantities predicted by the generalized equipartition theorem, Eq. (2).
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